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Abstract: This study establishes a central limit theorem (CLT) for R2 statistics

in a moderately high-dimensional asymptotic framework. The underlying pop-

ulation accommodates a general independent components model, by which our

result unifies two existing CLTs. Beyond this, the new CLT characterizes the

effect of kurtosis of the latent independent components on the fluctuation of R2

statistics. As an application, a novel confidence interval is constructed for the

coefficient of multiple correlation in a high-dimensional linear regression.

Key words and phrases: High dimension; Independent components model; Mul-

tiple correlation coefficient.

1. Introduction

The coefficient of multiple correlation ρp measures the linear dependence

between a scalar random variable y and a set of variables x1, . . . , xp. It

maximizes the Pearson correlation between y and any linear combination
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of x = (x1, . . . , xp)
′, that is,

ρp = ρ(y,x) , max
α∈Rp

Cor (y, α′x) ; (1.1)

see Anderson (2003).

The R2 statistic, or squared sample multiple correlation coefficient, is

by definition the moment estimator of ρ2p. Under Gaussian distributions,

its exact distribution is derived by Fisher (1928). Additional discussions on

this sampling distribution can be found in Wilks (1932), Gurland (1968),

Lee (1971), Williams (1978), and Nandi and Choudhury (2005). Under gen-

eral populations, numerous works have examined the asymptotic behavior

of R2 in a low-dimensional asymptotic regime, where the dimension p of

the observations is fixed, while the sample size n tends to infinity; see for

instance, Muirhead (1982), Ali and Nagar (2002), Anderson (2003), and

Ogasawara (2006).

When the dimension p is non-negligible with respect to the sample size

n, the distribution of R2 deviates from its predicted limit in low-dimensional

situations. First, consider a moderately high-dimensional framework, that

is,

n→∞, p = pn →∞, p/n→ c ∈ (0, 1), (1.2)

which is commonly used in the literature on random matrix theory, and is
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referred to as the Marčenko–Pastur (MP) asymptotic regime (Pastur and

Marčenko, 1967). In this regime, Zheng et al. (2014) prove that the R2

statistic converges to c + (1 − c)ρ2, almost surely, where ρ2 denotes the

limit of ρ2p as p → ∞. Moreover, under a specific independent components

(IC) model (Bai and Silverstein, 2004), the R2 statistic is asymptotically

Gaussian, with a limiting variance determined jointly by the limit ρ2 and

the ratio c. Similar results are reported by Guo and Cheng (2021), who

studied the R2 statistic in a high-dimensional linear regression. However,

note that the models considered in Zheng et al. (2014) and Guo and Cheng

(2021), as well as their corresponding results, overlap, but not entirely.

Therefore, we need to study the R2 statistic under more general situations

and provide a unified limiting theory.

The main contribution of this study is a unified central limit theorem

(CLT) for the R2 statistic, established under a general IC model (Bai and

Silverstein, 2010) in the MP asymptotic regime (1.2). Our results show

that the R2 statistic converges in distribution to a Gaussian variable, the

variance of which is a function of the limiting ratio c, the whole dependence

structure of (y, x1, . . . , xp), and the fourth moments of their latent indepen-

dent components. By specifying the structure of the dependence and/or

the fourth moments, our CLT reduces to those in Zheng et al. (2014) and
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Guo and Cheng (2021). In general cases, the CLT represents the moment

contribution of the latent components to the fluctuation of R2. As an ap-

plication, we develop a novel interval estimation procedure for the multiple

correlation coefficient in a high-dimensional linear regression.

The rest of the paper is organized as follows. Section 2 details our

model assumptions and presents the new CLT for R2 statistics. Section 3

proposes our interval estimation of multiple correlation coefficients, which is

then applied to an empirical analysis of a breast cancer data set. Technical

proofs are relegated to online Supplementary Material.

2. Main results

2.1 Multiple correlation coefficient and the R2 statistic

Let z1, . . . , zn be a sequence of independent and identically distributed

(i.i.d.) observations from a population z = (y, x1, . . . , xp)
′ ∈ Rp+1, with

mean vector µ and covariance matrix Σ. The sample mean and sample

covariance matrix are z̄ =
∑n

j=1 zj/n and

Σ̂ =
1

n− 1

n∑
j=1

(zj − z̄)(zj − z̄)′, (2.1)
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2.2 CLT for the R2 statistic

respectively. Partitioning the population z into y and x = (x1, . . . , xp)
′, the

covariance matrices Σ and Σ̂ have partitions

Σ =

σyy σ′xy

σxy Σxx

 and Σ̂ =

 σ̂yy σ̂′xy

σ̂xy Σ̂xx

 , (2.2)

respectively. By solving the optimization problem in (1.1), the squared mul-

tiple correlation coefficient ρ2p and its moment estimator, the R2 statistic,

are given by

ρ2p =
σ′xyΣ

−1
xxσxy

σyy
and R2 =

σ̂′xyΣ̂
−1
xx σ̂xy

σ̂yy
, (2.3)

respectively (Anderson, 2003).

2.2 CLT for the R2 statistic

Our study of the R2 statistic is under a general IC model (Bai and Silver-

stein, 2010). It assumes that the population z has a stochastic representa-

tion

z = µ + Aw = µ +

a′1

A2

w, (2.4)

where µ ∈ Rp+1 denotes the unknown mean vector, w = (w1, . . . , wm)′ ∈

Rm (m ≥ p+1) is a vector of independent random variables representing the

m latent components, and A ∈ R(p+1)×m is a deterministic transformation
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2.2 CLT for the R2 statistic

matrix with rank(A) = p + 1 and AA′ = Σ. Here, the transformation

matrix A is partitioned into a1 ∈ Rm and A2 ∈ Rp×m, according to the

partition of the population z.

Our main assumptions on this model are listed below.

Assumption (a). The dimensions (p,m, n) tend to infinity in a related

way, such that

p = pn →∞, m = mn →∞, cn ,
p

n
→ c ∈ (0, 1), lim sup

n→∞

m

n
< 1.

Assumption (b). The latent independent variables (wi) satisfy

E(wi) = 0, E(w2
i ) = 1, E(w4

i ) = τi, sup
i≥1

E|wi|6 <∞,

and supi≥1 E|wi|6I(|wi|>δn1/3) → 0, for any fixed δ > 0.

Assumption (c). As (p,m) → ∞, the multiple correlation coefficient

ρp → ρ ∈ [0, 1) and the limits of the following quantities exist:

1

σ2
yy

m∑
i=1

(τi − 3)[a′1ei]
5−k[σ′xyΣ

−1
xxA2ei]

k−1 → ζk, k = 1, . . . , 5,

where {σyy,σxy,Σxx} are defined in (2.2), and ei denotes an m× 1 column

vector, with its ith coordinate equals to one, and all others equal to zero.

Remark 1. The IC model (2.4) generalizes the one studied in Zheng et al.

(2014). Their model assumes that the latent variables (wi) are i.i.d. and
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2.2 CLT for the R2 statistic

have common finite fourth moment. Moreover, for the first row a′1 of the

matrix A, after normalization, its `∞-norm should converge to zero, that

is, ||a1/
√

a′1a1||∞ = o(1), which implies that maxk Cor(y, wk) → 0. This

condition is now removed from our model and, as a price, we need the

condition of a finite sixth moment; see Assumption (b). An alternative

condition on their model is E(w4
i ) = 3, under which our Assumption (c)

holds automatically with ζk = 0, for k = 1, . . . , 5. In general cases, the five

quantities {ζk} may contribute to the fluctuation of R2.

Remark 2. The IC model (2.4) includes the linear regression model as a

special case. Consider the following linear model:

y = β0 + β′x + ε, (2.5)

where y ∈ R is the response variable, β0 ∈ R is the intercept, β ∈ Rp is

the vector of regression coefficients, x ∈ Rp is the vector of explanatory

variables with zero means, and ε = σε,pεp, independent of x, denotes the

error term, with mean zero and variance σ2
ε,p. (Note that εp is a standardized

variable.) Suppose that x has the following IC representation:

x = Axξ,

with Ax ∈ Rp×mx a row full-rank transformation matrix and ξ ∈ Rmx a

vector of independent components. Then, the joint vector of y and x in the
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2.2 CLT for the R2 statistic

linear model can be written asy
x

 =

β0
0

+

β′Ax σε,p

Ax 0


ξ

εp

 , (2.6)

which is a special case of the IC model (2.4) with the correspondence

µ =

β0
0

 , a1 =

A′xβ

σε,p

 ,A2 =

(
Ax 0

)
,w =

ξ

εp

 , (2.7)

and m = mx + 1.

Theorem 1. Suppose that Assumptions (a)–(c) hold. Then,

√
n{R2 − cn − (1− cn)ρ2p} → N{0, σ2(c, ρ2)} (2.8)

in distribution. The variance function is σ2(c, x) = σ2
1(c, x) + σ2(c, x), with

σ2
1(c, x) =2{c+ (1− c)x}2

+ 4{(1− c)x2 − 2(1− c)x− c}{c+ (1− c)x− 1/2},

σ2(c, x) =h1 − 2{c+ (1− c)x}h2 + {c+ (1− c)x}2ζ1,

where h1 = c2ζ1 + 4c(1− c)ζ2 + 2(2− 3c)(1− c)ζ3 − 4(1− c)2ζ4 + (1− c)2ζ5

and h2 = cζ1 + 2(1− c)ζ2 − (1− c)ζ3.

Theorem 1 establishes a new CLT for the R2 statistic under the IC

model (2.4). Its limiting variance σ2(c, ρ2) is represented as the sum of
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2.2 CLT for the R2 statistic

σ2
1(c, ρ2) and σ2(c, ρ

2). In particular, the second part σ2(c, ρ
2) consists of

all quantities involving the five auxiliary parameters {ζk} defined in As-

sumption (c). Thus, this part characterizes how the fourth moments {τi}

of the latent independent components {wi} contribute to the fluctuation of

R2.

When the coefficient of multiple correlation has the limit ρ = 0, we

have ζ3 = ζ4 = ζ5 = 0, because

1

σyy

m∑
i=1

(σ′xyΣ
−1
xxA2ei)

2 = ρ2p → 0,

which gives σ2
1(c, 0) = 2c(1 − c) and σ2(c, 0) = 0. It follows immediately

that

√
n(R2 − cn)→ N{0, 2c(1− c)}

in distribution, which coincides with the result in Zheng et al. (2014). This

conclusion does not depend on the distributions of the latent independent

components, and thus can facilitate the testing procedure for H0 : ρ = 0.

Under the linear model (2.5), σ2(c, ρ
2) can be simplified to

σ2
2(c, ρ2) = (1− c)2(1− ρ2)2

{
τy − 3 + (2ρ2 − 1)(τε − 3)

}
,

where τy and τε are the (limiting) kurtosis parameters of the response vari-

able y and the error term εp, respectively. This shows that the overall

contribution of the fourth moments of ξ = (ξ1, . . . , ξmx)′ to the variance of
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2.2 CLT for the R2 statistic

R2 can be quantified by the kurtosis of the response y. This result coin-

cides with Theorem 5 in Guo and Cheng (2021). Note that their CLT is

established under a concentration condition on ξ, that is, for some α > 0,

max
i

P (|ξi| ≥ t) ≤ 2 exp
(
−αt2

)
, ∀t ≥ 0, (2.9)

whereas ours is established under finite sixth moments, a weaker condition.

As an illustration, we numerically examine the fluctuation of R2 under

the following model.

Model 1. Take A = Ip+1, except with the (2,1)th entry equal to q ∈

{0, 1}, set µ = 0, and let the components of w be i.i.d. standardized

Gamma(1,2) random variables.

The dimensional setting is (p, n, c) = (1000, 2000, 0.5). Under this model,

for q = 0, we have ρ2 = 0 and σ2(c, ρ2) = 0.5, with σ2(c, ρ
2) = 0; for q = 1,

we have ρ2 = 0.5 and σ2(c, ρ2) = 0.4375, with σ2(c, ρ
2) = 0.1875. Normal

Q–Q plots for the normalized R2 from 5000 independent replications are

displayed in Figure 1, which confirms its asymptotic standard normality.
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Figure 1: Normal Q–Q plots for the normalized R2 from 5000 independent

replications, with ρ2 = 0 (left panel) and ρ2 = 0.5 (right panel).

3. Interval estimation of ρ2 in a linear regression

3.1 Confidence interval for ρ2

This section considers the interval estimation of the squared multiple corre-

lation coefficient ρ2 in the linear regression (2.5). Using the CLT developed

in Section 2, it is sufficient to present a reasonable estimate of the limiting

variance σ2(c, ρ2), which involves three unknown parameters, namely, ρ2,

τy, and τε.

Let (y1,x
′
1), . . . , (yn,x

′
n) be a sequence of i.i.d. observations from the

regression model. Then, the moment estimates of the three parameters are,
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3.1 Confidence interval for ρ2

respectively,

ρ̂2 = R∗2 ,
R2 − cn
1− cn

, τ̂y =
1
n

∑n
j=1(yj − ȳ)4{

1
n

∑n
j=1(yj − ȳ)2

}2 ,

and

τ̂ε =
1

(1− cn)4

[
1

n

n∑
j=1

{
ε̂2j

ε̂′ε̂/(n− p)

}2

− 3cn(1− cn)2(2− cn)

]
,

where ȳ is the sample mean of {yj}, and ε̂ denotes the residual vector of

the regression. Note that the consistency of ρ̂2 and τ̂y is obvious, and that

of τ̂ε is verified in Guo and Cheng (2021) under the concentration condition

(2.9), which can be relaxed to our moment conditions. Therefore, a plug-in

estimator of σ2(c, ρ2) is given by

σ̂2 = σ2
1(cn, ρ̂

2) + (1− cn)2(1− ρ̂2)2
{
τ̂y − 3 + (2ρ̂2 − 1)(τ̂ε − 3)

}
.

However, as attested by our simulations, for moderately large p and n,

the estimator σ̂2 sometimes takes negative values due to the fluctuations

of ρ̂2 and τ̂ε, especially when cn is large and ρ2 is small. To cope with this

irrational situation, we find a lower bound for σ2(c, ρ2), that is,

σ2(c, ρ2) ≥ σ2
1(c, ρ2)− 4(1− c)2(1− ρ2)2ρ4 > 0, ∀ρ2 ∈ [0, 1), (3.1)

and propose a truncated estimator of σ2(c, ρ2) as

σ̂2
t =σ2

1(cn, R
∗2
t )

+ (1− cn)2(1−R∗2t )2 max
{
−4R∗4t , τ̂y − 3 + (2R∗2t − 1)(τ̂ε − 3)

}
,
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3.2 Simulations

where R∗2t = max{R∗2, 0} is the truncated statistic of R∗2.

Theorem 2. Under the assumptions of Theorem 1, σ̂2
t converges to σ2(c, ρ2)

in probability.

Based on Theorems 1 and 2, the (1−α)100% confidence interval for ρ2

in a linear regression can be constructed as

C(R∗2) ,
{
ρ2 : R∗2 −

zα/2σ̂t√
n(1− cn)

≤ ρ2 ≤ R∗2 +
zα/2σ̂t√
n(1− cn)

}
∩ [0, 1],

where zα/2 is the upper α/2-quantile of the standard normal distribution.

If C(R∗2) is a null set, the confidence interval is deemed to be nonexistent;

the probability of this event is o(1) for any ρ2 ∈ (0, 1).

3.2 Simulations

We numerically evaluate the performance of our confidence interval for ρ2,

referred to as CInew, and compare it with that of the original estimator σ̂2

(Guo and Cheng, 2021), referred to as CIgc.

The model settings are as follows:

1.) We set β0 = 0 and Ax = Ip in the model, because the R2 statistic is in-

variant under any invertible affine transformation on the explanatory

vector x.

2.) Two distributional settings for ξ and ε are considered:
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3.2 Simulations

Case 1. The first [p/2] components of ξ are generated from a

standardized Gamma(1,2) distribution and the rest are from a

Unif(−
√

3,
√

3) distribution, and ε follows N(0,1).

Case 2. The first [p/2] components of ξ are generated from

a standardized Poisson(1) distribution and the rest are from

N(0,1), and ε follows a t(9) distribution.

3.) For the regression coefficient vector β, we fix its `2-norm ‖β‖, and let

its first to kth elements be equal to ‖β‖/
√
k, and the rest be zero.

Here, we set ||β|| = 0.5 or 2, corresponding to a small or large ρ2,

respectively. Note that ρ2 is equal to 0.2 or 0.8 under Case 1, and

7/43 or 28/37 under Case 2. The parameter k is set to 2 or [3p/4],

representing a sparse and dense regression, respectively.

4.) The dimensional settings are p = 200, 300, 500 and cn = 0.2, 0.5, 0.8.

The empirical coverage rates and average lengths of CInew and CIgc from

5000 independent replications are collected in Tables 1 and 2. Starred

results imply that there are some negative estimates σ̂2 among the 5000

replications. When this occurs, we set the length of the corresponding CIgc

to zero and judge that this interval does not cover ρ2.

The results in Tables 1 and 2 show that when the ratio cn is small and
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3.2 Simulations

Table 1: Coverage (%) and average length of the 95% confidence intervals

for ρ2 under Case 1.

c p
(ρ2, k)

(0.2,3p/4) (0.8,3p/4) (0.2,2) (0.8,2)

0.2

200
CInew 95.10(0.1134) 94.54(0.0478) 94.42(0.1177) 94.58(0.0582)

CIgc 94.78(0.1127) 94.54(0.0478) 94.40(0.1173) 94.58(0.0582)

300
CInew 95.34(0.0924) 94.90(0.0390) 94.78(0.0963) 95.16(0.0478)

CIgc 95.20(0.0921) 94.90(0.0390) 94.68(0.0962) 95.16(0.0478)

500
CInew 95.06(0.0714) 94.74(0.0302) 94.92(0.0746) 95.14(0.0370)

CIgc 95.02(0.0713) 94.74(0.0302) 94.90(0.0746) 95.14(0.0370)

0.5

200
CInew 95.12(0.2606) 94.50(0.0891) 95.02(0.2645) 94.56(0.1032)

CIgc 93.72(0.2523*) 94.50(0.0891) 93.76(0.2572*) 94.56(0.1032)

300
CInew 95.42(0.2168) 94.38(0.0728) 95.22(0.2165) 94.64(0.0846)

CIgc 94.36(0.2117*) 94.38(0.0728) 94.40(0.2108*) 94.64(0.0846)

500
CInew 95.00(0.1682) 94.58(0.0565) 94.70(0.1705) 94.38(0.0654)

CIgc 94.48(0.1653) 94.58(0.0565) 94.32(0.1684) 94.38(0.0654)

0.8

200
CInew 92.44(0.4822) 91.50(0.1660) 92.38(0.4847) 91.70(0.1761)

CIgc 85.20(0.4384*) 89.84(0.1594*) 86.26(0.4426*) 90.80(0.1729)

300
CInew 93.64(0.4196) 92.64(0.1362) 93.76(0.4181) 91.88(0.1444)

CIgc 88.64(0.3873*) 91.52(0.1327) 88.60(0.3846*) 91.30(0.1430)

500
CInew 94.62(0.3472) 93.98(0.1049) 94.54(0.3485) 93.32(0.1118)

CIgc 91.38(0.3260*) 93.32(0.1034) 91.16(0.3269*) 93.20(0.1115)
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3.2 Simulations

Table 2: Coverage (%) and average length of the 95% confidence intervals

for ρ2 under Case 2.

c p
(ρ2, k)

(7/43,3p/4) (28/37,3p/4) (7/43,2) (28/37,2)

0.2

200
CInew 94.84(0.1152) 94.94(0.0613) 94.40(0.1155) 94.80(0.0635)

CIgc 92.44(0.1108*) 94.94(0.0613) 92.76(0.1112*) 94.80(0.0635)

300
CInew 94.88(0.0934) 95.08(0.0504) 95.08(0.0938) 95.06(0.0520)

CIgc 93.22(0.0907*) 95.08(0.0504) 93.84(0.0914*) 95.06(0.0520)

500
CInew 95.24(0.0720) 95.08(0.0391) 95.46(0.0724) 94.68(0.0404)

CIgc 94.24(0.0707*) 95.08(0.0391) 94.54(0.0714*) 94.68(0.0404)

0.5

200
CInew 95.30(0.2617) 93.44(0.1126) 95.42(0.2620) 93.92(0.1148)

CIgc 90.82(0.2451*) 93.44(0.1126) 91.14(0.2448*) 93.92(0.1148)

300
CInew 95.08(0.2214) 94.26(0.0922) 95.46(0.2212) 94.48(0.0944)

CIgc 92.36(0.2092*) 94.26(0.0922) 91.94(0.2097*) 94.48(0.0944)

500
CInew 95.26(0.1739) 94.84(0.0717) 95.52(0.1747) 94.54(0.0733)

CIgc 92.92(0.1667*) 94.84(0.0717) 93.62(0.1676*) 94.54(0.0733)

0.8

200
CInew 92.64(0.4796) 91.50(0.2039) 92.64(0.4764) 91.72(0.2046)

CIgc 84.52(0.4347*) 90.28(0.1979*) 83.32(0.4283*) 90.70(0.1995*)

300
CInew 93.42(0.4111) 92.68(0.1662) 94.02(0.4103) 91.88(0.1677)

CIgc 86.76(0.3758*) 92.06(0.1633) 86.70(0.3717*) 91.02(0.1653)

500
CInew 93.94(0.3414) 93.68(0.1294) 94.08(0.3412) 93.58(0.1304)

CIgc 88.80(0.3153*) 93.34(0.1285) 89.06(0.3162*) 93.36(0.1296)
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3.3 An empirical study

ρ2 is large, the two interval estimates are comparable, with similar average

lengths, and their coverage rates are all close to the nominal level 0.95.

However, for large cn, their coverage rates tend to be biased downward, and

the biases become small as the dimensions increase. In particular, when cn is

large and ρ2 is small, CInew outperforms CIgc, with more accurate coverage

rates. This demonstrates the necessity and validity of using the truncated

estimate of the limiting variance σ2(c, ρ2).

3.3 An empirical study

We study a breast cancer data set collected by Yau et al. (2010) that can be

downloaded from the UCSC Xena platform (http://xena.ucsc.edu). This

data set consists of measurements on 9168 gene expression levels of n = 228

cancer patients and their (uncensored) distant metastasis-free survival times

T . Our interest is the extent to which a linear function of a set of gene

expressions can explain the variation of the survival time.

Motivated by the accelerated failure time model (Kalbfleisch and Pren-

tice, 2002), we regress the logarithm of the survival time log(T ) on p gene

expression levels selected to have the largest marginal correlations with the

response. Three 95% confidence intervals, ICnew, ICgc, and ICzheng (Zheng

et al., 2014), for the squared coefficient of multiple correlation ρ2 are re-
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ported in Table 3, where the dimension p varies from 100 to 160. The

results illustrate that, compared with CIzheng, both CInew and CIgc suggest

a slightly narrower confidence interval in all cases under study. In addition,

when p is large (p ≥ 140), CInew indicates the need to truncate the estimate

of σ2(c, ρ2), which results in a wider confidence interval than that of CIgc.

Table 3: 95% confidence intervals of ρ2 for breast cancer data.

p CInew CIgc CIzheng

100 (0.1816,0.4679) (0.1816,0.4679) (0.1765,0.4730)

110 (0.1728,0.4749) (0.1728,0.4749) (0.1679,0.4799)

120 (0.1530,0.4733) (0.1530,0.4733) (0.1470,0.4794)

130 (0.1495,0.4852) (0.1495,0.4852) (0.1418,0.4928)

140 (0.1371,0.4944) (0.1445,0.4869) (0.1285,0.5030)

150 (0.1064,0.4986) (0.1138,0.4911) (0.0989,0.5061)

160 (0.1119,0.5286) (0.1308,0.5096) (0.1043,0.5361)

Supplementary Material

The online Supplementary Material includes proofs of Theorems 1 and 2.
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