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Abstract:

Statistical inference for high-dimensional regression models is a challenging problem. Existing meth-

ods focus on inference for finite-dimensional components of the model parameters. Constructing the

parameter estimators and establishing the asymptotic inference are specific to each model. In this

study, we treat a high-dimensional model as a special case of a semiparametric model. We propose a

general framework for constructing one-step regularized estimators for any smooth functional of high-

dimensional parameters, which can be viewed as an extension of the one-step efficient estimator for

semiparametric models to an M-estimation in the high-dimensional model setting. We show that the

proposed estimator is asymptotically normal under some general regularity conditions. We apply the

proposed method to an inference for the coefficients in a high-dimensional lasso regression, and to de-

termine the l2-norm of the functional coefficients in a high-dimensional additive model, allowing the

number of covariates to grow exponentially with the sample size. A simulation study and a microarray

data example are presented to demonstrate the performance of the proposed method.
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model; one-step regularized estimators.

1. Introduction

In high-dimensional regression models, the logarithm of the number of covariates can grow

at a polynomial rate as the sample size increases, and many statistical methods have been

developed for both model prediction and variable selection. For linear models, a regular-

ized or penalized least-square estimation is widely used to handle high-dimensional covari-

ates. Examples include the least absolute shrinkage and selection operator (lasso) [Tibshirani

(1996)], smoothly clipped absolute deviation (SCAD) [Fan and Li (2001)], and minimax con-

cave penalty (MCP) [Zhang et al. (2010)]. Theoretical properties on the oracle properties

of variable selection are given for lasso estimators in Meinshausen et al. (2006), Zhao and

Yu (2006), and Wainwright (2009), and later established in Fan and Lv (2011) and Bradic

et al. (2011) for a general concave penalty. The oracle properties of variable selection are also

obtained by Van de Geer et al. (2008) for high-dimensional generalized linear models, and by

Huang et al. (2010) for nonparametric additive models (NAMs) in a high-dimensional setting.

However, statistical inference for high-dimensional regression models remains a challenging

problem, and traditional inference results may not hold for high-dimensional estimators. For

example, it has been shown that the lasso estimator is not root-n consistent [Candes et al.

(2007), Zhang et al. (2008), Bühlmann and Van De Geer (2011)]. It is also well known that

no post-selection estimators are locally regular estimators. Knight and Fu (2000) point out

that, even in a low-dimensional case, the asymptotic distribution of the lasso estimator is

not normal, and Chatterjee and Lahiri (2010) show that an inference based on bootstrap

methods may fail.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0065



A growing number of studies are trying to determine how to obtain a correct inference

in high-dimensional regression models. Some methods propos modified bootstrap procedures

for inference [Chatterjee and Lahiri (2011), Dezeure et al. (2017)] or focus on conditional

inference post-selection [Lockhart et al. (2014), Taylor et al. (2014), Lee et al. (2016), Yang

et al. (2016)]. Belloni et al. (2014) introduce post-selection to structural and treatment effects,

which they refer to as “double selection”, and Kozbur (2020) extend this to an additive model.

As an alternative, some methods propose improving existing estimators to yield a regular

inference asymptotically. For example, Zhang and Zhang (2014) propose a low-dimensional

projection approach to obtain the confidence intervals for finite-dimensional parameters in a

high-dimensional linear model. The key idea is to project model-based residuals onto the lin-

ear space of the covariates with coefficients that were not of interest for inference, and then

to remove this projection from the initial estimators. This procedure, called “debiasing”,

obtains a new estimator that is locally regular and asymptotically normal. Since then, this

idea has been used in many high-dimensional settings to obtain valid confidence intervals

for prespecified parameters of interest, with different ways of constructing the projections.

Van de Geer et al. (2014) study a debiased estimator for high-dimensional generalized lin-

ear models with a convex loss function. Ren et al. (2015) extend this idea to a Gaussian

graphical model, and Ning et al. (2017) propose a de-correlated score function, in the same

spirit as debiasing, with a Dantzig-type estimator to handle more general likelihood functions

with high-dimensional parameters. Other extensions include significance tests for a finite-

dimensional subset of the model parameters, under constraints [Yu et al. (2019)], statistical

inference based on post-selection for partial linear models [Fei et al. (2019)], debiased estima-

tors for high-dimensional graph-based linear models [Wang and Loh (2020)], and combining
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a bootstrap with debiased lasso estimators [Zhang and Cheng (2017)], thus improving the

estimation of single component in high-dimensional additive models with a debiased modifi-

cation [Gregory et al. (2016)]. Chernozhukov et al. (2015) introduce an orthogonal estimating

equation for inference on a single component of high-dimensional parameters. Chernozhukov

et al. (2016) give a general construction of moment functions for the generalized method of

moments (GMM). More recently, Chernozhukov et al. (2018) considered a debiased estima-

tion based on a Neyman orthogonal score function for treatment effect estimation. Bach

et al. (2020) use an orthogonal score function to obtain confidence bands for a single com-

ponent in additive models. Lu et al. (2020) combine this idea with kernel estimation, and

propose a kernel-sieve hybrid regression estimator. These methods all focus on inference for

one or a finite number of coefficients in high-dimensional regression models. Furthermore,

the construction of the debiasing methods is specific to each model. However, there is no

general guidance on how to obtain asymptotically regular estimators for a finite-dimensional

functional of the parameters (finite-dimensional components are special finite-dimensional

functionals) in general high-dimensional regression models.

In this study, we fill this gap by providing a general theory and framework for performing

an inference for any smooth functionals of the parameters in a high-dimensional regression

setting. Specifically, we cast high-dimensional regression models as a special case of gen-

eral semiparametric models, which allow the parameters to be of infinite dimension. An

estimation for a high-dimensional model based on, for instance, a penalized least-squares

or likelihood, is essentially a special type of constrained or sieve M-estimation in the semi-

parametric context, which has been studied extensively [e.g., Geman and Hwang (1982),

Newey and Powell (2003), Chen (2007), Chen and Shen (1998), Shen and Wong (1994)].
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Furthermore, an inference for one particular coefficient in high-dimensional models is equiv-

alent to inference for some smooth functional of the parameters in semiparametric models.

From this point of view, we propose a general one-step regularized estimator (OSRE) based

on semiparametric efficiency theory, with an extension from likelihood-based estimation to

more general M-estimation. The proposed estimator reduces to commonly used debiased

estimators under high-dimensional linear models and a decorrelated score function. It is also

equivalent to a linear approximation of the Neyman orthogonal score function proposed by

Chernozhukov et al. (2018).

The main contribution of this work is that we provide general regularity conditions to

show that the proposed estimators have an asymptotically linear expansion, so that the dis-

tributions are locally regular and asymptotically normal. This leads to a unified approach for

testing a high-dimensional regression model using a one-step regularization. As an additional

contribution, using a high-dimensional linear model and a NAM as examples, we show that

our proposed estimators lead to correct inference for some functionals of the parameters, for

example, the total sum of the squared coefficients in the linear model, and the l2-norm of

one functional component in the additive model, even if the dimension of the covariates is

power-exponential of the sample size. To the best of our knowledge, our study is the first

to obtain such results for these models. Similarly, this kind of extension can be extended to

other cases, making traditional debiased methods more general.
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2. Method

2.1 General M-estimation Setup

We assume that the data consist of n independent and identically distributed (i.i.d.) obser-

vations, Z
(n)
i = (X

(n)
i , Yi), for i = 1, ..., n, where X(n) denotes pn-dimensional covariates, Y

denotes the outcome of interest, and Z(n) follows a probability measure P n in Rpn+1. We let

Z(n) be the support of Z
(n)
i . Here, P n, X(n) and Z(n) may vary with the sample size n, but

to simplify the notation, we write P for P n, X for X(n), and Z for Z(n) in the remainder of

this work. For all high-dimensional regression problems, the main goal is to find a prediction

function, f(X), for the outcome Y . The true optimal prediction function, denoted by fn0,

maximizes the expectation of some objective function indexed by f , denoted as m(Z, f), and

is assumed to be unique. That is, P {m(Z, fn0)} > P {m(Z, f)}, for all f(X) ̸= fn0(X),

with nonzero probability. For our method, we assume that fn0 belongs to a known space

Fn that is a Hilbert space consisting of measurable functions of Z equipped with the inner

product ⟨·, ·⟩n and the norm ∥ · ∥(n).

In high-dimensional regression settings, when pn is larger than n, estimating fn0 is usually

performed by maximizing a regularized empirical version of the objective function, which is

Pn {m(Z, f)}minus a penalty function of f . Here, Pn denotes the empirical measure based on

n observations. Such an estimation is equivalent to maximizing Pn {m(Z, f)} in a constrained

set for f . Hence, we consider the estimation problem in high-dimensional regression problems

as a constrained M-estimation, that is,

f̂n ≡ max
f∈Fns

Pnm(Z, f),

where Fns is the constrained set in Fn. The resulting estimator, f̂n, is called the sieve
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2.2 The OSRE

estimator of the M-estimation in the semiparametric context.

As an example, in a linear model, f is a linear combination of X (including a constant)

and m(Z, f) = −(Y −f(X))2/2. Moreover, Fn consists of all linear functions of X in L2(P )

with the same inner product inherited from the L2(P ) space. When the lasso is used for

estimation, the constrained set Fns contains all functions in Fn with coefficients that have an

l1-norm bounded by a constant. In a generalized linear model, everything is the same, except

that m(·, f) is from the log-likelihood function given by the model. In another example of

a high-dimensional NAM studied in Huang et al. (2010), f is a summation of univariate

functions for each variable in X, and Fn is the subspace of such functions in L2(P ). When

constructing their estimator, they restrict f to the constrained set Fns, which is a linear space

of univariate spline bases in which the coefficients of these bases have a bounded l1-norm.

2.2 The OSRE

Our goal is to make an inference for a finite-dimensional functional of fn0 based on f̂n, defined

as θn0 ≡ Fn(fn0). To introduce our proposed one-step regularized approach, we first assume

the following conditions:

A.1 Assume that Fn has a continuous Hadamard derivative at fn0, which is assumed to be

in the interior of Fn, denoted as ∇Fn(fn0), and its Hadamard derivative in the direction

v ∈ Fn is defined as

∇Fn(fn0)[v] =
∂Fn(fn0 + τv)

∂τ

∣∣∣
τ=0

.

A.2 Assume that m(Z, f) has a second-order Hadamard derivative at fn0 ∈ Fn, denoted by
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2.2 The OSRE

∇2m(Z, fn0), which is a bounded bilinear operator, defined as

P
{
∇2m(Z, fn0)[h1, h2]

}
= P

{
∂ [∇m(Z, fn0 + τh2)[h1]]

∂τ

∣∣∣∣∣
τ=0

}
,

for h1, h2 ∈ Fn.

A.3 Define

Nfn,ϵ = {g ∈ Fn : d(n)(g, fn) ≤ ϵ}, for fn ∈ Fn,

which is the neighborhood of fn. Let V(n) be the closed linear span of {f − fn0 : f ∈

Nfn,ϵ}. We assume that there exists h∗n ∈ Fn such that

P
{
∇2m(Z, fn0)[h

∗
n, v]

}
= ⟨v∗n, v⟩(n) , for all v ∈ V(n), (2.1)

where v∗n ∈ V(n) is the Riesz representor satisfying ∇Fn(fn0)[v] = ⟨v∗n, v⟩(n) , for all v ∈

V(n), and it exists and is unique , from Condition 1. Note that h∗n and v∗n have the same

number of components as the dimension of θn. The inner product is the summed inner

product between each component pair.

Remark 1. Conditions 1 and 2 both require smoothness of the objective functional and

functional parameter of interest. Condition 3 is the key assumption for developing our pro-

posed estimators. From the Riesz representation theorem, P {∇2m(Z, fn0)[h
∗
n, v]} can be

written as ⟨Mn[h
∗
n], v⟩n, for some linear operator Mn. Thus, Condition 3 is equivalent to

the invertibility of Mn, and h
∗
n is given as M−1

n ∇F(fn0). The direction h∗n is an analogue to

the least favorable direction in a semiparametric likelihood inference, where the m-function

is the log-likelihood function and Mn corresponds to the negative information operator. For

additional details about the connection between our proposed method and semiparametric

models, see Section S1 in the Supplementary Material.
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2.2 The OSRE

We now introduce the OSRE. Supposing d(n)(f̂n, fn0) converges to zero in probability, we

have

Fn(f̂n)− Fn(fn0) =
〈
v∗n, f̂n − fn0

〉
(n)

+Op

(
d2(n)(f̂n, fn0)

)
. (2.2)

Because fn0 maximizes P{m(Z, f)}, we have P{∇m(Z, fn0)[h]} = 0 and Condition A.2,

P
{
∇m(Z, f̂n)[h]

}
= P

{
∇m(Z, f̂n)[h]

}
− P {∇m(Z, fn0)[h]}

= P
{
∇2m(Z, fn0)[h, f̂n − fn0]

}
+Op

(
d2(n)(f̂n, fn0)

)
for any h ∈ Fn. In particular, we choose h = h∗n satisfying (2.1), as given in Condition A.3.

Thus, from (2.2), we conclude

Fn(fn0) = Fn(f̂n)− P
{
∇m(Z, f̂n)[h

∗
n]
}
+Op

(
d2(n)(f̂n, fn0)

)
.

The last term on the right-hand side of the equation is of order d2(n)(f̂n, fn0). Therefore,

the second term on the right-hand side, P
{
∇m(Z, f̂n)[h

∗
n]
}
, can be considered as the bias

from using Fn(f̂n) to estimate Fn(fn0), which may not be negligible in high-dimensional set-

tings. This motivates the construction of the OSRE, as follows: given that ĥn is a consistent

estimator for h∗n, our proposed estimator for θn0 is defined as

θ̃n = θ̂n − Pn

{
∇m(Z, f̂n)[ĥn]

}
, (2.3)

where θ̂n = Fn(f̂n) is the plug-in estimator based on f̂n. Because (2.3) is a one-step update

for the initial estimator θ̂n, we call the proposed estimator OSRE for θn0.

Remark 2. The Neyman orthogonal score function in Chernozhukov et al. (2018) requires

that the score function ψ satisfies

∇ηP [ψ(Z; θ0, η0)[η − η0] = 0,
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2.3 General Asymptotic Properties for the OSRE

where η is the nuisance parameter, and θ0 and η0 are true parameters. Because h∗n satisfies

∇2P [m(Z; θ0, η0)[h
∗
n, (θ − θ0, η − η0)] = θ − θ0 +Op(n

−1/2),

when ∥(θ − θ0, η − η0)∥22 = Op(n
−1/2), we have

∇η∇P [m(Z; θ0, η0)[h
∗
n, η − η0] = 0 +Op(n

−1/2),

when ∥(θ − θ0, η − η0)∥22 = Op(n
−1/2). Thus, our proposed method can be viewed as a linear

approximation of the Neyman orthogonal score function in the neighborhood of (θ0, η0).

2.3 General Asymptotic Properties for the OSRE

Here, we provide regularity conditions and establish asymptotic results for the proposed

OSRE. In addition to Conditions A.1 - A.3, we further assume the following:

A.4 The initial estimator, f̂n, satisfies d(n)(f̂n, fn0) = op(n
− 1

4 ).

A.5 There exists an estimator, ĥn, for h
∗
n such that d(n)(ĥn, h

∗
n) = op(n

− 1
4 ).

A.6 For every ϵ, η > 0, there exist δ1, δ2 > 0 such that

lim
n

P

(
sup

f1,f2∈Nfn0,δ1
,h1,h2∈Nh∗n,δ2

∥Gn{∇m(Z, f1)[h1]} −Gn{∇m(Z, f2)[h2]}∥∞ > ϵ

)
< η,

where ∥A∥∞ = maxi,j |aij| for any matrix A = (aij), Gn = n1/2(Pn − P ) denotes the

empirical process, and Nf,δ is the δ-neighborhood of f , as defined in Condition A.3.

A.7 When n goes to infinity, Var(∇m(Z, fn0)[h
∗
n]) converges to a positive-definite matrix Σ.

Remark 3. Conditions A.4 and A.5 related to the convergence rates for the initial estimator

f̂n and the estimator ĥn, respectively. As shown later, these conditions are possible even

under high-dimensional settings when pn is much larger than n. Condition A.6 implies the
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2.3 General Asymptotic Properties for the OSRE

asymptotically uniform equicontinuity of the empirical process in some neighborhoods of

fn0 and h∗n, and holds if some additional function complexity can be established in these

neighborhoods.

Theorem 1. Under Conditions A.1-A.7, θ̃n has an asymptotically linear expansion as

√
n(θ̃n − θn0) = −Gn{∇m(Z, fn0)[h

∗
n]}+ op(1).

As a result, θ̃n is asymptotically regular, and its asymptotic distribution is a multivariate

normal distribution with mean zero and covariance matrix Σ.

Theorem 1 states that the OSRE is asymptotically normal and the variance is

lim
n→∞

Var (∇m(Z, fn0)[h
∗
n]) .

A proof of Theorem 1 is provided in Section S2 of the Supplementary Material. To estimate

Σ, it is natural to construct the estimator of the variance as

Σ̂n = n−1

n∑
i=1

(
∇m(Zi, f̂n)[ĥn]− n−1

n∑
i=1

∇m(Zi, f̂n)[ĥn]

)⊗2

, (2.4)

where u⊗2 = uuT . Our next theorem states that Σ̂n in (2.4) is a consistent estimator of the

variance of the OSRF under the following condition:

A.8 For every ϵ, η > 0, there exist δ1, δ2 > 0 such that

lim
n

P

(
sup

f1,f2∈Nfn0,δ1
,h1,h2∈Nh∗n,δ2

∥∥∥Gn (∇m(Z, f1)[h1])
⊗2 −Gn (∇m(Z, f2)[h2])

⊗2
∥∥∥
∞

>
ϵ√
n

)
< η.

Theorem 2. Under Conditions A.1-A.8, Σ̂ converges to Σ in probability.

The proof is straightforward, because under Condition A.8,

(Pn − P )
(
∇m(Z, f̂n)[ĥn]

)⊗2

= (Pn − P ) (∇m(Z, fn0)[h
∗
n])

⊗2 + op(1).
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3. Examples

3.1 Example 1: OSRE for a High-Dimensional Linear Model

The first example is from a high-dimensional linear model. Specifically, consider n i.i.d.

samples (X i, Yi) with X i = (Xi1, . . . , Xipn)
T ∈ Rpn , where one X is one, and the other Xij

have mean zero for j > 1. Moreover, it holds that

Yi =

pn∑
j=1

Xijβ
∗
nj + εi, P [εi|X i] = 0, (3.1)

where β∗
n = (β∗

n1, . . . , β
∗
npn)

T is the vector of parameters, and εi is a random variable repre-

senting the noise in the ith response variable.

A single component of the parameters, say the first coordinate β∗
n1 is widely used as a

“debiased” lasso estimator. Thus, we consider this case in the Supplementary Material. It

may also be interesting to consider the total contribution of the covariates, in practice. This

is particularly useful when the covariates are obtained from one particular feature domain.

Thus, we consider the inference for the sum of the squared β∗
n, denoted by θ0n =

∑pn
j=1 β

∗2
nj .

We aim to construct the OSRE of θ0n.

Obviously, Fn = {f(x) =
∑pn

j=1 xjβj} is the functional space. We assume X has mean

zero. Because θ0n =
∑pn

j=1 β
∗2
nj , a simple calculation yields

θn0 = Fn(fn0) = P
[
f 2
n0(Σ

−1/2X)
]
.

Then, for all hn(x) =
∑pn

j=1 xjγj, we have

∇Fn(fn0)[hn] = 2

pn∑
j=1

β∗
njγj,

which is a continuous linear functional. This verifies Condition A.1. Clearly, Condition A.2
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3.1 Example 1: OSRE for a High-Dimensional Linear Model

is true. Let gnj(x) be a function such that

gnj(X) = Xj − π(Xj|X−j),

where X−j = (X1, . . . , Xj−1, Xj+1, . . . , Xpn)
T , and π(Xj|X−j) is the L

2(P ) projection of Xj

onto the linear space of X−j. We show that h∗n in Condition A.3 is

h∗n(x) = −2

pn∑
j=1

(Pg2nj(X))−1gnj(x)β
∗
nj. (3.2)

To see that h∗n satisfies (2.1), because π(Xj|X−j) is the L
2(P ) projection of Xj onto the linear

span of X−j , we obtain

P [(Xj − π(Xj|X−j))π(Xj|X−j)] = 0,

and

P [(Xk − π(Xk|X−k))Xj] = 0 for all k ̸= j.

For any Xjγj,

P
{
∇2m(Z, fn0)[h

∗
n, Xjγj]

}
=2(Pg2nj(X))−1P [(Xj − π[Xj|X−j])Xj]β

∗
njγj

=2(Pg2nj(X))−1P [(Xj − π[Xj|X−j])
2]β∗

njγj

=2β∗
njγj.

Thus, for any hn(x) =
∑pn

j=1 xjγj,

P
{
∇2m(Z, fn0)[h

∗
n, hn]

}
= 2

pn∑
j=1

γjβ
∗
nj = ∇Fn(fn0)[hn].

Thus, h∗n is a function satisfying (2.1).

Therefore, suppose β̂n is an initial estimator of β∗
n, and we can find a proper estimator

for h∗n, denoted by ĥn. The OSRE for β∗
n1 is then given as

θ̃n =

pn∑
j=1

β̂2
nj −

1

n

n∑
i=1

ĥn(X i)
(
Yi −XT

i β̂n

)
, (3.3)
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3.1 Example 1: OSRE for a High-Dimensional Linear Model

where β̂nj is the jth coordinate of β̂n.

Suppose the linear regression model is defined as (3.1). The vector parameter β∗
n is

sparse, which means we can estimate the initial estimator β̂n in (3.3) using the lasso method:

β̂n = arg min
β∈Rpn

{
1

n
∥Y −Xβ∥22 + 2λ∥β∥1

}
, (3.4)

where ∥Y −Xβ∥22 =
∑n

i=1(Yi −XT
i β)

2, ∥β∥1 =
∑pn

j=1 |βj| is the l1-norm on Rpn , and λ ≥ 0

is a penalty parameter.

Next, we estimate h∗n defined by (3.2). Recalling the definition of h∗n, we first estimate

π(Xj|Xj, . . . , Xj−1, Xj+1, . . . , Xpn), the projection of X1 onto the linear space spanned by

X1, ..., Xpn . The sparsity of the regression parameters implies a finite number of covariates.

Note that such sparsity, equivalent to the maximal sparsity level of Σ−1, also appears in other

works (Van de Geer et al., 2014; Javanmard and Montanari, 2014; Javanmard et al., 2018).

This estimation can be treated as a high-dimensional linear regression problem. Thus, we

adopt the lasso to estimate the coefficients.

We estimate the coefficients of X−j for Xj using

η̂j = arg min
η∈Rpn−1

{
1

2n
∥Xj −XT

−jη∥22 + λ̃j∥η∥1
}
,

where Xj = (X1j, . . . , Xnj)
T , X−j is the sub-matrix of X obtained by removing the jth

column. With η̂j, we obtain

ĝnj(X) = Xj − π̂(Xj|X−j) = Xj −XT
−jη̂j.

On the other hand, Pg2nj(X) is estimated by

τ̂ 2j = ∥Xj −XT
−jη̂j∥22/n+ λ∥η̂j∥1.
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3.2 Example 2: OSRE for High-Dimensional Additive Model

Finally, the estimator for h∗n is given as

ĥn(X) = 2

pn∑
j=1

ĝnj(X)β̂nj/τ̂
2
j = 2β̂

T

n T̂
−2Γ̂X, (3.5)

where T̂ 2 = diag(τ̂ 21 , . . . , τ̂
2
pn) and

Γ̂ =



1 −η̂1,2 . . . −η̂1,pn

−η̂2,1 1 . . . −η̂2,pn
...

...
. . .

...

−η̂pn,1 −η̂pn,2 . . . 1


.

From (3.3) to (3.5), the OSRE for θn0 is

θ̃n =

pn∑
j=1

β̂2
nj +

2

n

n∑
i=1

β̂
T

n T̂
−2Γ̂X i

(
Yi −XT

i β̂n

)
,

where β̂nj is the jth element of β̂n, and β̂n is the lasso estimator of βn0.

To state the asymptotic properties for the OSRE, we need some technical assumptions,

B.1-B.8 which are provided in the Supplementary Material.

Theorem 3. Suppose that Conditions B.1-B.8 hold, and that λ ≍
√

log pn/n and λ̃j ≍√
log pn/n uniformly in j. Then, θ̃n satisfies

√
n(θ̃n − θn0)

p−→ N(0, c2),

where c2 is defined in Condition B.8 in the Supplementary Material.

A proof of Theorem 3 is given in Section S3 of the Supplementary Material.

3.2 Example 2: OSRE for High-Dimensional Additive Model

Whereas the previous example was a parametric problem, we now examine a high-dimensional

NAM. Suppose

Yi = µ+

pn∑
j=1

f ∗
nj(Xij) + εi, (3.6)
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3.2 Example 2: OSRE for High-Dimensional Additive Model

where µ is a constant and εi is the error term, with mean zero and finite variance σ2. In

this model, the true regression function f ∗
n(x) =

∑pn
j=1 f

∗
nj(xj) belongs to the functional class

Fn = {f ∈ L2(P ) : f(x) =
∑pn

j=1 fj(xj), Pfj(Xij) = 0}, equipped with an inner product

⟨f1, f2⟩(n) =
pn∑
j=1

∫
f1j(x)f2j(x)dx.

For a NAM, we can estimate fn0 by maximizing P {m(X, Y, f)}, with m(X, Y, f) = −(Y −

f(X))2/2. We are interested in the contribution of one specific component of X, say, X1.

For this purpose, we define the parameter of interest as Fn(f
∗
n) =

∫
f ∗2
n1(x)dx to quantify the

contribution of X1 in terms of predicting Y .

To find h∗n satisfying Condition A.3, we first use a sequence of basis functions, ϕjk(x), for

k = 1, 2, . . . , in the support of Xj (splines, Fourier bases, for instance), so that fj(x) can be

treated as a linear combination of basis functions ϕjk(x), for k = 1, 2, . . . Let V1k = ϕ1k(X1)

and V 1,−k = (V11, . . . , V1,k−1, V1,k+1, . . . ). We show that the solution to the above equation is

h∗n(X) = −
∞∑
k=1

uk [V1k − π (V1k|V 1,−k, X2, X3, . . . , Xpn)] ,

where

uk = 2
{
P [V1k − π (V1k|V 1,−k, X2, X3, . . . , Xpn)]

2}−1
∫
f ∗
n1(t)ϕ1k(t)dt.

Suppose that f̂n is an initial estimator of f ∗
n, and that h∗n is estimated by ĥn. Then, the

OSRE for θn0 is defined as

θ̃n =

∫
f̂ 2
n(x)dx−

1

n

n∑
i=1

ĥn(X i)
(
Yi − Ȳ − f̂n(X i)

)
, (3.7)

where Ȳ is the average of Yi.

In case when many additive components f ∗
nj(·) are zeros, Huang et al. (2010) propose

using an adaptive group lasso to estimate f ∗
n. Consider a normalized B-spline basis {ψk, 1 ≤
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3.2 Example 2: OSRE for High-Dimensional Additive Model

k ≤ mn} for Bn, where mn = Kn + l, in which Kn = nν with 0 < ν < 0.5 is a positive

integer. Under suitable smoothness assumptions, f ∗
nj can be well approximated by functions

in Bn. Let ∥a∥2 = (
∑mn

j=1 |aj|2)1/2 , βnj = (βj1, . . . , βjmn)
T , βn = (βT

n1, . . . ,β
T
npn)

T , and

wn = (wn1, . . . , wnpn)
T be a given vector of weights. Then, the penalized least squares

estimation with a group lasso minimizes

Ln(µ,βn) =
n∑

i=1

[
Yi − µ−

pn∑
j=1

mn∑
k=1

βjkψk(Xij)

]2
+ λn2

pn∑
j=1

wnj∥βnj∥2,

where λn2 is a penalty parameter. In order to make the computation identifiable, we impose

the additional constraints that

n∑
i=1

mn∑
k=1

βjkψk(Xij) = 0.

The constrained optimization problem is converted to an unconstrained problem by centering

the response and the basis functions. Let

ϕjk(x) = ψk(x)− n−1

n∑
i=1

ψk(Xij).

For simplicity, we write ϕk(x) = ϕjk(x), and assume the mean of Y is zero. Huang et al.

(2010) propose a two-step approach for the estimation and the component selection. First,

they define

β̃n = argmin
βn

n∑
i=1

[
Yi −

pn∑
j=1

mn∑
k=1

βjkϕk(Xij)

]2
+ λn1

pn∑
j=1

∥βnj∥2.

Then they use β̃n to obtain the weights by setting

wnj =


∥β̃nj∥−1

2 , if ∥β̃nj∥2 > 0

∞, if ∥β̃nj∥2 = 0.
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3.2 Example 2: OSRE for High-Dimensional Additive Model

Finally, the adaptive group lasso estimator is β̂n = argminβn
Ln(βn). Therefore, the group

lasso estimators for fj are

f̂nj(x) =
mn∑
k=1

β̂jkϕk(x).

To estimate h∗n in Condition A3, we first need to estimate the projection π (V1k|V 1,−k, X2, X3, . . . , Xpn),

which can also be viewed as a high-dimensional NAM. Thus, suppose there exists η∗
1k =

(η∗1,k,1, . . . , η
∗
1,k,k−1, η

∗
1,k,k+1, . . . )

T , and s
∗(n)
k (X−1) =

∑pn
j=2 s

∗(n)
kj (Xj) satisfies

V1,k =
∑
l ̸=k

V1,lη
∗
1kl + s

∗(n)
k (X−1) + εk, P [εk|X−1] = 0.

The assumption implies a sparse structure of the projection

π[V1k|V 1,−k, X2, . . . , Xpn ],

which means that only a few of the covariates are correlated with X1. The sparsity of ηk

implies that each function component in the additive model can be represented by a finite

number of basis functions, although the number can diverge with the sample size. Thus,

with greater sample sizes, we can allow h∗n to be closer to some arbitrary additive function.

This is a common assumption in many high-dimensional lasso settings (Van de Geer et al.,

2014; Javanmard and Montanari, 2014; Javanmard et al., 2018).

We then follow Huang et al. (2010) to apply the group Lasso to estimate π (V1k|V 1,−k, X2, X3, . . . , Xpn).

For simplicity of notation, we omit n in the subscript of η in the following. More specifically,

the penalized least squares estimators are given as

η̃k =argmin
ηk

n∑
i=1

[
Vi1k − V T

i1,−kηk1 −
pn∑
j=2

mn∑
l=1

ηkjlϕl(Xij))

]2

+ λ̃k1(
∑
l ̸=k

|ηk1l|+
pn∑
j=2

∥ηkj∥2),
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3.2 Example 2: OSRE for High-Dimensional Additive Model

where ηkn = (ηT
k1, . . . ,η

T
kj)

T , ηk1 = (ηk11, . . . , ηk,1,k−1, ηk,1,k+1, . . . , ηk,1,mn)
T , ηkj = (ηkj1, . . . , ηkjmn)

T ,

for j = 2, . . . , pn, and λ̃k1 is a penalty parameter. The estimates for η̃k give the weights by

setting

w̃k1l =


|η̃k1l|−1, if |η̃k1l| > 0

∞, if |η̃k1l| = 0,

for l ̸= k, and

w̃kj =


∥η̃kj∥−1

2 , if ∥η̃kj∥2 > 0

∞, if ∥η̃kj∥2 = 0,

for j = 2, . . . , pn. Finally, we minimize

L̃k(ηk) =
n∑

i=1

[
Vi1k − V T

i1,−kηk1 −
pn∑
j=2

mn∑
l=1

ηkjlϕl(Xij))

]2

+ λ̃kn2(
∑
l ̸=k

w̃k1l|ηk1l|+
pn∑
j=2

w̃kj∥ηkj∥2).

The resulting coefficients of the projection are

η̂k = argmin
ηk

L̃k(ηk).

Now, define

Ĉ =



1 −η̂1,1,2 · · · −η̂1,1,mn −η̂1,2,1 . . . −η̂1,2,mn −η̂1,3,1 . . . −η̂1,pn,mn

−η̂2,1,1 1 · · · −η̂2,1,mn −η̂2,2,1 . . . −η̂2,2,mn −η̂2,3,1 . . . −η̂2,pn,mn

...
...

. . .
...

...
. . .

...
...

. . .
...

−η̂mn,1,1 −η̂mn,1,2 · · · 1 −η̂mn,2,1 . . . −η̂mn,2,mn −η̂mn,3,1 . . . −η̂mn,pn,mn


.

Let

T̂ 2 = diag(τ̂ 21 , . . . , τ̂
2
mn

),

where

τ̂ 2k =
1

n

n∑
i=1

(
Vi1k −

∑
l ̸=k

Vi1lη̂k1l −
pn∑
j=2

mn∑
l=1

Vijlη̂kjl

)
Vi1k,
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3.2 Example 2: OSRE for High-Dimensional Additive Model

and let

V = (V11, . . . , V1mn , . . . , Vpn1, . . . , Vpnmn)
T .

We obtain the estimator for h∗n as

ĥn(X) = −κ̂T T̂−2ĈV,

where κ̂ = (κ̂1, . . . , κ̂mn)
T , and κ̂k = 2

∫
f̂n1(x)ϕk(x)dx. Therefore, from (3.7), the OSRE of

θn0 is

θ̃n =

∫
f̂ 2
n1(x)dx+

1

n

n∑
i=1

pn∑
j=1

ĥnj(Xij)

(
Yi −

pn∑
j=1

f̂nj(Xij)

)
. (3.8)

Under some conditions, we can also prove that the OSRE θ̃n defined in (3.8) follows

an asymptotic normal distribution. In order to obtain the asymptotic properties of θ̂n, we

require the conditions C.1-C.10 which are given in the Supplementary Material.

Theorem 4. If Conditions C.1-C.10 hold, then θ̃n, defined by (3.8) satisfies

√
n(θ̃n − θn0)

p−→ N(0, σ2
εc

2).

Theorem 4 ensures that the asymptotic distribution of the OSRE θ̃n defined in (3.8) is

normal. A proof for Theorem 4 is given in Section S4 of the Supplementary Material.

To illustrate the universality of our proposed method, we provide additional examples

in the Supplementary Material. The OSRE for the coefficient inferences of high-dimensional

linear model and high-dimensional logistic regression models are given in Sections S5 and S6,

respectively, of the Supplementary Material.
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4. Simulation Study

4.1 Simulation with high-dimensional linear models

Our first simulation considers a high-dimensional linear model. In this setting, we generate

p = 500 covariates consisting of K ≡ p/q groups, each group with q variables. For q variables

in the kth group, denoted by Xk1, ..., Xkq, are generated as

Xkj =
(wkj + tuk)

1 + t
, wkj ∼ U(0, 1), uk ∈ U(0, 1).

In this way, we generate a sequence of blocked covariates. We set t = 2, so the correlation

between any two X in the same block is ρ = 0.8, but they are independent if from different

blocks. Given X, Y is generated from a linear model with an error term from a standard

normal distribution. We vary the block size, q, from two to four, and choose the coefficients

according to the following scenarios:

(a) q = 2 and β0 = (1, 1, 1, 0, . . . , 0)T .

(b) q = 4 and β0 = (1, 1, 1, 0, . . . , 0)T .

(c) q = 4 and β0 = (1, 1, 1, 1, 0, . . . , 0)T .

(d) q = 4 and β0 = (1, 1, 1, 1, 1, 0, . . . , 0)T .

To illustrate our proposed method, we focus on inferences for three parameters, that is,

the total effect, given by θ0 =
∑p

j=1 β
∗2
j , the coefficient of one important covariate, given by

β∗
1 , and the coefficient of an unimportant covariate, which is specified as the coefficient of

the first zero-coefficient covariate in each scenario. The OSRE for a single coordinate can be

found in Section S3 of the Supplementary Material. We consider sample sizes n = 100 and

200, and replicate each scenario 500 times in the simulation study.

To calculate the OSRE, the initial estimate for β is based on the lasso regression. The
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tuning parameter is selected as the largest penalty parameter for which the corresponding

cross-validation error is within one standard deviation of the minimal error. The estimate for

h∗n is also obtained from a lasso regression with cross-validation, but the tuning parameter

is set to be a factor of the cross-validation optimal parameter. The usual variable selection

procedures, such as the lasso tend to balance the bias and variance trade-off, and their goal

is to minimize prediction errors. However, to obtain a proper inference, it is necessary to

remove the bias so that the asymptotic normality with mean zero is a good approximation.

Empirically, we find a factor of 2−6 yields the best performance. To examine the inference

performance of the proposed method, we calculate confidence intervals for the OSRE, which

are constructed using the asymptotic normal distribution in our theorem. For comparison

purposes, we also report the coverages from two other methods: the first constructs the

confidence intervals using a residual bootstrap (RBS), and the second performs an ad-hoc

post-selection inference (PSI) by treating selected variables in the lasso method as the only

variable in the regression model. It takes less than a second to compute the OSRE of one

single regression coefficient in Scenario (a) with sample size 100 on a laptop computer with

an Intel Core i5 processor.

Figure 1 plots a histogram of the OSRE and the plug-in estimators for case (a) with sample

size n = 100. The dashed curve in the left figure is a normal density function, with the true

parameter value θ0 as the mean (dotted line) and the variance given as the average of the

estimated σ̂n. Therefore, this curve serves as a theoretical distribution from our theorem.

Figure 1 indicates that the OSRE is close to a normal distribution, and its distribution

matches the theoretical one very well. In contrast, the plug-in estimator is severely biased.

(The standard error of the dashed line in the right figure is the standard error of the plug-in
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Figure 1: Histograms of the OSRE and plug-in estimators of the total effect for Scenario (a).

estimator.)

In Table 1, we report the simulation results for the bias (Bias), standard error (SE),

estimated standard error (ESE), with the coverage probabilities based on (1− α)-confidence

intervals, where α = 0.1 and 0.05; CP95 represents the coverage rates of 95% confidence

interval, and CP90 represents those of the 90% confidence interval. As shown in the table,

both the RBS and PSI perform poorly in some cases. In contrast, the coverage probabilities

of the confidence intervals based on the OSRE are reasonably close to the nominal levels,

and the performance is even better when n increases to 200. In addition, the SEs and ESEs

are close in our proposed method.

From Table 1, we notice that the post-selection produces similar coverage to that of the

OSRE for β1, but with much shorter confidence intervals. This is because, for this model, the

variable selection does not introduce much bias into the estimation of β1, so debiasing is not
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necessary for β1. On the other hand, the extra bias correction based on the empirical data

in the OSRE can bring extra variability into the estimation. In the Supplementary Material

(S5.1), we demonstrate that if the extra bias correction is known, then the confidence intervals

in the ORSE are similar in width to those in the post-selection approach.

4.2 Simulation study with high-dimensional NAM

In this simulation, we generate X in the same way as in the linear model with q = 5, except

that the correlation ρ with the same block is either 0 (setting t = 0) or 0.2 (setting t = 0.5).

The outcome, Y , is generated from

Y =

p∑
j=1

fj(Xj) + ε,

where we choose f1(x) = 8x, f2(x) = 3(2x − 1)2, f3(x) = 4 sin(2πt)/(2 − sin(2πt)), f4(x) =

6(0.1 sin(2πt)+0.2 cos(2πt)+0.3 sin(2πt)2+0.4 cos(2πt)3+0.5 sin(2πt)3), f5(x) = · · · = fp = 0,

and ε ∼ N(0, σ2). These functions cover both linear and nonlinear patterns. Furthermore,

we subtract each fj from its average value to make the model identifiable when including

an intercept. For illustration purposes, we focus on an inference for the total effect of the

linear part as
∫
f1(x)

2dx, and the total effect of the nonlinear covariate X4 as
∫
f4(x)

2dx.

The signal-to-noise ratio is defined as sd(f)/sd(ε). Because the standard derivation of the

error term is chosen as σ = 2, the signal-to-noise ratios for f1 and f4 are 0.86 and 1.54,

respectively. We consider the cases where p = 500 and sample size n = 200 and 400.

In the simulation, to calculate the OSRE in our method, we first use the third-degree B-

spline with six evenly distributed knots to approximate all fj. We also investigate the choice

of three knots and using the sixth degree of splines for the simulation setting with zero within-
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block correlation and n = 200. The results show that the method is fairly robust for these

different choices. We obtain the initial estimates for fj based on these splines and using the

adaptive group lasso method proposed by Huang et al. (2010). In particular, the adaptive

group lasso is calculated using the algorithm proposed by Yuan and Lin (2006). Because p

is larger than n, we use the BIC (Schwarz et al., 1978) to select the penalty parameter, as

suggested by Huang et al. (2010). We use the adaptive group lasso with BIC for each basis

function of X1 to estimate the coefficient ηkn, for k = 1, . . . ,mn, and construct the OSRE

based on (3.8). It takes an average of 3.12 seconds to run one data set with a sample size of

100. We compare our method with the ad-hoc post-selection method, because the residual

bootstrapping method is computationally intensive. The latter treats a spline approximation

as a standard linear regression model after the important components are identified.

Table 2 shows the relative bias (Bias), standard errors (SEs), estimated standard errors

(ESEs), and coverage rates of the OSRE and ad-hoc (PSI) methods based on 500 replicates.

The OSRE and PSI do not perform well when the sample size is 100, so we omit the results

in the table. The SEs and ESEs are close to each other in our proposed method, whereaas

the ESEs are smaller than the SEs for the ad-hoc method. The simulation shows similar

results for the case with and without correlations between the covariates. For the linear

and nonlinear components, the coverage probabilities of the OSREs are reasonably close to

the nominal levels when the sample size n = 200. In contrast, the ad-hoc method gives all

cases a coverage probability lower than (1− α). Both methods seem to work well when the

sample size n = 400. We also test the performance of the two methods on the zero-influence

function. Both methods show a slight overestimation of the coverage probabilities.

We also conduct a simulation study for a high-dimensional generalized linear model and a
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partial linear model to compare our proposed method with the ad-hoc method (PSI). These

simulation results can be found in Section S6 and S7, respectively, of the Supplementary

Material.

5. Data Example

In this section, we apply the proposed method to study the association between genes and

a particular gene called TRIM32, which has been found to cause Bardet-Biedl syndrome

(Chiang et al. (2006)). We use the expression data for an eQTL experiment on rat’s eyes

reported by Scheetz et al. (2006). In this study,the eye tissue of 120 120-week-old male rats

were selected for an Affymetrix expression microarray analysis. Over 31,000 different probe

sets were recorded in the Affymetrix Rat Genome 230 2.0 Array. The intensity values are

normalized using the robust multi-chip averaging (RMA) method (Irizarry et al. (2003)). The

gene expression levels are analyzed on a logarithmic scale. Because many of the probes in the

Affymetrix Rat Genome 230 2.0 Array are not expressed in the eye tissue, and initial screening

using correlation shows that most probe sets have very low correlation with TRIM32, we

select the 500 probe sets that have the highest correlation with TRIM32 in this analysis. We

further exclude one sample (GSM130600), because its expression values are extreme. Our

final data set has sample size n = 119 and 500 covariates.

We fit both a linear model and an additive model to this data to test whether any significant

linear or nonlinear association exists between any gene and TRIM32. All covariates are

standardized by their ranges, so the values are between zero and one. Linear model fitting is

the same as in the first simulation study, where the penalty parameter for the lasso estimation

is based on cross-validation. The OSRE for each regression coefficient in the linear model is
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then calculated as in the simulation study, and its variance is estimated using the proposed

method. To fit the NAM, we use cubic splines with six evenly distributed knots in [0, 1]

to estimate each of the additive components. To test the importance of each covariate,

we calculate the OSRE for the summary of each functional component as
∫
f 2
k (x)dx, for

k = 1, ..., p. In the estimation, the tuning parameter is chosen using the BIC.

To conserve space, in Table 3, we show only the estimated parameters of the NAM and

their associated p-values computed based on normal distributions. The results for the linear

model are given in Supplementary Material. Table 3 shows that 13 important genes are

selected by the additive model. Only gene 1367777 at is shown to be significantly associated

with TRIM32 in both the linear model and the additive model.

To gain further insight into how these selected genes are associated with TRIM32 in the two

models, we plot locally weighted scatterplot smoothing estimates for the significant variables

from the additive model (in the Supplementary Material). The plot indicates that both

1368228 at and 1379971 at have nonlinear associations with TRIM32. We also observe a

clear linear relationship between TRIM32 and 1367777 at, the only gene that is significant

in both models.

6. Conclusion

We have proposed an OSRE for rigorous inference for low-dimensional functionals of high-

dimensional parameters. A key component of the OSRE is to solve for h∗n by inverting the

Hessian operator given by the objective function, which is closely related to the information

operator when the objective function is a log-likelihood function. For the latter situation, our

OSRE reduces to a one-step efficient estimator in semiparametric models. When the initial
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estimators f̂n and ĥn satisfy n−1/4 consistency, we have shown that the OSRE is root-n

consistent and asymptotically normal. We have applied our method to study the inferences

for the parameters in both high-dimensional linear models and high-dimensional additive

models. This is the first time such a result has been established for the additive model. Our

numerical results suggest that the proposed method works well, even when the sample size

is relatively small.

For high-dimensional inference, sample splitting (or cross-fitting) is widely used to con-

struct a estimator. This technique is particularly useful to de-correlate the estimators be-

tween the parameter of interest and the nuisance parameters. We can extend the cross-fitting

techniques to facilitate the proof of asymptotic equicontinuity conditions in the regularity

conditions. Sample splitting can lose efficiency, because it is based on partial data. In

such cases, salvage methods include cross-validation-type sample splitting and the estimator

average. We will further examine the performance of such techniques in the OSRE methods.

As stated earlier, a key point for the OSRE is that need to estimate h∗n. Although we

can obtain its expression in the models considered here, h∗n often does not have an explicit

expression. Thus, it is difficult to generalize the OSRE to more complicated models. However,

in semiparametric inference, the profile likelihood function can be used to approximate the

least favorable submodel. For example, the tangent vector of the profile likelihood function

is the efficient score function. Hence, one potential direction for future research is to devise

a similar profile m-function, without explicitly estimating h∗n.

We have only considered the dimensionality of variables to be pn, and assumed the coeffi-

cients are nonzero for a much smaller list of variables. However, if we embed pn-dimensional

functions into an infinite-dimensional function space, we can allow assumptions that are even
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more flexible, for example, nocoefficients are zeros, but they decay at a certain rate. This

may lead to an even more general framework for OSREs.

Supplementary Material

The online Supplementary Materials provides some technical conditions for the theorems,

details of proofs, the connection between OSRE the semiparametric model and additional

data examples.
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Table 1: Results based on 500 replicates for high-dimensional linear models.
n Method Parameter Bias SE ESE CP95 CP90 Bias SE ESE CP95 CP90

(a) (b)

100 RBS θ -1.253 0.297 0.204 0.336 0.292 -0.831 0.293 0.249 0.696 0.638

β1 -0.215 0.179 0.179 0.902 0.876 -0.176 0.191 0.201 0.936 0.900

βk 0.013 0.043 0.042 0.970 0.944 0.037 0.082 0.094 0.974 0.946

PSI θ 0.021 0.319 0.292 0.916 0.868 0.023 0.318 0.273 0.912 0.850

β1 -0.026 0.180 0.158 0.904 0.838 -0.023 0.195 0.183 0.938 0.872

βk 0.035 0.092 0.023 0.966 0.942 0.069 0.125 0.054 0.960 0.932

OSRE θ -0.020 0.461 0.456 0.934 0.880 0.299 0.530 0.576 0.956 0.890

β1 0.016 0.219 0.208 0.930 0.874 0.055 0.257 0.254 0.950 0.894

βk 0.082 0.203 0.207 0.930 0.870 0.103 0.236 0.255 0.948 0.888

(c) (d)

RBS θ -0.777 0.286 0.289 0.864 0.794 -1.193 0.372 0.338 0.550 0.476

β1 -0.108 0.205 0.210 0.946 0.906 -0.095 0.222 0.215 0.918 0.884

βk -0.000 0.008 0.000 0.998 0.998 0.016 0.052 0.040 0.952 0.934

PSI θ 0.169 0.277 0.271 0.934 0.868 0.081 0.383 0.333 0.896 0.832

β1 0.011 0.205 0.191 0.934 0.880 -0.001 0.209 0.186 0.916 0.844

βk -0.001 0.014 0.000 0.998 0.998 0.031 0.090 0.023 0.970 0.944

OSRE θ 0.583 0.547 0.603 0.892 0.800 0.438 0.694 0.721 0.914 0.852

β1 0.078 0.284 0.253 0.918 0.862 0.077 0.273 0.257 0.918 0.864

βk 0.003 0.243 0.250 0.958 0.906 0.068 0.250 0.254 0.938 0.890

(a) (b)

200 RBS θ -1.004 0.227 0.149 0.494 0.434 -0.701 0.179 0.164 0.824 0.734

β1 -0.157 0.133 0.126 0.930 0.884 -0.136 0.132 0.141 0.944 0.912

βk 0.010 0.033 0.030 0.964 0.938 0.020 0.050 0.059 0.978 0.958

PSI θ 0.013 0.239 0.210 0.924 0.864 -0.011 0.205 0.189 0.928 0.884

β1 -0.010 0.129 0.116 0.910 0.858 -0.013 0.134 0.133 0.940 0.898

βk 0.025 0.071 0.014 0.956 0.930 0.045 0.085 0.036 0.978 0.952

OSRE θ -0.035 0.414 0.383 0.922 0.866 0.101 0.429 0.465 0.950 0.914

β1 0.011 0.176 0.180 0.958 0.912 0.013 0.216 0.215 0.952 0.912

βk 0.030 0.175 0.179 0.938 0.902 0.040 0.195 0.215 0.976 0.928

(c) (d)

RBS θ -0.654 0.192 0.176 0.888 0.810 -1.005 0.239 0.199 0.646 0.568

β1 -0.098 0.146 0.146 0.940 0.882 -0.081 0.150 0.147 0.956 0.922

βk 0.000 0.000 0.000 1.000 1.000 0.004 0.020 0.027 0.982 0.966

PSI θ 0.095 0.170 0.176 0.930 0.872 0.026 0.252 0.226 0.924 0.862

β1 -0.000 0.146 0.137 0.922 0.866 -0.004 0.142 0.136 0.946 0.892

βk 0.000 0.000 0.000 1.000 1.000 0.014 0.052 0.010 0.992 0.972

OSRE θ 0.266 0.389 0.431 0.938 0.872 0.152 0.503 0.540 0.964 0.910

β1 0.048 0.210 0.214 0.958 0.906 0.006 0.215 0.215 0.950 0.886

βk -0.010 0.204 0.215 0.958 0.918 0.020 0.213 0.215 0.950 0.898
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Table 2: Results based on 500 replications for high-dimensional nonparametric additive mod-

els.

Parameter n ρ Method Bias SE ESE CP90 CP95∫
f 2
1 (x)dx 200 0 PSI -0.002 0.905 0.643 0.772 0.858

OSRE 0.087 1.051 1.081 0.922 0.984

0.2 PSI -0.027 0.644 0.474 0.734 0.796

OSRE 0.007 0.656 0.63 0.846 0.888

400 0 PSI 0.012 0.523 0.474 0.894 0.954

OSRE 0.053 0.669 0.744 0.922 0.968

0.2 PSI 0.013 0.448 0.371 0.886 0.936

OSRE 0.010 0.540 0.533 0.912 0.962∫
f 2
4 (x)dx 200 0 PSI -0.009 1.243 0.854 0.770 0.830

OSRE 0.059 1.335 1.413 0.946 0.974

0.2 PSI -0.028 1.322 0.831 0.742 0.810

OSRE 0.034 1.344 1.371 0.934 0.976

400 0 PSI -0.001 0.664 0.627 0.900 0.956

OSRE 0.027 0.809 0.936 0.944 0.982

0.2 PSI 0.016 0.773 0.642 0.868 0.934

OSRE 0.032 0.978 1.025 0.918 0.964
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Table 3: Parameter inference in the microarray data analysis.

Probe OSRE Standard Error p-value

1384035 at 8.34e-06 6.29e-05 0.148

1368136 at 5.52e-06 1.66e-05 <0.001

1398370 at 4.04e-05 8.09e-05 <0.001

1376261 at 4.89e-06 1.23e-04 0.665

1379982 at 9.28e-06 7.24e-05 0.162

1367777 at 8.45e-05 4.68e-04 0.049

1368228 at 9.13e-06 3.61e-05 0.006

1380137 at 1.18e-06 1.18e-05 0.274

1384139 at 8.95e-06 7.60e-05 0.199

1379971 at 1.65e-05 4.29e-05 <0.001

1388491 at 1.18e-05 2.85e-05 <0.001

1375642 at 8.62e-06 3.96e-05 0.018

1369414 at 1.88e-05 1.54e-04 0.183
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