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Abstract: Time series from a large number of sources are ubiquitous, and may

incur structural changes during data acquisition. For example, in fMRI analysis,

brain regions associated with task-related stimuli or in a resting state become

active. An activated time series can comprise readings from an activated region.

Of interest is to control the uncertainty of discovering time series in activation

(viz., activated regions in fMRI analysis) by using the false discovery rate (FDR)

tool. We propose a simple, yet effective method that incorporates unknown

asynchronous change patterns and spatial dependence. We justify the validity of

our method in controlling the FDR using an asymptotic analysis. The results of

our numerical experiments indicate that the proposed method is both accurate

and powerful. An implementation is provided in the R package SLIP.

Key words and phrases: Change-point analysis, data splitting, false discovery

rate, fMRI, regions of interest.
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1. Introduction

Time series from many sources are ubiquitous, and the underlying dis-

tribution of each time series may change during data acquisition, owing

to external stimuli or internal evolution. A good example is functional

magnetic resonance imaging, or functional MRI (fMRI), an image acquisi-

tion modality used to study the brain invivo. Research on fMRI focuses

on changes in the blood oxygen level-dependent (BOLD) response (Ogawa

et al., 1990), a surrogate measure of brain activity, typically caused by

an externally controlled stimulus or task. Recently, researchers have begun

paying greater attention to studying the BOLD response during rest, which

reflects the brain’s neuronal baseline activity; see, for example, Damoiseaux

et al. (2006). During a task-related or resting-state fMRI experiment, the

data comprise a series of magnetic resonance brain images: the BOLD re-

sponses over time from a large number of uniformly spaced volume elements

(or voxels). A time series can be composed of readings from a voxel or a

region of spatially contiguous voxels.

One fundamental goal of fMRI analysis is to discover regions or points

of interest (ROIs or POIs), namely, regions or voxels activated by a task,

or even in a baseline state. Excluding those consisting solely of background

noise, not all time series are activated in a specific scene, and the time series
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in activation may react at different times during the experiment. Moreover,

precise times of component-wise activations are usually unknown, owing to

possible lags after a stimulus, or when the data are acquired in a rest-

ing state. A natural statistical approach is to use change-point or process

control theory; see, for example, Lindquist et al. (2007) and Aston and

Kirch (2012). These studies focus on modeling the fMRI data, voxelwise

or treated as a whole. Few works focus on the inferential side, that is, the

uncertainty of discovered voxels or regions in activation. This amounts to

performing a component-wise hypothesis test of whether a change in the

BOLD response occurs during an fMRI experiment, and provides a thresh-

old for the resulting activation map of test statistics to meet for specific

error rate control (Genovese et al., 2002; Nichols and Holmes, 2002).

An appealing statistical notion of the error rate is the false discovery

rate (Benjamini and Hochberg, 1995, FDR), that is, the expected propor-

tion of falsely rejected hypotheses. The authors also propose a procedure

known as the Benjamini–Hochberg (BH) method, which controls the FDR

for independent p-values corresponding to all null hypotheses. The BH

method is widely used for neuroimaging data to determine the threshold

of an activation map in a task-related fMRI with a known activation time

(Genovese et al., 2002; Kriegeskorte et al., 2006), where each time series is
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associated with a statistic based on the BOLD responses before and after

some stimulus (e.g., t-statistic). There are two problems with using this

method in practical fMRI studies: (i) the precise time of activation is often

unavailable for each region, especially for resting-state experiments, and

need not be the same across regions; and (ii) component-wise comparisons

are usually spatially correlated, which may cause the BH method to become

conservative.

In this study, we borrow ideas from recent developments of FDR control

methodologies, and propose a simple, yet effective procedure for discovering

activated time series in an fMRI analysis with proper FDR control, while

incorporating unknown asynchronous change patterns and spatial depen-

dence. We call the proposed method SLIP, which comprises a sequence of

steps: Splitting the data into two parts, Locating component-wise activa-

tion times based on one sample, Incorporating spatial dependence among

time series, and Pooling the summary statistics from both samples. The

SLIP method controls the FDR in the discovery of time series in activation.

Applications for the SLIP method are fairly widespread beyond fMRI

data. For example, in studies on the effects of government policies (or

unprecedented events, such as COVID-19) on the stock market, researchers

often wish to discover which stocks or stock market sectors are affected from
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1.1 Problem formulation

among a large number of candidates (Mazur et al., 2021). In addition, in

modern manufacturing processes, transitions between multiple operating or

environmental conditions may affect the product quality, and thus it would

be helpful to find related quality characteristics that describe the underlying

variations (Zou and Qiu, 2009; Capizzi, 2015). In both examples, we need

to detect “activated” time series from among many candidates, where the

reaction times of different time series corresponding to a policy release or

some out-of-control state may differ. We can apply the proposed SLIP

method to such scenarios with slight modifications, to control the FDR

simultaneously. In this study, we focus on fMRI data analysis.

1.1 Problem formulation

Suppose p parallel time series are recorded at T time points, {Zij, i =

1, . . . , T}pj=1. In fMRI, Zij can stand for the measured BOLD response at

the jth voxel or region in the brain during the ith scan. We consider the

mean-level change model

Zij = µi,j + εij, i = 1, . . . , T, j = 1, . . . , p,

µ1,j = · · · = µτ∗j ,j
̸= µτ∗j +1,j = · · · = µT,j , j = 1, . . . , p,

(1.1)

where, for the jth time series (data sequence), the mean level of the BOLD

signal remains unchanged if τ ∗j = T , and experiences some change at
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1.1 Problem formulation

τ ∗j if 1 ≤ τ ∗j < T , due to a reaction to a stimulus or intrinsic evolu-

tion under a resting state, and εij are random errors. We assume that

εi := (εi1, . . . , εip)
⊤, for i = 1, . . . , n, are independent, with mean vector 0

and covariance matrix Σ, where Σ reflects the spatial dependence structure

among all time series. A discussion of temporal correlation is deferred to

Section 4.5. We say a time series is activated or in activation if the as-

sociated τ ∗j < T , such that a mean-level signal change occurs, where we

borrow the terminology from fMRI applications. Our primary interest is to

discover the set of activated time series, that is, A = {1 ≤ j ≤ p : τ ∗j < T}.

Any discovery procedure, say Â, can commit two kinds of errors, that

is, it may include an inactivated time series, or it may exclude an activated

one, referred to as a false positive and a false negative, respectively, in the

terminology of multiple testing, where we conduct a sequence of hypothesis

tests

H0j : τ
∗
j = T versus H1j : τ

∗
j < T, j = 1, . . . , p. (1.2)

Researchers tend to be reluctant to miss any true positives (e.g., activated

regions), and so prefer a slight overestimation of A, while guaranteeing the

number (or rate) of false positives (i.e., inactivated regions in the selected

set) at a prescribed level. Therefore, we use the FDR tool to control the

expected proportion of false discoveries to handle the uncertainty in iden-

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0054



1.2 Connection with the literature on change-point detection

tifying A.

1.2 Connection with the literature on change-point detection

Recently, testing for the existence and estimating the times of activations

(or change-points) for large-scale (or high-dimensional) time series have

received much attention in the literature on change-point detection, where

the locations of change-points, if they exist, are assumed to be shared across

the time series; see, for example, Bai (2010), Cho and Fryzlewicz (2015),

Wang et al. (2018), and Wang and Samworth (2018). These methods study

either global testing for the existence of common change-points, or provide

a consistent estimation of the number and locations of change-points. In

contrast, we aim to identify time series that have encountered changes,

rather than the change-points themselves. Moreover, we allow component-

wise asynchronous change-points.

A more related work is that of Jirak (2015), who considers a consistent

identification of the activation set A, such that the probability of making

even one false rejection, that is, the family-wise error rate (FWER), is con-

trolled asymptotically. However, FWER-oriented procedures are known to

be very conservative, motivating us to consider other uncertainty measures,

such as the FDR.
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1.3 Developments of FDR methodologies

Prior studies have used the FDR tool to detect multiple change-points

for a single data sequence, with varying definitions of false discoveries asso-

ciated with the estimated change-points; see, for example, Hao et al. (2013),

Li et al. (2016), and Wang et al. (2022). Specifically, Wang et al. (2022)

determined the number of jumps in a regression curve, and quantified the

uncertainty of the estimated change-points using the FDR.

Quantifying the uncertainty in multiple change-point detection has be-

come an active research topic. Leveraging the approach of selective infer-

ence (Fithian et al., 2014; Lee et al., 2016), Hyun et al. (2018, 2021) and

Jewell et al. (2022) developed valid tests for a change in the mean associated

with estimated change-points for univariate data sequences, and Sugiyama

et al. (2021) investigate multivariate scenarios. Furthermore, Fryzlewicz

(2020) detects localized regions in a data sequence, with each region con-

taining a change-point at a prescribed global significance level.

1.3 Developments of FDR methodologies

Benjamini and Hochberg (1995) originally proposed the notion of FDR, and

provided a procedure (called the BH method) that guarantees FDR control

when p-values are independent. The effect of dependence on the FDR

control of the BH method has been investigated widely in the literature;
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1.3 Developments of FDR methodologies

see, for example, Benjamini and Yekutieli (2001), Storey et al. (2004), and

Clarke and Hall (2009). They suggest that the BH method could be valid

under specific dependence, but may become very conservative. On the other

hand, some recent studies have shown that the dependence structure can

sometimes be informative, and could be used to improve the power; see

Efron (2007) and Fan et al. (2012).

Component-wise p-values are needed to apply the BH method (or its

variants) to current fMRI studies. For a time series in which a change may

occur, we cannot calculate the p-value precisely. However, we can approx-

imate it asymptotically using change-point theory (Csörgő and Horváth,

1997). Unfortunately, the convergence to the asymptotic null distribution

of the component-wise test statistic is relatively slow, which may cause inac-

curate approximations for finite-sample applications. Although Jirak (2015)

provides simulation-based remedies, they rely heavily on the normality of

the data distribution, and can be computationally heavy for large-scale mul-

tiple testing. In addition, it remains unknown how to incorporate spatial

dependence among time series for better FDR control and power enhance-

ment.

New FDR control procedures for simultaneously testing p null hypothe-

ses have been proposed by abandoning direct usages of p-values; see, for
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1.3 Developments of FDR methodologies

example, Barber and Candès (2015) and Du et al. (2021). The idea is

to construct a sequence of test statistics Wj, for j = 1, . . . , p, that fulfills

the ranking property, that is, Wj > 0, and tends to be large with a high

probability if the index j corresponds to a true non-null hypothesis. Fur-

thermore, the symmetry property, that is, the Wj corresponding to true null

hypotheses are (asymptotically) symmetric about zero. Then, for a given

threshold L > 0, the number of false discoveries can be approximated by

#{j : Wj < −L}. Consequently, by choosing the threshold

L̂ = L̂(W1, . . . ,Wp) = inf
L>0

{
#{j : Wj < −L}
#{j : Wj > L} ∨ 1

≤ α

}
, (1.3)

with the convention of inf ∅ = +∞, for a prescribed FDR level α, the

procedure rejects all null hypotheses corresponding to Wj > L̂, where a∨ b

stands for the maximum of a and b. This controls the FDR under some

mild conditions. Du et al. (2021) propose using data-splitting strategies

to construct Wj, providing a novel mechanism to enhance the detection

power by exploiting the underlying dependence information, which directly

motivates our method. However, our contributions are still nontrivial from

methodological, theoretical, and practical aspects: (i) our null hypotheses

incorporate temporal change patterns, and thus the approach of Du et al.

(2021) is not directly applicable; (ii) adding change-point theory makes

a theoretical analysis of the FDR validity much more complicated; and
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1.4 Organization of the paper

(iii) the current problem is relevant in real applications such as fMRI data

analysis, and can be modified easily to meet different practical tasks; see

Section 4 for further discussions.

1.4 Organization of the paper

The rest of this paper is organized as follows. In Section 2, we introduce

the proposed SLIP method for discovering activated data sequences. Its

asymptotic validity on the FDR control is presented in Section 3. Section

4 includes its variants for practical applications. Numerical studies are

conducted in Section 5. Several concluding remarks are given in Section

6. Proofs of all theoretical conclusions and additional numerical results are

deferred to the Supplementary Material.

1.5 Notation

For a ∈ R, ⌊a⌋ is the maximal integer less than or equal to a. Let 1(·)

be the indicator function. The cardinality of a set S is denoted by |S|.

For v = (v1, . . . , vp)
⊤ ∈ Rp, define diag(v) = diag(v1, . . . , vp) as a diagonal

matrix with diagonal elements v. Denote ∥v∥2 = (
∑p

j=1 v
2
j )

1/2 and ∥v∥∞ =

max1≤j≤p |vj|. Let vS be the sub-vector of v consisting of elements with

indices that are in the set S. For a square matrix M ∈ Rp×p, denote by
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λmax(M) and λmin(M) the maximum and minimum of the eigenvalues of

M, respectively. For a matrix M ∈ Rn×p, let ∥M∥2 = λ
1/2
max(M⊤M) =

λ
1/2
max(MM⊤) and ∥M∥1 = max1≤j≤p

∑n
i=1 |Mij|, where Mij is the (i, j)th

element of M. Let MS be the sub-matrix of M with columns with indices

in S. For M1,M2 ∈ Rn×p, M1 ◦ M2 ∈ Rn×p is the Hadamard product of

M1 and M2.

2. Methodology

2.1 Our idea: independent setting

To fix the idea, we first consider a simplified setting in which all data

sequences are independent of each other, and thus Σ = diag(σ11, . . . , σpp),

with σjj > 0, for j = 1, . . . , p, and σjj are known. A treatment for an

unknown correlated Σ is deferred to Section 2.2. The key is to construct

a sequence of activation statistics Wj for H0j, j = 1, . . . , p, in (1.2) that

fulfills the symmetry and ranking properties (see Section 1.3).

Our construction is based on a specialized sample-splitting strategy,

that is, the order-preserved splitting (OPS) proposed by Zou et al. (2020),

which was originally used to estimate the number of change-points. Collect

the BOLD responses during the ith scan as Zi = (Zi1, . . . , Zip)
⊤, for i =
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2.1 Our idea: independent setting

1, . . . , T . The data are temporally split into two disjoint parts,

Z1 := {Z(1)
i : i = 1, . . . , T1} = {Zi, i = 1, . . . , T}\Z2 and

Z2 := {Z(2)
i : i = 1, . . . , T2} = {Zi : i = r, 2r, . . . , ⌊T/r⌋r},

where r > 1 is an integer, discussed in Section 4.1, T2 = ⌊T/r⌋, and T1 =

T − T2. Rather than splitting randomly, the OPS preserves the original

change patterns during the time course of an fMRI experiment, as much

as possible. Then, the sample Z1 is mainly used to locate component-wise

activation times, and the sample Z2 plays a critical role in symmetrization.

First, a change-localizing algorithm to estimate possible activation times

is applied to the data split Z1. To facilitate the presentation, we consider

the traditional cumulative summation (CUSUM)-based procedure; other

candidates that capture intrinsic change patterns are discussed in Section

4.2. Specifically, for j = 1, . . . , p, if a change occurs to the jth data se-

quence of Z1, in other words, that data sequence is activated somewhere,

the activation time is identified as

τ̂
(1)
j = argmaxτ∈(⌊T1ϱ⌋,T1−⌊T1ϱ⌋]

√
τ(T1 − τ)

T1

∣∣∣Z̄(1)
j (τ, T1)− Z̄

(1)
j (0, τ)

∣∣∣ , (2.1)

where Z̄
(k)
j (ℓ1, ℓ2) = (ℓ2− ℓ1)

−1
∑ℓ2

ℓ=ℓ1+1 Z
(k)
ℓj , Z(k)

ℓj is the jth element of Z(k)
ℓ ,

for j = 1, . . . , p and k = 1, 2, and ϱ ∈ (0, 1/2) is a prespecified constant,

discussed in Section 4.1. The potential component-wise activation times

in the data split Z2 can then be approximated by τ̂
(2)
j = ⌊T2τ̂

(1)
j /T1⌋, for
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2.1 Our idea: independent setting

j = 1, . . . , p. If τ ∗j < T and is not near the boundary, and the activation

signal is not too weak, then we expect that both τ̂
(k)
j , for k = 1, 2, can

recover τ ∗j well (up to a data-splitting ratio).

A simple, but important fact is that, conditional on the data split Z1,

the CUSUM statistics based on Z2,

ξ
(2)
j =

√
τ̂
(2)
j

(
T2 − τ̂

(2)
j

)
T2

{
Z̄

(2)
j (τ̂

(2)
j , T2)− Z̄

(2)
j (0, τ̂

(2)
j )

}
, j = 1, . . . , p,

(2.2)

are asymptotically normally distributed. In addition, for inactivated data

sequences, the corresponding ξ
(2)
j are asymptotically symmetric about zero.

This fact motivates the construction of our activation statistics

Wj,indep = ξ
(1)
j ξ

(2)
j /σjj , j = 1, . . . , p, (2.3)

where

ξ
(1)
j =

√
τ̂
(1)
j

(
T1 − τ̂

(1)
j

)
T1

{
Z̄

(1)
j (τ̂

(1)
j , T1)− Z̄

(1)
j (0, τ̂

(1)
j )

}
, j = 1, . . . , p

are constructed based on the data split Z1. Thus, we concluded that the

Wj,indep for j ̸∈ A are conditionally (on Z1) asymptotically symmetric about

zero. Moreover, for an activated data sequence, if both τ̂
(k)
j , for k = 1, 2, are

tracking τ ∗j well, then both ξ
(k)
j , for k = 1, 2, can recover an activation signal

(including the sign and magnitude). Consequently, the products Wj,indep
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2.2 The SLIP method: the blessing of dependence

for j ∈ A are positive and large, regardless of the signs of the activation sig-

nals. Hence, the construction fulfills the ranking and symmetry properties

simultaneously.

Let α be the nominal FDR level. A discovery is made if Wj,indep passes

a threshold L̂indep = L̂(W1,indep, . . . ,Wp,indep) (see Eq. (1.3)). Consequently,

the estimate of the activation set is Âindep = {1 ≤ j ≤ p : Wj,indep ≥ L̂indep}.

2.2 The SLIP method: the blessing of dependence

In real fMRI applications, data sequences are spatially dependent, which

questions the validity of Âindep. Strong correlations may break down the

symmetry property of all inactivated Wj,indep (i.e., j ̸∈ A), and thus dis-

tort the FDR control and make Âindep unreliable (see Figure 2(i)). Fur-

thermore, ignoring component-wise dependence could make the procedure

less powerful, even if the FDR is under control under a weak dependence

structure (see Figure 2(ii)). In this section, we propose the SLIP method,

which incorporates underlying spatial dependence to enhance the detec-

tion power, while still controlling the FDR at some prescribed level. The

method comprises four steps: Splitting the data into two parts, Locating

component-wise activation times based on one sample, Incorporating the

spatial dependence among the data sequences, and Pooling the summary
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2.2 The SLIP method: the blessing of dependence

statistics from separate samples.

We observe that ξ
(2)
j (see Eq. (2.2)) for inactivated data sequences has

a zero mean, and we denote βj = E(ξ(2)j | Z1) for activated data sequences

(i.e., j ∈ A). Let Ξjk = Cov(ξ
(2)
j , ξ

(2)
k | Z1), for 1 ≤ j, k ≤ p. Note that the

quantities βj and Ξjk all depend on the data split Z1. Motivated by the work

of Du et al. (2021), who consider the FDR control under general dependence

by recasting the original mean testing problems into a regression framework,

we introduce the following working model for ξ(2) = (ξ
(2)
1 , . . . , ξ

(2)
p )⊤:

ξ(2) ≈ β + ϵ, E(ϵ) = 0 and Var(ϵ) =: Ξ, (2.4)

where β is a p-dimensional vector with jth element βj if j ∈ A, and zero

otherwise, and Ξ is a p×p matrix with (j, k)th element Ξjk for 1 ≤ j, k ≤ p.

Equivalently,

y2 ≈ Xβ + ϵ̃, E(ϵ̃) = 0 and Var(ϵ̃) = I, (2.5)

where X = Ξ−1/2, y2 = Ξ−1/2ξ(2), and ϵ̃ = Ξ−1/2ϵ. The critical idea in

Du et al. (2021) is to use least-squares (LS) estimates on a narrower subset

of components, say Ŝ, that captures nearly all nonzero signals, to replace

the counterparts in the original control statistics. The LS estimates de-

correlate the dependence and, in general, result in a higher signal-to-noise

ratio (SNR). Hence, dependence becomes a blessing in large-scale multiple

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0054



2.2 The SLIP method: the blessing of dependence

testing problems.

Tailored for our scenario, we construct Ŝ using a simple thresholding

rule,

Ŝ =
{
1 ≤ j ≤ p : |ξ(1)j |/σ̂1/2

jj ≥ tp

}
, (2.6)

to screen out some inactivated data sequences, with some threshold value tp

(specified in Section 4.1), so that activated data sequences with large signals

tend to be selected (see Lemma S2.6 of the Supplementary Material), where

σ̂jj are estimates of σjj, for j = 1, . . . , p, specified in Section 4.3. Once Ŝ

is selected, the LS solutions are obtained by minimizing ∥y2 − XŜβŜ∥22,

that is, β̃j := (ej)
⊤
Ŝ(X

⊤
ŜXŜ)

−1X⊤
Ŝy2, for j ∈ Ŝ, where ej is a p-tuple with

all components being zero, except the jth, which is one. Let β̃j = 0,

for j ̸∈ Ŝ. If the activation set A is covered in the selected set Ŝ, then

E(β̃j | Z1) = E(ξ(2)j | Z1) and

Cov(β̃j, β̃k | Z1) = Cov(ξ
(2)
j , ξ

(2)
k | Z1)− (ej)

⊤
ŜΞŜ,ŜcΞ

−1

Ŝc,Ŝc
ΞŜc,Ŝ(ek)Ŝ

< Cov(ξ
(2)
j , ξ

(2)
k | Z1),

(2.7)

which motivates us to replace ξ(2)j in the original activation statistics Wj,indep

with β̃j to increase the SNR. However, the LS solutions β̃j cannot be used

directly, because they depend on the unknown Σ via Ξ, because Ξ = J◦Σ,
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where J is a p× p matrix with (j, k)th element

Jjk :=

√√√√(τ̂
(2)
j ∧ τ̂

(2)
k ){T2 − τ̂

(2)
j ∨ τ̂

(2)
k }

(τ̂
(2)
j ∨ τ̂

(2)
k ){T2 − τ̂

(2)
j ∧ τ̂

(2)
k }

, (2.8)

for 1 ≤ j, k ≤ p. Suppose we have a good estimate of Σ, say Σ̂, obtained

based on the data split Z1 (see Section 4.3). A remedy is to use the plugged-

in counterparts β̂j := (ej)
⊤
Ŝ(X̂

⊤
ŜX̂Ŝ)

−1X̂⊤
Ŝ ŷ2, for j ∈ Ŝ, where X̂ = Ξ̂

−1/2
,

ŷ2 = Ξ̂
−1/2

ξ(2), and Ξ̂ = J ◦ Σ̂. Hence, we propose the activation statistics

as

Wj,SLIP =


(
ξ
(1)
j /σ̂

1/2
jj

)
×
(
β̂j/V̂

1/2
jj

)
, j ∈ Ŝ,

0, j ̸∈ Ŝ,
(2.9)

where V̂jj = (ej)
⊤
Ŝ(X̂

⊤
ŜX̂Ŝ)

−1(ej)Ŝ is the plugged-in estimate of Var(β̂j | Z1),

for j ∈ Ŝ. The FDR threshold is thus determined according to the rule in

Eq. (1.3), say L̂SLIP = L̂(W1,SLIP, . . . ,Wp,SLIP). Consequently, the identified

set of activated data sequences is given by ÂSLIP = {j : Wj,SLIP ≥ L̂SLIP}.

3. Asymptotic properties

In this section, we investigate the validity of the proposed SLIP method in

terms of FDR control in the asymptotic sense, that is, both T and p jointly

diverge to infinity. Let p1 = |A| and p0 = p−p1 be the numbers of activated

and inactivated data sequences, respectively. Let S = |Ŝ| be the number of

selected data sequences after screening, and S0 = |Ŝ\A| be the number of
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selected data sequences that are still inactivated. Let δ∗j = µτ∗j +1,j − µτ∗j ,j
,

for j ∈ A, be the values of the activation signals (changes of mean levels) for

activated data sequences, and set δ∗j = 0 for inactivated ones (i.e., j ̸∈ A).

We focus on scenarios in which δ∗j = O(1) uniformly, for all j = 1, . . . , p. Let

ε
(k)
ij = Z

(k)
ij − E(Z(k)

ij ) be the random errors, for k = 1, 2, j = 1, . . . , p, and

i = 1, . . . , T , and ε
(k)
i = (ε

(k)
i1 , . . . , ε

(k)
ip )⊤. Recall that X = Ξ−1/2 and X̂ =

Ξ̂
−1/2

, where Ξ = J ◦Σ and Ξ̂ = J ◦ Σ̂. Denote H = (X̂⊤
ŜX̂Ŝ)

−1X̂⊤
ŜX̂. For

1 ≤ j ̸= k ≤ |Ŝ|, let Vjk = (ej)
⊤
ŜVar(β̂Ŝ | Z1)(ek)Ŝ and Rjk = Vjk/

√
VjjVkk.

Assumption 1 (Activation times). There exists some constant cτ ∈ (0, 1/2),

such that cτ ≤ τ ∗j /T ≤ 1− cτ uniformly, for j ∈ A.

Assumption 2 (Activation signals). There exists a partition of A, that is,

A = A∗∪(A\A∗), such that, as T, p → ∞, maxj∈A\A∗ T (δ
∗
j )

2/ log T = O(1)

and minj∈A∗ T (δ
∗
j )

2/ log T → ∞. Moreover, p1∗ := |A∗| → ∞ as T, p → ∞.

Assumption 3 (Thresholding). With probability one, S ≤ s̄p ≍ T c1 , for

some nonrandom sequence s̄p and constant c1 > 0, p1∗ ≤ S0/α, and (p1 −

p1∗)/S0 → 0 as T, p → ∞.

Assumption 4 (Random errors). There exist two sequences mp1 > 0 and

mp2 > 0, such that E
{
∥ε(1)1 ∥θ∞

}
≤ mθ

p1 and E
{
∥Hε

(2)
1 ∥θ∞ | H

}
≤ mθ

p2, for

some constant θ > 2. In addition, as T → ∞,
√
log(Tp1∗)T

−1/2+1/θ+ϵ1mp1 →
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0, and s̄c2p T
−1/2+1/θ+ϵ1mp2 → 0, for some sufficiently small constant ϵ1 > 0

and some constant c2 > 0.

Assumption 5 (Covariance). (i) There exist two constants cκ and cκ,

such that 0 < cκ ≤ λmin(X
⊤
ŜXŜ) ≤ λmax(X

⊤
ŜXŜ) ≤ cκ holds with prob-

ability approaching one as T, p → ∞; (ii) There exist two constants cσ

and cσ, such that 0 < cσ ≤ σjj ≤ cσ uniformly, for j = 1, . . . , p; (iii)

There exists a sequence rp > 0, such that, for j ∈ Ŝ\A, |Rj| ≤ rp, where

Rj =
{
k ∈ Ŝ\A : |Rjk| ≥ c3(log T )

−2−ϵ2

}
, for some constant c3 > 0 and

sufficiently small constant ϵ2 > 0; in addition, rp/p1∗ → 0 as T, p → ∞.

Assumption 6 (Accuracy of covariance matrix estimation). If p1∗ = p1,

there exists a sequence ωp > 0, such that ∥Σ̂ − Σ∥2 < ωp, where ωp

satisfies ωp/min{1, λ2
min(Σ)} → 0 as T, p → ∞. If p1∗ < p1, assume

∥(X⊤
ŜXŜ)

−1X⊤
ŜXŜcβŜc∥∞ = Op(

√
log s̄p), and there exist two sequences

up > 0 and ωp > 0, such that ∥X⊤
ŜXŜc∥1 ≤ up and ∥Σ̂ − Σ∥2 < ωp, with

(p1 − p1∗)upωp/min{1, λ2
min(Σ)} → 0 as T, p → ∞.

Assumption 1 requires that coordinate-wise activation times are not at

the boundaries, which is frequently considered in the literature on change-

point detection (Csörgő and Horváth, 1997; Bai, 2010). Assumption 2 sepa-

rates the set of activated signals into two parts, A∗ and A\A∗, according to

the change magnitudes. Jirak (2015) discusses the consistent selection of the
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set of activated data sequences when p1 = p1∗, that is, T (δ∗j )2/ log T → ∞,

for all δj ̸= 0. Valid FDR control can be achieved, even allowing for some

weaker signals (i.e., p1∗ < p1). Assumption 3 restricts the size of the se-

lected set S, which can be guaranteed by selecting a large Ŝ. For example,

we can choose the components corresponding to the first d = ⌊T/3⌋ largest

|ξ(1)j |/σ̂1/2
jj in practice, motivated by the variable-screening procedures (Fan

and Lv, 2008). Assumption 4 places moment constraints on the random

noise, which can be verified for sub-Gaussian noise. Assumption 5 imposes

restrictions on the dependence structures across different data sequences.

In particular, in Assumption 5–(iii), Rjk measures the dependence among

the de-correlated (by LS estimates) data sequences, in which there should

not be many data sequences with strong correlations (Du et al., 2021; Xia

et al., 2020). Assumption 6 places restrictions on the estimated covariance

matrix. To better illustrate Assumptions 5–6, we consider a special scenario

in which all changes can happen only at a common change-point, which is

widely investigated in the literature on high-dimensional change-point de-

tection (Bai, 2010; Cho and Fryzlewicz, 2015; Wang and Samworth, 2018);

correspondingly, we obtain a certain common change-point estimator.

Lemma 1. Assume that all changes can happen only at a common change-

point that is not at the boundary, and that the signal magnitude satisfies
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T (δ∗j )
2/ log T → ∞, for δ∗j ̸= 0. Assumptions 5–6 are satisfied, provided that

Σ has uniformly bounded eigenvalues, |Rj| ≤ rp, for j ∈ Ŝ \ A satisfying

rp/p1 → 0, and ∥Σ̂−Σ∥2 → 0 as T, p → ∞.

Remark 1. The condition involved requires a consistent estimation of Σ.

If the change-points can be precisely recovered, we can use the centered

data to estimate Σ by using state-of-the-art high-dimensional covariance

estimation procedures (Bickel and Levina, 2008b; Fan et al., 2013; Cai and

Liu, 2011). If the change-points are consistently estimated with a fine preci-

sion, we conjecture that this conclusion also holds under some conditions. In

fact, high-dimensional covariance matrix recovery in the presence of change-

points is challenging even for synchronous change patterns, which deserves

further research; see Section 4.3.

Remark 2. If we further permit the existence of weaker signals (i.e.,

p1∗ < p1), we discuss how Assumption 6 can be verified by consider-

ing two specific covariance structures. Let Up := ∥X⊤
ŜXŜc∥1 and Vp :=

∥(X⊤
ŜXŜ)

−1X⊤
ŜXŜcβŜc∥∞. It can be shown that (i) Up = Vp = 0 and

λmin(Σ) = 1 if Σ = Ip, and (ii) Up ≤ 1, Vp ≤ (p1 − p1∗)(p − s̄p)
−1
√

log s̄p,

and λmin(Σ) = 1−ρ if Σ = ρ11⊤+(1−ρ)I. Consequently, in either case, by

choosing up = 1, Assumption 6 holds, provided that (p1−p1∗)∥Σ̂−Σ∥2 → 0

and (p1 − p1∗)/(p− s̄p) → c ∈ [0,+∞) as T, p → ∞.
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Theorem 1. Under Assumptions 1–6, for any prespecified α ∈ (0, 1),

FDP :=
#{j : Wj,SLIP ≥ L̂SLIP, j /∈ A}
#{j : Wj,SLIP ≥ L̂SLIP} ∨ 1

≤ α + op(1),

and consequently lim supT,p→∞ E(FDP) ≤ α.

Proposition 1. Under Assumptions 1–6, Pr(A∗ ⊆ ÂSLIP) → 1 as T, p →

∞.

Theorem 1 shows that the SLIP method asymptotically controls the

false discovery proportion (FDP), and thus the FDR, at the nominal FDR

level α. Note that the procedure developed under the independent setting

(see Eq. (2.3)) can control the FDR asymptotically under some correla-

tion restrictions (see Assumption 5–(iii)). The current dependence-assisted

scheme helps raise the SNR in the sense of Eq. (2.7). Proposition 1 shows

that all strong signals can be detected with probability tending to one.

We defer the proofs of Theorem 1 and Proposition 1 to Appendix S2 of

the Supplementary Material. Remarkably, the working model in Eq. (2.4)

and (2.5) is presented only for a convenient introduction to the SLIP pro-

cedure. The approximation error induced by the uncertainty of the change-

localizing algorithm is handled delicately in the proof, which makes the

theoretical development much more involved than that of Du et al. (2021).

In addition, we consider the estimation uncertainty of Σ̂ in the proof.
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4. Practical guidelines

4.1 Tuning parameters

For the data split ratio r, we recommend using r = 3, because the data split

Z1 is responsible for identifying the activation times, which has a direct

impact on the detection ability. The boundary parameter ϱ ∈ (0, 1/2)

is frequently considered in the literature (Csörgő and Horváth, 1997; Yu

and Chen, 2021) to avoid certain boundary problems, and can be set as

ϱ = 0.1 for practical purposes. The threshold parameter tp (see Eq. (2.6))

can be chosen as tp =
√
C log T1, with C = 1.5, which yields satisfactory

performance for both FDR control and power enhancement, as discussed in

Section 5.

4.2 Other change patterns

In some task-related fMRI experiments, researchers give multiple stimuli

to subjects in sequence, and thus multiple change-points may exist in each

data sequence. The proposed method can be extended to multiple change-

point scenarios, because it can be thought of as the first step of a binary

segmentation change-detection algorithm. It can be shown that the highly

“significant” change-point can be recovered consistently in this step under
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4.3 Estimation routines for the covariance matrix

some conditions (Fryzlewicz, 2014). Furthermore, variants of the binary

segmentation algorithm (Fryzlewicz, 2014; Eichinger and Kirch, 2018) are

also feasible. On the other hand, if we have some priors on a specific

data distribution, the log-likelihood ratio statistic (Csörgő and Horváth,

1997) can be employed instead of the CUSUM statistic, which yields better

change-point estimators.

In experiments in which some brain regions are activated simultane-

ously, changes may happen in a small part of data sequences simultaneously.

If we have such prior knowledge, we can use high-dimensional change-point

methodologies (Jirak, 2015; Wang and Samworth, 2018) to identify the

common change-point as a single τ̂ = τ̂
(1)
j , for j = 1, . . . , p, to which we can

still apply the SLIP method.

4.3 Estimation routines for the covariance matrix

High-dimensional covariance matrix estimation is a fundamental problem.

To achieve consistent estimations, we typically need additional structural

assumptions on Σ, including banded or sparse assumptions or certain low-

dimensional representations, such as factor models; see, for example, Bickel

and Levina (2008a), Bickel and Levina (2008b), Friedman et al. (2007), and

Fan et al. (2013). However, these methods cannot be applied directly in
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4.3 Estimation routines for the covariance matrix

the presence of mean changes, as in our model (1.1).

The difference-based covariance estimators are good choices in the pres-

ence of change-points. Consistency can be reached under low-dimensional

scenarios if the number of change-points is not too high and the change

magnitudes are not too large (Rice, 1984; Chan, 2022). However, for an

asynchronous change pattern (1.1), where τ ∗j are not required to be the

same, difference-based estimators may bring unnecessary bias accumula-

tion, and thus may be not a good candidate, even under low-dimensional

scenarios.

Hence, we turn to a simple change-removing strategy to alleviate the

bias induced by change-points. In particular, we centralize each data point

in Z1 by subtracting the estimated mean, that is,

Z̃
(1)
ij = Z

(1)
ij − 1(i ≤ τ̂

(1)
j )Z̄

(1)
j (0, τ̂

(1)
j )− 1(i > τ̂

(1)
j )Z̄

(1)
j (τ̂

(1)
j , T1).

Then, we can apply state-of-the-art high-dimensional covariance estima-

tion procedures to the centered data {Z̃ij, i = 1, . . . , T1, j = 1, . . . , p},

which yields satisfactory performance in our numerical studies. Note that

the covariance may be underestimated, because some data sequences do not

contain a change. We conjecture that a refitted cross-validation strategy

(Fan et al., 2012) may alleviate this phenomenon. In fact, high-dimensional

covariance estimation in the presence of change-points is challenging, espe-
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4.4 A LASSO-based screening strategy

cially for asynchronous change patterns, which warrants future research.

4.4 A LASSO-based screening strategy

In Section 2, we provided a thresholding rule tp (see Eq. (2.6)) to obtain a

narrower subset of coordinates, Ŝ. Here, we offer another candidate strategy

for screening redundant data sequences, upon which the LS strategy can be

applied.

We revisit the working model (2.5) for ξ(2). Note that the nonzero

components of β correspond to activated data sequences. If the number of

activated data sequences is not very large, intuitively, we can use a sparse

estimate of β by using, for example, the LASSO method (Tibshirani, 1996).

Specifically, we achieve this based on the data split Z1, that is,

β̌ := argminγ

{
1

2
∥ŷ1 − X̂γ∥22 + λ∥γ∥1

}
,

where ŷ1 = Ξ̂
−1/2

ξ(1) and λ is a tuning parameter that can be determined

using cross-validation or some information criteria, such as the AIC. Then,

we select the set of nonzero components of β̌ as Ŝ. Finally, the activation

statistics can be constructed as

Wj,LASSO =


(
e⊤jβ̌ × β̂j

)
/V̂jj j ∈ Ŝ,

0, j ̸∈ Ŝ.
(4.1)
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4.5 Temporal dependence

In contrast to the thresholding rule that solely compares components

of ξ(1), the LASSO-based screening strategy incorporates the dependence

information among all components, to a certain degree. Hence, it should be

more efficient when the activation signal is relatively weak. Our numerical

results also show that the SLIP method combined with the LASSO strategy

performs satisfactorily. A theoretical investigation certainly warrants future

research.

4.5 Temporal dependence

In some fMRI data analyses, coordinate-wise temporal correlations exist,

especially in contiguous sampling periods. Although the asymptotic FDR

validity is established by assuming that the Zi are independent, we may ex-

pect the proposed SLIP method to be applicable, with slight modifications,

for temporally dependent cases. Motivated by the idea of a moving block

bootstrap for stationary series (Kunsch, 1989), we suggest a local averaging-

based procedure capable of alleviating the effect of auto-correlations, to a

certain degree. For each data sequence, we first partition the time-ordered

observations into a sequence of blocks of roughly the same length, and then

take the average of the observations in each block as a new pseudo obser-

vation. These pseudo observations then constitute a new data sequence, in
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4.6 R package

which the temporal correlation tends to be weakened. Then, we can apply

the proposed SLIP method to the newly constructed data.

4.6 R package

To facilitate the implementation of the proposed SLIP method, we have

developed an R package called SLIP, which is available at https://github.

com/MengtaoWen/SLIP.

5. Experiments

5.1 Synthetic data

To evaluate the performance of the proposed SLIP method in terms of

discovering activated data sequences, we first introduce two benchmark

procedures by applying the BH method. To test each H0j (see Eq. (1.2)),

for j = 1, . . . , p, we adopt the CUSUM statistics based on the entire data,

that is,

1

σ̂
1/2
jj

max
1≤τ<n

√
τ(T − τ)

T

∣∣∣∣∣1τ
τ∑

i=1

Zij −
1

T − τ

T∑
i=τ+1

Zij

∣∣∣∣∣ , (5.1)

which converges in distribution to an extreme value distribution under H0j

(Csörgő and Horváth, 1997). Hence, we can calculate the associated p-

values using the asymptotic null distribution. We refer to this benchmark
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5.1 Synthetic data

procedure as BH-asymp. Jirak (2015) proposes a simulation-based approach

that mimics the null distribution by generating the data Zij
iid∼ N(0, 1), and

recalculates the CUSUM statistics in Eq. (5.1) repeatedly. We refer to this

procedure as BH-simul. For our method, we consider three variants: the

SLIP method with activation statistics Wj,indep in Eq. (2.3), ignoring the

dependence information (see Section 2.1); the SLIP method with activa-

tion statistics Wj,SLIP, together with the thresholding rule (see Eq. (2.9));

and the SLIP method with activation statistics Wj,LASSO, combined with

the LASSO screening strategy (see Section 4.4). These three procedures

are named SLIP-indep, SLIP-thresh, and SLIP-lasso, respectively, for no-

tational convenience. The estimation of the unknown covariance matrix

follows the guidelines in Section 4.3, together with some state-of-the-art

covariance matrix estimation routines, specified later. We implement these

procedures in the R package SLIP to facilitate practical use. We set the

nominal FDR level α = 20%. We conduct 500 replications to estimate

the FDR and the power of each procedure, where the latter is defined as

the proportion of discovered activated data sequences to all activated data

sequences.

It is well known that the validity of the BH method is guaranteed if the

p-values are independent. Hence, we first conduct a simulation study by
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5.1 Synthetic data

setting Σ = I to investigate the performance of the considered procedures.

For now, we assume Σ is known. The random errors are generated following

(i) a normal distribution, and (ii) a t-distribution with degrees of freedom

five. We set the proportion of activated data sequences p1 = ⌊0.15p⌋, the

indices of which are chosen randomly from {1, . . . , p}. For each activated

data sequence, the activation time τ ∗j is sampled randomly from {⌊Tϱ⌋ +

1, . . . , T − 1 − ⌊Tϱ⌋}, with ϱ = 0.05, and the change magnitude δ∗j is first

sampled uniformly from the interval [δ−0.1, δ+0.1] with δ > 0.1, and then

its sign is flipped with probability 0.5, where δ is a parameter controlling

the signal strength.

normal t

F
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R
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o
w
er

0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2
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Method BH-asymp BH-simul SLIP-indep SLIP-thresh SLIP-lasso

Figure 1: Empirical FDR and power of the SLIP and BH methods when

(T, p) = (120, 800) under the independent scenario with Σ = I.
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5.1 Synthetic data

Figure 1 depicts the empirical FDR and the power of the SLIP and BH

methods when (T, p) = (120, 800) under the independent scenario, where

δ takes values from {0.6, 0.8, 1.0, 1.2}. When the data are normally dis-

tributed, we observe that all procedures maintain the nominal FDR level

and have comparable power, but that BH-asymp exhibits conservative per-

formance (it makes fewer discoveries than the others do). When the data

are from a t-distribution, BH-asymp is still conservative, and fails to con-

trol the FDR, even for low signal scenarios, which may be due to the quite

slow convergence to the asymptotic null distribution. BH-simul has in-

flated FDR levels, and thus unnecessarily higher power, which is expected,

because it uses normally distributed samples to approximate the null dis-

tribution, and thus is sensitive to the normality of the data distribution. In

contrast, the proposed SLIP procedures perform very well in terms of both

FDR and power, as in the normal scenario. Moreover, the performance

difference between SLIP-indep, SLIP-thresh, and SLIP-lasso is negligible.

To investigate the impact of the dependence structure, we conduct sim-

ulation experiments with different patterns of covariance matrices: Scenario-

(i) is a compound symmetric matrix, the elements of which are all ρ, except

the diagonal elements, which are equal to one; and Scenario-(ii) is a matrix

with a first-order autoregressive structure, in which the (i, j)th element is
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5.1 Synthetic data

ρ|i−j|, where ρ in both cases controls the degree of the correlations. The

data-generating process is the same as earlier, with the random error dis-

tributed as a t-distribution with degrees of freedom five. For Scenario-(i),

the covariance matrix estimation routine is chosen as the POET proposed

by Fan et al. (2013), and for Scenario-(ii), it is chosen as the thresholding

rule in Lee and Lee (2021). The left panel of Figure 2 shows the empirical

Method BH-asymp BH-simul SLIP-indep SLIP-thresh SLIP-lasso

Scenario-(i)

0.0

0.1

0.2

0.3

0.4
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F
D
R

0.00 0.25 0.50 0.75
0.00
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P
o
w
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δ

Figure 2: Empirical FDR and power of the SLIP and BH methods when

(T, p) = (120, 800) under the dependent scenario, where Σ is specified as

either a compound symmetric (i) or autoregressive (ii) structure.

FDR and power of the SLIP and BH methods when (T, p) = (120, 800),

δ = 0.6, and Σ is chosen as in Scenario-(i), with ρ ranging over the val-
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5.2 An fMRI data analysis

ues {0, 0.3, 0.6, 0.9}. The right panel of Figure 2 shows the results when

(T, p) = (120, 800), Σ is chosen as in Scenario-(ii), with ρ = 0.8, and δ

is selected from the values {0.6, 0.8, 1.0, 1.2}. Again, BH-asymp is quite

conservative, and BH-simul has inflated FDR levels, in most cases. SLIP-

indep also has inflated FDR levels when the correlations among the data

sequences are strong, for example, in (i). In contrast, SLIP-thresh and

SLIP-lasso perform well, with good power, while maintaining the nominal

FDR level. In addition, SLIP-lasso sometimes has slightly better power

than that of SLIP-thresh, because it uses dependence information to con-

struct the narrow set containing activated data sequences.

5.2 An fMRI data analysis

As an illustrative example, we apply the SLIP method to analyze the task-

related fMRI data in Mitchell et al. (2008), who study the brain activation

associated with thinking about concrete nouns to examine how the human

brain represents and organizes conceptual knowledge. The stimuli are line

drawings and noun labels of some concrete objects. Each stimulus item

is presented, and the participant is instructed to think about the object’s

properties, followed by a rest period. A sequence of 360 images of the

participant was collected and processed, with each brain image containing
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5.2 An fMRI data analysis

about 21,000 voxels. These voxels were divided into 90 ROIs (Tzourio-

Mazoyer et al., 2002), generally believed to be anatomically and functionally

distinct. The ROIs vary greatly in size. Following the strategy of Wehbe

et al. (2015), to achieve size uniformity, we further divide the ROIs into

regions with 100 voxels or fewer, yielding p = 264 ROIs. We also discard

five images from the data sequence to ensure there is no signal leakage

due to the slow decay of the hemodynamic responses (Wehbe et al., 2015).

Then, we use the average of every 10 consecutive images as our data for

analysis to mitigate potential temporal correlations (see Section 4.5), and

thus T = 35. The processed data are available in the SLIP package. We

estimate the covariance matrix using the POET routine (Fan et al., 2013),

and set the nominal FDR level at α = 20% to implement the SLIP method.

Figure 3 presents a sliced brain map of the estimated component-wise

change magnitude, scaled by the estimated component-wise variance, dis-

covered by SLIP-thresh and SLIP-lasso, respectively. A large absolute value

in the map indicates a very likely change. The two procedures discover 10

and 16 ROIs, respectively, and have six in common. The boundaries of the

discovered ROIs are marked in red, and the names of the discovered ROIs

are listed in Appendix S4 of the Supplementary Material (Table S1). We

observe that the detected regions correspond to those with larger absolute
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5.2 An fMRI data analysis

values, especially for the commonly discovered ones. The two procedures

differ in a few regions, with relatively more minor absolute values. These

may be false positives, and need further examination.
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Figure 3: A sliced map of the estimated component-wise change magni-

tude scaled by the estimated component-wise variance, discovered by SLIP-

thresh (left) and SLIP-lasso (right). The boundaries of the discovered ROIs

are marked in red.

In addition, an interesting, yet reasonable phenomenon is that contigu-

ous regions tend to be activated at the same time. Other slices of the brain

maps are collected in Appendix S4 of the Supplementary Material (Figures

S3–S4), revealing a similar pattern. Whether such “clustering” information

can be used to enhance the detection ability, while still guaranteeing some

notion of the FDR, warrants further research.
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6. Conclusion

We have investigated the uncertainty in selecting activated data sequences

that encounter asynchronous changes by leveraging the FDR tool. We

propose the SLIP method to guarantee the FDR being controlled at a

prescribed level, while also incorporating potential dependence structures.

There is still some room for improvement. For instance, empirical numeri-

cal results reveal that the identified regions are usually spatially contiguous.

Such information of spatially structured data sequences may improve the

power, for example, by using some local aggregation strategy (Zhang et al.,

2011). In addition, it would be interesting to extend the proposed method

beyond mean-level changes. For example, a correlation-level change model

is more suitable for studying the connectivity between distinct brain regions

(Xia and Li, 2017). Another interesting direction is to estimate a high-

dimensional covariance matrix in the presence of change-points, especially

for the current asynchronous change patterns. Tailoring the difference- and

change-removing-based procedures to achieve this purpose warrants future

research.
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Supplementary Material

The online Supplementary Material includes proofs of all our theoretical

results, as well as some additional numerical experiments.
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