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Abstract: This study investigates the quasi-maximum likelihood inference, including estimation, model

selection, and diagnostic checking, for linear double autoregressive (DAR) models, where all asymptotic

properties are established under only a fractional moment of the observed process. We propose an

exponential quasi-maximum likelihood estimator (E-QMLE) for the linear DAR model, and establish

its consistency and asymptotic normality. Based on the E-QMLE, we propose a Bayesian information

criterion for model selection, and construct a mixed portmanteau test to check the adequacy of the

fitted models. Inference tools based on the Gaussian quasi-maximum likelihood estimator (G-QMLE)

are also discussed, for comparison. Moreover, we compare the proposed E-QMLE with the G-QMLE

and the existing doubly weighted quantile regression estimator in terms of their asymptotic efficiency

and numerical performance. Simulation studies illustrate the finite-sample performance of the proposed

inference tools, and a real example using a Bitcoin return series shows their usefulness.

Key words and phrases: Double autoregressive models; Model selection; Portmanteau test; Quasi-

maximum likelihood estimation.
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1 INTRODUCTION LIU, TAN AND ZHU

1. Introduction

Many conditional heteroscedastic models have been proposed to capture the time-varying

volatility of financial and economic time series, with the autoregressive conditional het-

eroscedastic (ARCH) and generalized autoregressive conditional heteroscedastic (GARCH)

models proving popular (Engle, 1982; Bollerslev, 1986). However, the conditional mean and

conditional heteroscedasticity usually appear simultaneously in time series, and ignoring the

conditional mean can lead to an inaccurate inference for the volatility (Li, Ling, and McAleer,

2002). Therefore, it is of vital importance to jointly model the conditional mean and volatil-

ity. The linear double autoregressive (DAR) model was proposed by Zhu, Zheng, and Li

(2018) for this purpose, having the form

yt =

p∑
i=1

αiyt−i + ηt

(
ω +

p∑
i=1

βi|yt−i|

)
, (1.1)

where ω > 0, βi ≥ 0 for 1 ≤ i ≤ p, and {ηt} are independent and identically distributed

(i.i.d.) random variables. Model (1.1) assumes a linear structure for the conditional standard

deviation, which makes it less sensitive to extreme values, thus leading to a more robust

inference than those form models with a linear structure for the conditional variance; see

also Taylor (2008) and Xiao and Koenker (2009). Model (1.1) has a novel property that it

enjoys a larger parameter space than those of the AR and AR-ARCH models (Zhu, Zheng,

and Li, 2018). For example, with p = 1, it can be stationary, even if |α1| > 1, which is

impossible for causal AR and AR-ARCH models.

A doubly weighted quantile regression estimator (DWQRE) was introduced by Zhu,

Zheng, and Li (2018) for model (1.1), with ω = 1 for identification. The DWQRE linearly

combines the self-weighted quantile regression estimators at multiple quantile levels using

weighting matrices, and requires only a fractional moment on the observed process {yt} to
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1 INTRODUCTION QML Inference for LDAR Models

establish its asymptotic properties. This novel property leads to robust inferences using model

(1.1), and thus can be used for heavy-tailed data. Zhu, Zheng, and Li (2018) showed that

as the total number of quantile levels goes to infinity, the optimal DWQRE can approach

the efficiency of the maximum likelihood estimator (MLE) under certain conditions, defined

in (2.5) in Section 2.3. However, combining the self-weighted quantile regression estimators

at infinite quantile levels is infeasible in practice, and, more importantly, condition (2.5)

implies that the DWQRE is, in general, less efficient than the MLE if the conditional mean

structure exists. Furthermore, the two-step estimation procedure of the DWQRE is more

complex than the one-step MLE or quasi-maximum likelihood estimation (QMLE) methods.

To the best of our knowledge, no studies have examined the QMLE for model (1.1). This

study addresses this gap in the literature.

Model (1.1) was originally motivated by the DAR model proposed by Ling (2004, 2007a),

which is defined as

yt =

p∑
i=1

αiyt−i + εt

√√√√ω +

p∑
i=1

βiy2t−i, (1.2)

where ω > 0, βi ≥ 0 for 1 ≤ i ≤ p, and {εt} are i.i.d. random variables. Model (1.2) is a

special case of the ARMA-ARCH models in Weiss (1986), and has been extended by several

studies, including the threshold DAR (Li, Ling, and Zakoïan, 2015; Li, Ling, and Zhang,

2016), mixture DAR (Li et al., 2017), linear DAR (Zhu, Zheng, and Li, 2018), augmented

DAR (Jiang, Li, and Zhu, 2020), and asymmetric linear DAR (Tan and Zhu, 2022) models.

In contrast to the linear DAR model (1.1), model (1.2) assumes a linear structure for the

conditional variance, which may make it sensitive to extreme values. However, similarly

to model (1.1), it enjoys a larger parameter space than those of the causal AR and AR-

ARCH models. For the estimation of model (1.2), Ling (2007a) proposed a Gaussian quasi-

3
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1 INTRODUCTION LIU, TAN AND ZHU

maximum likelihood estimator (G-QMLE), and established its asymptotic normality under

a fractional moment of yt and E(ε4t ) < ∞. To reduce the moment condition of εt for a more

robust estimation, Zhu and Ling (2013) proposed an exponential quasi-maximum likelihood

estimator (E-QMLE) for model (1.2), where its asymptotic normality requires only that

E(ε2t ) < ∞. Note that we need only a finite fractional moment of the process {yt} in order to

establish the asymptotic normality of the G-QMLE or E-QMLE, yielding a robust estimation

for model (1.2).

The G-QMLE and E-QMLE essentially represent the least square estimation and the

least absolute deviation estimation, respectively, and are popular for investigating the G-

QMLE or E-QMLE for various time series models. For example, Aue and Horváth (2011)

proposed the G-QMLE for random coefficient AR models, Francq and Zakoian (2004) and

Francq and Zakoian (2019) studied the G-QMLE for GARCH and ARMA-GARCH models,

Ling (2007b) proposed a self-weighted G-QMLE for ARMA-GARCH models, and Zhu and

Ling (2011) investigated the E-QMLE for ARMA-GARCH models. Note that the G-QMLE

and E-QMLE for the GARCH or ARMA-GARCH models usually require a second or fourth

moment condition on the observed process in order to establish the asymptotic normality,

whereas we need only a finite fractional moment for the DAR model (1.2). Therefore, we

examine whether the robust property of QMLEs for model (1.2) can be preserved for the linear

DAR model (1.1). Hopefully, the QMLEs for model (1.1) are robust and more convenient in

terms of computation than the DWQRE. Model selection and diagnosis are another two key

elements of the classical Box–Jenkins procedure, and hence need to be investigated based on

QMLEs for model (1.1). This study contributes to the literature in three ways.

First, we propose an E-QMLE for model (1.1) in Section 2.1, and establish its asymptotic
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1 INTRODUCTION QML Inference for LDAR Models

normality under E(|yt|κ) < ∞ and E(η2t ) < ∞. In particular, to derive the asymptotic

normality of the E-QMLE, we adopt the bracketing method of Pollard (1985) to overcome

the difficulty of the nondifferentiable and nonconvex objective function; see also Zhu and

Ling (2011, 2013). For comparison with the E-QMLE, we introduce the G-QMLE for model

(1.1) in Section 2.2, and obtain its asymptotic normality under E(|yt|κ) < ∞, for some κ > 0

and E(η4t ) < ∞. We also compare the asymptotic efficiency of the E-QMLE with that of

the DWQRE in Section 2.3. Simulation studies indicate that no estimator dominates in

terms of asymptotic efficiency, but the E-QMLE is much more efficient than the G-QMLE,

but slightly less efficient than the DWQRE when the data are more heavy tailed. Although

all three estimators can be used to fit heavy-tailed data with E(|yt|κ) < ∞, in practice,

we suggest choosing the most suitable option according to the fat tailedness of the fitted

residuals and the computational complexity. Because the proposed E-QMLE offers a good

trade-off between robustness and computational complexity, it is preferred for most financial

and economic time series with heavy tails. The real-data application in Section 5 further

illustrates this point.

Second, based on the E-QMLE, we propose a Bayesian information criterion (BIC) for

model selection in Section 2.4, and show that it enjoys selection consistency without any

moment condition on the process {yt}. As the first stage of the Box–Jenkins procedure, order

selection is crucial for fitting time series in practice, and the BIC is widely used to select

orders for time series models (Poskitt and Tremayne, 1983; Cryer and Chan, 2008). Schwarz

(1978) introduced the BIC for likelihood functions in the exponential family, Machado (1990)

extended the BIC to a wide class of likelihood functions, and Machado (1993) studied the

BIC based on objective functions that define M-estimators. Note that the E-QMLE belongs
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to the class of M-estimators, motivating us to propose a BIC that is robust, in line with the

estimation procedure. We further show that the proposed BIC is asymptotically consistent

in terms of estimating the true order. Simulation studies indicate that, even if the sample

size is not very large, the proposed BIC exhibits satisfactory performance.

Our third contribution is to construct a robust portmanteau test, in Section 3, for check-

ing the adequacy of the fitted models, with no moment conditions imposed on the process

{yt}. It is well known that diagnostic checking is important for time series modeling, and

portmanteau tests are commonly used for this purpose; see Box et al. (2008). For pure

conditional mean models, the portmanteau test is usually constructed using the sample au-

tocorrelation functions (ACFs) of the residuals (Ljung and Box, 1978), whereas we use the

ACFs of the squared or absolute residuals for pure volatility models (Li and Mak, 1994; Li,

2004; Li and Li, 2005). Wong and Ling (2005) proposed a mixed portmanteau statistic for

testing the adequacy of fitted time series models using residuals and squared residuals. To

ensure the robustness of the test based on the E-QMLE, in the sense that its asymptotic

properties require only E(η2t ) < ∞, we adopt the ACFs of the absolute rather than the

squared residuals to check the adequacy of the volatility part. As a result, we propose a

mixed portmanteau test based on the ACFs of the residuals and the absolute residuals to

simultaneously detect misspecifications of the conditional mean and volatility in the fitted

model. The asymptotic properties of the test are established in Section 3.

Section 4 evaluates the finite-sample performance of the proposed inference tools by

means of simulation, and a real-data example is given in Section 5. Section 6 concludes

the paper. All technical details and additional simulation results are relegated to the Sup-

plementary Material. Throughout the paper, →p (→L) denotes convergence in probability
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2 MODEL ESTIMATION QML Inference for LDAR Models

(distribution), and op(1) denotes a sequence of random variables converging to zero in prob-

ability. The data from Section 5 and the programs used to analyze them are available from

https://github.com/Tansonghua-sufe/Linear-double-autoregression.

2. Model estimation

In this section, we propose an E-QMLE for model (1.1) in Section 2.1. Then, we compare

the E-QMLE with the G-QMLE and the DWQRE of Zhu, Zheng, and Li (2018) in Sections

2.2–2.3, respectively. Finally, order selection is discussed in Section 2.4.

2.1 Exponential quasi-maximum likelihood estimation

Let θ = (α′, δ′)′ be the unknown parameter vector of model (1.1), and let θ0 = (α′
0, δ

′
0)

′ be

the true parameter vector, where α = (α1, α2, . . . , αp)
′ and δ = (ω, β1, β2, . . . , βp)

′. Denote

the parameter space by Θ = Θα × Θδ, where Θα ⊂ Rp and Θδ ⊂ Rp+1
+ , with R+ = (0,+∞).

Assume that {y1, . . . , yn} are generated by model (1.1), with ηt having a zero median and

satisfying E(|ηt|) = 1. When ηt follows the standard double exponential distribution, the

negative conditional log-likelihood function (ignoring a constant) can be written as

LE
n (θ) =

1

n− p

n∑
t=p+1

ℓEt (θ) and ℓEt (θ) = ln ht(δ) +
|εt(α)|
ht(δ)

, (2.1)

where

εt(α) = yt −
p∑

i=1

αiyt−i and ht(δ) = ω +

p∑
i=1

βi|yt−i|. (2.2)

Let θ̂n = argminθ∈Θ LE
n (θ). Because we do not assume that ηt follows the standard double

exponential distribution (i.e., the Laplace distribution), θ̂n is called the E-QMLE of θ0; see

also Zhu and Ling (2011, 2013).
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2 MODEL ESTIMATION LIU, TAN AND ZHU

Assumption 1. Θ is compact, with ω ≤ ω ≤ ω and β ≤ βi ≤ β, for i = 1, . . . , p, where

ω, ω, β, and β are some positive constants, and θ0 is an interior point in Θ.

Assumption 2. {yt : t = 1, 2, ...} is strictly stationary and ergodic, with E(|yt|κ) < ∞, for

some 0 < κ ≤ 1.

Assumption 3. (i) ηt has a zero median with E(|ηt|) = 1; (ii) the density function of ηt is

continuous and positive everywhere on R satisfying supx∈R f(x) < ∞; (iii) E(η2t ) < ∞.

Assumption 1 is standard in the literature on quasi-maximum likelihood estimation; see

also Ling (2007a) and Zhu and Ling (2013). For general distributions of ηt, it is difficult

to derive a necessary and sufficient condition for the strict stationarity of yt, owing to the

nonlinearity of model (1.1). A sufficient condition for Assumption 2 is given in Theorem 2 of

Zhu, Zheng, and Li (2018), that is,
∑p

i=1 max{E(|αi − βiηt|κ), E(|αi + βiηt|κ)} < 1, for some

0 < κ ≤ 1. Assumption 3 is a general setup for establishing the consistency and asymptotic

normality of the E-QMLE; see also Zhu and Ling (2013).

Theorem 1. If Assumptions 1, 2, and 3(i) hold, then θ̂n → θ0 almost surely as n → ∞.

Let κ1 = E(ηt) and κ2 = E(η2t ) − 1. Denote Y 1t = h−1
t (δ0)(yt−1, . . . , yt−p)

′ and Y 2t =

h−1
t (δ0)(1, |yt−1|, . . . , |yt−p|)′. Define the (2p+ 1)× (2p+ 1) matrices

Σ = diag

{
f(0)E(Y 1tY

′
1t),

1

2
E(Y 2tY

′
2t)

}
and Ω =

 E(Y 1tY
′
1t) κ1E(Y 1tY

′
2t)

κ1E(Y 2tY
′
1t) κ2E(Y 2tY

′
2t)

 .

Theorem 2. If Assumptions 1–3 hold, then

(i)
√
n(θ̂n − θ0) = Op(1);

(ii)
√
n(θ̂n − θ0) →L N(0,Ξ) as n → ∞, where Ξ = Σ−1ΩΣ−1/4.
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2 MODEL ESTIMATION QML Inference for LDAR Models

Theorem 2 shows that the asymptotic normality of the proposed E-QMLE is established

under a fractional moment of yt, with E(η2t ) < ∞, for model (1.1). Therefore, the E-QMLE

is robust to heavy-tailed data, and can be used for E(η4t ) = ∞ and E(η2t ) < ∞, where

the G-QMLE introduced in Section 2.2 is no longer applicable. In addition, if κ1 = 0,

then the asymptotic covariance in Theorem 2 reduces to the block diagonal matrix Γ0 =

diag{4f 2(0)E(Y 1tY
′
1t), κ

−1
2 E(Y 2tY

′
2t)}−1.

To estimate the asymptotic covariance of θ̂n, define the residuals fitted by the E-QMLE

as η̂t = εt(α̂n)/ht(δ̂n), and then κ̂1 = (n − p)−1
∑n

t=p+1 η̂t and κ̂2 = (n − p)−1
∑n

t=p+1 η̂
2
t −

1. We can estimate the density function f(x) using the kernel density estimator f̂(x) =

(nbn)
−1
∑n

t=p+1 K((x − η̂t)/bn), where K(·) is the kernel function and bn is the bandwidth.

Finally, we use sample averages to replace the expectations in Σ and Ω, δ̂n to replace δ0, κ̂i

to replace κi, for i = 1, 2, and f̂(0) to replace f(0). Then, we can obtain estimates of Σ and

Ω, denoted by Σ̂n and Ω̂n, respectively. Remark 1 provides basic conditions on the kernel

function K(·) and the bandwidth bn such that Σ̂n and Ω̂n are consistent estimators of Σ and

Ω, respectively; see the Supplementary Material for the proof.

Remark 1. Suppose the conditions in Theorem 2 hold and supx |f ′(x)| < ∞. If there exists

a positive number L such that |K(x) − K(y)| ≤ L|x − y|, for any x, y, and bn → 0 and

nb4n → ∞ as n → ∞, then Σ̂n →p Σ and Ω̂n →p Ω as n → ∞; see also Corollary 1 in Zhu

and Ling (2013).

Numerous choices for the kernel function K(·) and bandwidth bn satisfy the conditions in

Remark 1. The kernel density estimator is robust to the selection of the kernel functions, but

sensitive to that of the bandwidths. Thus, we suggest using the optimal bandwidth related

to the selected kernel function in practice. Here, we use the Gaussian kernel function and its

9
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2 MODEL ESTIMATION LIU, TAN AND ZHU

rule-of-thumb bandwidth bn = 0.9n−1/5 min{s, R̂/1.34} for our numerical studies in Sections

4–5, where s and R̂ are the sample standard deviation and interquartile of the residuals {η̂t},

respectively; see also Zhu, Zheng, and Li (2018).

2.2 Comparison with the Gaussian quasi-maximum likelihood estimation

A Gaussian quasi-maximum likelihood estimation provides a popular QMLE called the G-

QMLE. Assuming that {y1, . . . , yn} are generated by model (1.1), with E(ηt) = 0 and

var(ηt) = 1, the G-QMLE of θ0 is defined as θ̃n = (α̃′
n, δ̃

′
n)

′ = argminθ∈Θ LG
n (θ), where

LG
n (θ) =

1

n− p

n∑
t=p+1

ℓGt (θ) and ℓGt (θ) = ln ht(δ) +
ε2t (α)

2h2
t (δ)

,

and εt(α) and ht(δ) are defined as in (2.2); see also Ling (2007a) and Tan and Zhu (2022).

Instead of Assumption 3 for the E-QMLE, we require the following assumption to establish

the asymptotic properties of the G-QMLE.

Assumption 4. (i) ηt has a zero mean and unit variance; (ii) E(η4t ) < ∞.

Let κ3 = E(η3t ) and κ4 = E(η4t )− 1. Define the (2p+ 1)× (2p+ 1) matrices

Σ1 = diag {E(Y 1tY
′
1t), 2E(Y 2tY

′
2t)} and Ω1 =

 E(Y 1tY
′
1t) κ3E(Y 1tY

′
2t)

κ3E(Y 2tY
′
1t) κ4E(Y 2tY

′
2t)

 .

Similarly to Theorem 2 of Tan and Zhu (2022), we can show the consistency and asymptotic

normality of the G-QMLE θ̃n under fractional moments of yt for model (1.1).

Theorem 3. Suppose that Assumptions 1, 2, and 4(i) hold. Then,

(i) θ̃n →p θ0 as n → ∞;

(ii) furthermore, if Assumption 4(ii) holds and the matrix D =

 1 κ3

κ3 κ4

 is positive

definite, then
√
n(θ̃n − θ0) →L N(0,Ξ1) as n → ∞, where Ξ1 = Σ−1

1 Ω1Σ
−1
1 .
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2 MODEL ESTIMATION QML Inference for LDAR Models

We next compare the E-QMLE with the G-QMLE. Because the two estimators need

different conditions on the innovation, we assume κ1 = E(ηt) = 0, and reparametrize model

(1.1) under Assumption 3 to ensure that the innovation term has a zero mean and unit

variance. Specifically, we consider the following reparametrized model:

yt =

p∑
i=1

αiyt−i + η∗t

(
ω∗ +

p∑
i=1

β∗
i |yt−i|

)
, (2.3)

where η∗t = ηt/
√

E(η2t ) and δ∗ = (ω∗, β∗
1 , β

∗
2 , . . . , β

∗
p)

′ = δ
√

E(η2t ). Denote θ∗ = (α′, δ∗′)′

as the unknown parameter vector of model (2.3) and θ∗
0 = (α′

0, δ
∗′
0 )

′ as the true value. Let

θ̃
∗
n be the G-QMLE of θ∗

0, κ∗
3 = E(η∗3t ), κ∗

4 = E(η∗4t ) − 1, and Y ∗
it = Y it/

√
E(η2t ), for

i = 1 and 2. If E(η∗4t ) < ∞ and Assumptions 1–2 hold, then by Theorem 3, we have
√
n(θ̃

∗
n − θ∗

0) →L N(0,Ξ∗
1) as n → ∞, where Ξ∗

1 = (Σ∗
1)

−1Ω∗
1(Σ

∗
1)

−1, with

Σ∗
1 = diag {E(Y ∗

1tY
∗′
1t), 2E(Y ∗

2tY
∗′
2t)} and Ω∗

1 =

 E(Y ∗
1tY

∗′
1t) κ∗

3E(Y ∗
1tY

∗′
2t)

κ∗
3E(Y ∗

2tY
∗′
1t) κ∗

4E(Y ∗
2tY

∗′
2t)

 .

Note that θ0 = Rθ∗
0, where R = diag{Ip, [E(η2t )]

−1/2Ip+1}, with Im being the m×m identity

matrix. Then, we have
√
n(θ̃n − θ0) →L N(0, RΞ∗

1R
′) as n → ∞, where θ̃n = Rθ̃

∗
n is the

G-QMLE of θ0 for model (1.1) under Assumption 3. As a result, it is sufficient to compare

the asymptotic covariance Ξ with RΞ∗
1R

′ for some specific cases:

(i) If ηt follows the standard Laplace distribution, such that κ1 = 0, κ2 = 1, and f(0) =

1/2, then the E-QMLE reduces to the MLE, with the asymptotic covariance Ξ =

diag{[E(Y 1tY
′
1t)]

−1, [E(Y 2tY
′
2t)]

−1} attaining the Cramér–Rao lower bound, indicat-

ing that the E-QMLE is more efficient than the G-QMLE.

(ii) If ηt is standard normal, such that κ3 = 0, κ4 = 2, and Ω1 = Σ1, then the G-QMLE re-

duces to the MLE with the asymptotic covariance RΞ∗
1R

′ = Σ−1
1 , attaining the Cramér–

Rao lower bound, and thus the G-QMLE is more efficient than the E-QMLE.
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2 MODEL ESTIMATION LIU, TAN AND ZHU

(iii) For other situations of ηt, it is difficult to compare the asymptotic relative efficiency

(ARE) of θ̂n to θ̃n. However, given the true parameter vector θ0 and the density

function f(·), we can obtain a theoretical value of f(0), and estimate the matrices in

Ξ and RΞ∗
1R

′ using sample averages and empirical values of κi or κ∗
i , based on a large

generated sequence. Then, the ARE of θ̂n to θ̃n can be calculated by ARE(θ̂n, θ̃n) =

(|RΞ∗
1R

′|/|Ξ|)1/(2p+1), where | · | is the determinant of a matrix; see Serfling (2009).

The simulation results in Section 4 indicate that the E-QMLE is asymptotically more

efficient than the G-QMLE when the data are more heavy tailed.

2.3 Comparison with the DWQRE

Consider the DWQRE of Zhu, Zheng, and Li (2018). With the identification condition that

ω = 1 in model (1.1), they consider the following reparametrized model:

yt =

p∑
i=1

αiyt−i + εt

(
1 +

p∑
i=1

β⋆
i |yt−i|

)
, (2.4)

where εt = ωηt and β⋆
i = βi/ω. Denote θ⋆ = (α′,β⋆′)′ as the unknown parameter vector of

model (2.4) and θ⋆
0 = (α′

0,β
⋆′
0 )

′ as the true value, where β⋆ = (β⋆
1 , . . . , β

⋆
p)

′. The DWQRE

of θ⋆
0 is defined as θ̌

⋆

n =
∑K

k=1 πkθ̌
⋆

τkn
, which combines the self-weighted quantile regression

estimators θ̌⋆

τkn
at K quantile levels using weighting matrices πk, the optimal choices of which

πopt
k are defined in Theorem 4 of Zhu, Zheng, and Li (2018). The asymptotic properties of

the DWQRE are also established under the finite fractional moment of {yt}, which makes

it possible to handle heavy-tailed data. Specifically, Zhu, Zheng, and Li (2018) show that

the optimal DWQRE θ̌
⋆opt

n =
∑K

k=1 π̌
opt
k θ̌

⋆

τkn
satisfies

√
n(θ̌

⋆opt

n − θ⋆
0) →L N(0,Ξ2) as n → ∞,

where Ξ2 is defined in their Theorem 4, and π̌opt
k are the estimated optimal weighting matrices.

Moreover, they verify that θ̌
⋆opt

n approaches the efficiency of the MLE if K → ∞ and the
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following condition holds:

E(h−1
t Y 1t) = 0 and E(Y ′

atY 1t) = 0, (2.5)

where Y at = h−1
t (|yt−1|, . . . , |yt−p|)′, with ht = 1 +

∑p
i=1 β

⋆
i0|yt−i|. Condition (2.5) implies

that the parameters in the conditional mean (i.e., α) and conditional scale (i.e., β⋆) can be

estimated separately, without loss of efficiency, which is satisfied when ηt is symmetrically

distributed about zero and all αi in model (2.4) are zero. However, for other general cases,

the asymptotic covariance Ξ2 cannot attain the Cramér–Rao lower bound.

Next, we compare the E-QMLE with the DWQRE. Note that if ηt follows the standard

Laplace distribution, then the E-QMLE reduces to the MLE, such that the asymptotic co-

variance Ξ attains the Cramér–Rao lower bound. Therefore, the E-QMLE is asymptotically

more efficient than the DWQRE if ηt follows the standard Laplace distribution. In contrast,

the DWQRE is asymptotically more efficient than the E-QMLE only if Condition (2.5) holds,

with infinite quantile levels used for estimation, and ηt does not follow the standard Laplace

distribution. For general comparisons, denote the E-QMLE of model (2.4) as θ̂
⋆

n = g(θ̂n),

where g : Rp ×Rp+1
+ → Rp ×Rp

+ is a measurable transformation, such that g(θ) = θ⋆. Then,

using the delta method, we have
√
n(θ̂

⋆

n−θ⋆
0) →L N(0, ġ(θ0)Ξġ

′(θ0)) as n → ∞, where ġ(θ0)

is the first derivative of g(θ0), defined as the following 2p× (2p+ 1) matrix:

ġ(θ0) =

 Ip 0p×1 0p×p

0p×p −ω−2
0 β0 ω−1

0 Ip

 ,

where 0m×n is an m× n zero matrix. Therefore, we can use the ARE of θ̂
⋆

n to θ̌
⋆opt

n , defined

by ARE(θ̂
⋆

n, θ̌
⋆opt

n ) = [|Ξ2|/|ġ(θ0)Ξġ
′(θ0)|]1/(2p), to compare the E-QMLE with the optimal

DWQRE. Here, ARE(θ̂
⋆

n, θ̌
⋆opt

n ) can be computed by simulation, as for ARE(θ̂n, θ̃n) in Section

2.2. The simulation results in Section 4 indicate that neither model dominates for general
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situations.

In addition, the two-step estimation procedure makes the DWQRE more complex in

terms of computation than QMLEs obtained using a one-step estimation. In particular,

given the same bounded maximum number of iterations in the optimization, O(n) operations

are required to obtain the E-QMLE, while O(nK) + O(K2) operations are needed for the

DWQRE. Clearly, the computational load of the DWQRE can become much larger than

that of the E-QMLE as K → ∞, which makes using infinite quantile levels to construct the

DWQRE infeasible in practice. As a result, the E-QMLE is preferred, because it can be more

efficient for moderately heavy-tailed data and the computation is simpler than that of the

DWQRE.

2.4 Model selection

For model (1.1) fitted using the E-QMLE, we introduce the following BIC for selection the

order p:

BIC(p) = 2(n− pmax)L
E
n (θ̂

p

n) + (2p+ 1) ln(n− pmax), (2.6)

where θ̂
p

n is the E-QMLE with the order set to p, LE
n (θ̂

p

n) = (n − pmax)
−1
∑n

t=pmax+1 ℓ
E
t (θ̂

p

n),

and pmax is a predetermined positive integer; see also Machado (1993) and Zhu, Zheng, and

Li (2018). Let p̂n = argmin1≤p≤pmax BIC(p). The selection consistency of the BIC is given in

the following theorem.

Theorem 4. Let p0 be the true order and pmax be a predetermined positive integer. Under

the conditions of Theorem 2, if pmax ≥ p0, then P (p̂n = p0) → 1 as n → ∞.

Theorem 4 shows that the BIC in (2.6) is robust in a similar way to the E-QMLE, that

is, its selection consistency requires only E(|yt|κ) < ∞, for any κ > 0. The results of our
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3 MODEL CHECKING QML Inference for LDAR Models

simulation studies in Section 4 indicate that the BIC performs well in finite samples.

Remark 2. The BIC can also be defined for model (1.1) fitted using the G-QMLE. In this

case, the BIC is BICG(p) = 2(n − pmax)L
G
n (θ̃

p

n) + (2p + 1) ln(n − pmax), where θ̃
p

n is the

G-QMLE with the order set to p, and LG
n (θ̃

p

n) = (n− pmax)
−1
∑n

t=pmax+1 ℓ
G
t (θ̃

p

n); see also Tan

and Zhu (2022). Let p̂Gn = argmin1≤p≤pmax BICG(p). Similarly to Theorem 3 of Tan and Zhu

(2022), we can prove the selection consistency of BICG(p) under the conditions of Theorem

3.

3. Model checking

To check the adequacy of the linear DAR models at (1.1) fitted using the E-QMLE, we

construct a mixed portmanteau test to jointly detect possible misspecifications in the condi-

tional mean and the conditional standard deviation; see also Wong and Ling (2005). We can

conduct a diagnostic test of the conditional mean by checking the significance of the sample

ACFs of the residuals (Ljung and Box, 1978); a similar test of the conditional standard devi-

ation can be done by checking the significance of the sample ACFs of the absolute residuals

for robustness (Li and Li, 2005).

The ACFs of {ηt} and {|ηt|} at lag k are defined by ρk = cov(ηt, ηt−k)/ var(ηt) and γk =

cov(|ηt|, |ηt−k|)/ var(|ηt|), respectively. If the data-generating process is specified correctly by

model (1.1), then {ηt} and {|ηt|} are independent and identically distributed (i.i.d.), such

that ρk = 0 and γk = 0 hold, for any k ≥ 1. Define the error function as ηt(θ) = εt(α)/h(δ).

For model (1.1) fitted using the E-QMLE, the corresponding residuals are computed as

η̂t = εt(α̂n)/ht(δ̂n). Accordingly, the residual ACF and absolute residual ACF at lag k are
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3 MODEL CHECKING LIU, TAN AND ZHU

defined as

ρ̂k =

∑n
t=p+k+1(η̂t − η̂1)(η̂t−k − η̂1)∑n

t=p+1(η̂t − η̂1)2
and γ̂k =

∑n
t=p+k+1(|η̂t| − η̂2)(|η̂t−k| − η̂2)∑n

t=p+1(|η̂t| − η̂2)2
,

respectively, where η̂1 = (n− p)−1
∑n

t=p+1 η̂t and η̂2 = (n− p)−1
∑n

t=p+1 |η̂t|. Note that ρ̂k is

the sample version of ρk, whereas γ̂k is the sample version of γk. If the value of ρ̂k (or γ̂k)

deviates far from zero, then the conditional mean (or standard deviation) structure in model

(1.1) may be misspecified.

For a prespecified positive integer M , denote ρ̂ = (ρ̂1, . . . , ρ̂M)′ and γ̂ = (γ̂1, . . . , γ̂M)′.

Let σ2
1 = var(ηt) and σ2

2 = var(|ηt|). Define the M × (2p+1) matrices Uρ = (U ′
ρ1, . . . ,U

′
ρM)′

and Uγ = (U ′
γ1, . . . ,U

′
γM)′, where U ρk = − (E [(ηt−k − κ1)Y

′
1t] , κ1E [(ηt−k − κ1)Y

′
2t]) and

U γk = −
(
0′
p, E [(|ηt−k| − 1)Y ′

2t]
)
, for 1 ≤ k ≤ M , with 0p being a p-dimensional zero vector.

Denote the 2M × (2M + 2p+ 1) matrix

V =

 IM 0M×M Uρ/σ
2
1

0M×M IM Uγ/σ
2
2

 .

Let Gt = (Y ′
1t[I(ηt < 0)− I(ηt > 0)],Y ′

2t(1− |ηt|))′ and G = E(vtv
′
t), where

vt =
[
(ηt − κ1)(ηt−1 − κ1)/σ

2
1, . . . , (ηt − κ1)(ηt−M − κ1)/σ

2
1,

(|ηt| − 1)(|ηt−1| − 1)/σ2
2, . . . , (|ηt| − 1)(|ηt−M | − 1)/σ2

2,−G′
tΣ

−1
2 /2

]′
.

Theorem 5. Suppose model (1.1) is specified correctly. Under the conditions of Theorem 2,

then
√
n(ρ̂′, γ̂ ′)′ →L N (0, V GV ′) as n → ∞.

Theorem 5 can be used to check the significance of ρ̂k or γ̂k individually. Consistent

estimators of V and G, denoted by V̂ and Ĝ, respectively, can be constructed by replacing the

expectations with the sample averages and ηt with η̂t. Then, we can estimate the asymptotic

covariance in Theorem 5, and construct confidence intervals for ρ̂k and γ̂k accordingly.
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To check the first M lags jointly, we construct the following portmanteau test statistic:

Q(M) = n

 ρ̂

γ̂

′ (
V̂ ĜV̂ ′

)−1

 ρ̂

γ̂

 .

Theorem 5 and the continuous mapping theorem imply that Q(M) →L χ2
2M as n → ∞,

where χ2
2M is the chi-squared distribution with 2M degrees of freedom. Therefore, if Q(M)

exceeds the (1− τ)th quantile of the χ2
2M distribution, we can reject the null hypothesis that

ρk and γk (1 ≤ k ≤ M) are jointly nonsignificant at level τ .

Remark 3. The diagnostic tools can also be derived for model (1.1), fitted using the G-QMLE.

In this case, the residual ACF and absolute residual ACF at lag k are defined as

ρ̃k =

∑n
t=p+k+1(η̃t − η̃1)(η̃t−k − η̃1)∑n

t=p+1(η̃t − η̃1)2
and γ̃k =

∑n
t=p+k+1(|η̃t| − η̃2)(|η̃t−k| − η̃2)∑n

t=p+1(|η̃t| − η̃2)2
,

respectively, where η̃t = εt(α̃n)/ht(δ̃n), η̃1 = (n−p)−1
∑n

t=p+1 η̃t, and η̃2 = (n−p)−1
∑n

t=p+1 |η̃t|.

For a given positive integer M , denote ρ̃ = (ρ̃1, . . . , ρ̃M)′ and γ̃ = (γ̃1, . . . , γ̃M)′. Let

τ1 = E[sgn(ηt)] and τ2 = E(|ηt|). Define the M × (2p+ 1) matrices UG
ρ = (UG′

ρ1,G, . . . ,U
G′
ρM)′

and UG
γ = (UG′

γ1, . . . ,U
G′
γM)′, where UG

ρk = −
(
E(ηt−kY

′
1t),0

′
p+1

)
and UG

γk = −(τ1E[(|ηt−k| −

τ2)Y
′
1t], τ2E[(|ηt−k| − τ2)Y

′
2t]), for 1 ≤ k ≤ M . Let G1t = (−Y ′

1tηt,Y
′
2t(1 − η2t ))

′ and G1 =

E(v1tv
′
1t), where v1t = (ηtηt−1, . . . , ηtηt−M , (|ηt| − τ2)(|ηt−1| − τ2)/σ

2
2, . . . , (|ηt| − τ2)(|ηt−M | −

τ2)/σ
2
2,−G′

1tΣ
−1
1 )′. Similarly to Theorem 7 of Tan and Zhu (2022),

√
n(ρ̃′, γ̃ ′)′ →L N (0, V1G1V

′
1)

as n → ∞ if model (1.1) is specified correctly and the conditions of Theorem 3 hold, where V1

is defined as V , with Uρ and Uγ replaced with UG
ρ and UG

γ , respectively. Then, we can check

the significance of ρ̃k or γ̃k individually. In addition, we can use the following portmanteau

test statistic to check the first M lags jointly:

QG(M) = n

 ρ̃

γ̃

′ (
V̂1Ĝ1V̂

′
1

)−1

 ρ̃

γ̃

 ,

17

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0049
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where V̂1 and Ĝ1 are consistent estimators of V1 and G1, respectively. It can be shown that

QG(M) →L χ2
2M as n → ∞ under the null hypothesis that ρk and γk are jointly nonsignificant

for 1 ≤ k ≤ M at level τ .

Remark 4. In practice, the choice of M may affect the performance of the portmanteau

tests Q(M) and QG(M). For other portmanteau tests, the selection of M remains an open

issue. Some general rules have been provided to choose M for Box–Pierce and Ljung–Box

tests. For example, Box et al. (2015) recommend taking values of M between 10 and 20, and

Tsay (2005) suggests using several choices of M and a general rule of M ≈ ln(n), owing to

its satisfactory power performance in simulation studies.

Motivated by Tsay (2005), we conduct simulation studies to evaluate the size and power

of Q(M) and QG(M) with respect to the sample size n and the lag order M . We find

that the size of a test is insensitive to n, and that the power is linearly increasing with

respect to n. Moreover, the choice of M > 20 usually makes Q(M) and QG(M) under-

size, and the logarithmic power is linearly decreasing with respect to M ; see Section S1

of the Supplementary Material for more details. In general, M should be large enough to

capture possible correlations among residuals and absolute residuals, but not be too large be-

cause of the resulting power loss. Thus, we suggest using multiple choices of M , such as

(M1,M2, . . . ,MJ) = (⌊ln(n)⌋, 2⌊ln(n)⌋, . . . , J⌊ln(n)⌋), where ⌊x⌋ denotes the largest integer

not greater than x, and J is the maximum value of j, such that Mj = j⌊ln(n)⌋ ≤ 20.
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4. Simulation experiments

4.1 E-QMLE and G-QMLE

The first experiment examines the finite-sample performance of the E-QMLE θ̂n and the

G-QMLE θ̃n in Sections 2.1–2.2, respectively, for which the data-generating process is

yt = 0.5yt−1 + ηt(1 + 0.4|yt−1|),

where {ηt} are i.i.d. normal, Laplace or Student’s t3 distributed random variables. Here, {ηt}

are standardized with median zero and E(|ηt|) = 1 to evaluate the E-QMLE θ̂n, and {ηt}

are standardized with mean zero and var(ηt) = 1 to evaluate the G-QMLE θ̃n. The sample

size is set to n = 500 or 1000, with 1000 replications for each sample size.

Table 1 reports the biases, empirical standard deviations (ESDs), and asymptotic stan-

dard deviations (ASDs) of θ̂n and θ̃n for different innovation distributions and sample sizes.

We find that as the sample size increases, most of the biases, ESDs, and ASDs of both esti-

mators θ̂n and θ̃n become smaller, and the ESDs become closer to the corresponding ASDs.

For the E-QMLE θ̂n, the ESDs and ASDs of the scale-type estimators ω̂n and β̂n increase as

the distribution of ηt becomes more heavy tailed, while those of the location-type estimator

α̂n are smallest for the Laplace distribution. The mixed performance of the E-QMLE is prob-

ably because the heavier tail of {ηt} makes the E-QMLE less efficient, but it becomes more

efficient as it reduces to the MLE, if ηt follows the Laplace distribution. For the G-QMLE

θ̃n, the ESDs and ASDs increase as the distribution of ηt becomes more heavy tailed. This

is expected, because the G-QMLE reduces to the MLE if ηt follows the normal distribution,

and the G-QMLE becomes less efficient as the tail of {ηt} becomes heavier. Note that if ηt

follows the Student’s t3 distribution, then E(η4t ) = ∞ and the G-QMLE is not applicable,
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which results in the inferior performance of the G-QMLE in this case. Similar observations

can be found for other innovation distributions in the Supplementary Material.

4.2 Asymptotic efficiency comparison

The second experiment compares the ARE of the E-QMLE with those of the G-QMLE and

DWQRE. We generate a sequence of sample size n = 10000 from the following model:

yt = 0.1yt−1 + εt(1 + 0.2|yt−1|),

where {εt} are i.i.d. random variables with the mixture distribution and the probability

density function (pdf)

f(x) = (1− δ)ϕ(x) + δm(x),

where δ ∈ [0, 1] is a constant, ϕ(x) is the pdf of N(0, 1), and m(x) is the pdf of N(0, 6),

standard Laplace, or t3 distribution.

Figure 1 plots the ARE(θ̂n, θ̃n) and ARE(θ̂
⋆

n, θ̌
⋆opt

n ) defined in Sections 2.2 and 2.3 for

δ = k/20, with k = 0, 1, . . . , 20, and different settings of m(x), where the optimal DWQRE

θ̌
⋆opt

n is obtained using K = 9 quantile levels. We have the following findings: (1) ARE(θ̂n, θ̃n)

can be either larger or smaller than one, which suggests that neither the E-QMLE nor the

G-QMLE dominate; furthermore the G-QMLE is more efficient than the E-QMLE when εt

is closer to normal, whereas the E-QMLE becomes much more efficient as εt becomes more

heavy tailed; (2) ARE(θ̂
⋆

n, θ̌
⋆opt

n ) can be either greater or less than one, which implies that

neither the E-QMLE nor the DWQRE dominate; furthermore, the E-QMLE is more efficient

than the DWQRE when εt approaches the Laplace distribution, but becomes less efficient

than the DWQRE when εt becomes more heavy tailed; (3) when δ = 1 and m(x) is the pdf of

a standard Laplace distribution, then ARE(θ̂n, θ̃n) > 1 and ARE(θ̂
⋆

n, θ̌
⋆opt

n ) > 1, indicating
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that the E-QMLE is the most efficient. This is because the E-QMLE reduces to the MLE

when εt follows a standard Laplace distribution, and thus its asymptotic covariance attains

the Cramér–Rao lower bound; and (4) when δ = 0, then ARE(θ̂n, θ̃n) < 1, implying that

the G-QMLE is the most efficient. This is because the G-QMLE reduces to the MLE when

εt ∼ N(0, 1), such that its asymptotic covariance attains the Cramér–Rao lower bound.

4.3 Model selection

In the third experiment, we evaluate the performance of the proposed model selection meth-

ods in Section 2.4, where the data-generating process is

yt = 0.1yt−1 + 0.2yt−2 + ηt(1 + 0.1|yt−1|+ 0.2|yt−2|),

and the innovations {ηt} are defined as in the first experiment. We consider three sample

sizes, n = 300, 500, and 1000, and generate 1000 replications for each sample size. The BIC

in (2.6) and BICG in Remark 2 are employed to select the order p with pmax = 5. As a result,

the underfitted, correctly selected, and overfitted models by BIC (or BICG) correspond to p̂n

(or p̂Gn ) being 1, 2, and greater than 2, respectively.

Table 2 provides the percentages of underfitting, correct selection, and overfitting cases

by the BIC and BICG. Both BICs select the correct model in most of the replications when

the sample size is as small as n = 300, and their performance improves as the sample size

increases. Moreover, in terms of different distributions for the innovation ηt, the BIC in (2.6)

performs best when ηt follows the Laplace distribution, whereas the BICG performs best

when ηt follows the normal distribution, especially for small sample sizes. This is expected,

because the E-QMLE reduces to the MLE if ηt follows the Laplace distribution, whereas the

G-QMLE reduces to the MLE if ηt is normally distributed. Thus, no model misspecifications
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appear when deriving the BIC and BICG, respectively, for these two cases. In addition, owing

to the inferior performance of the G-QMLE when ηt follows the Student’s t3 distribution,

BICG performs worst in this situation. We also consider other innovation distributions for

both BICs in Section S1 of the Supplementary Material; the findings support those reported

above.

4.4 Portmanteau tests

In the fourth experiment, we study the proposed mixed portmanteau tests Q(M) and QG(M).

The data are generated from

yt = 0.1yt−1 + c1yt−2 + ηt(1 + 0.2|yt−1|+ c2|yt−2|),

where all other settings are the same as those in the first experiment. We fit a linear DAR

model with p = 1 using the exponential or Gaussian quasi-maximum likelihood estimation.

Here, the case of c1 = c2 = 0 corresponds to the size of the test, c1 ̸= 0 corresponds to

misspecifications in the conditional mean, and c2 > 0 corresponds to misspecifications in the

conditional standard deviation. Two departure levels, 0.1 and 0.3, are considered for both c1

and c2.

The rejection rates of Q(6) and QG(6) at the 5% significance level are summarized in

Table 3. We have the following findings: First, all sizes are close to the nominal rate, except

for those of QG(6) in the t3 case, and the power increases as the sample size n or the departure

level increases. This is expected, because the G-QMLE is not applicable if ηt follows the t3

distribution with E(η4t ) = ∞, which makes the size inaccurate. Second, for the same level of

departures, Q(6) and QG(6) are more powerful in terms of detecting the misspecification in

the conditional mean (c1 ̸= 0, c2 = 0) than they are in doing so in the conditional standard
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deviation (c1 = 0, c2 > 0). Third, as the innovation distribution becomes more heavy tailed,

Q(6) and QG(6) perform worse in terms of detecting misspecifications in the conditional

standard deviation. This seems consistent with the results in the first experiment, where

the estimation performance of the scale parameters ω0 and β0 worsens as the innovation

distribution becomes more heavy tailed. In addition, we also evaluate Q(M) and QG(M)

with M = 12 and 18 in Section S1 of the Supplementary Material; once again, the findings

are similar.

5. An empirical example

In this section, we apply the proposed inference tools to the weekly closing prices of Bitcoin

(BTC) from July 18, 2010, to August 16, 2020, with 527 observations in total. We focus on

their log returns (after mean adjustment), denoted by {yt}. The time plot of {yt} in Figure

2 suggests evidence of volatility clustering, and the kurtosis of {yt} is 9.3, indicating that the

tail of {yt} is much heavier than that of a normal distribution. Moreover, we can determine

the autocorrelation from the sample partial autocorrelation functions (PACFs) of both {yt}

and {|yt|}. Therefore, we fit the data set {yt} using a linear DAR model.

We first employ the exponential quasi-maximum likelihood estimation method in Section

2.1 to fit {yt}. Based on pmax = 10, the proposed BIC in (2.6) selects the order p = 3 for the

linear DAR model, and the fitted model is

yt = 0.08150.0504yt−1 + 0.14010.0487yt−2 + 0.06930.0471yt−3 + η̂tσ̂t,

σ̂t = 0.04350.0065 + 0.21920.0664|yt−1|+ 0.18950.0645|yt−2|+ 0.16160.0624|yt−3|, (5.1)

where the subscripts are the standard errors of the estimated coefficients, and {σ̂t} and {η̂t}

are the fitted volatilities and residuals, respectively. The QQ plots of the fitted residuals
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{η̂t} against Students’ t2, t3, and t4 distributions are shown in Figure 3. Here, the residuals

are approximately t3 distributed and the tail is heavier than t4, but much lighter than t2,

possibly indicating that E(η2t ) < ∞ and E(η4t ) = ∞. We further employ the Kernelized

Stein discrepancy (KSD) test proposed by Luo et al. (2021) to check whether ηt follows the

standard Laplace or normal distribution. To calculate the KSD test statistic defined by

(2.7) of Luo et al. (2021), we choose n0 = n = 526 and use the Gaussian kernel k(x, y) =

exp{−∥x − y∥2/(2σ2)}, with σ being the median of the residual distance. The p-value is

calculated using the parametric bootstrap, and is 0.37 for the standard Laplace distribution

test, and less than 0.01 for the normal distribution test, suggesting that ηt follows the standard

Laplace distribution and the E-QMLE may reduce to the MLE for the data {yt}. Moreover,

we perform mixed portmanteau tests Q(M) for M = 6, 12, and 18, as in Section 3, and

their p-values are 0.56, 0.71, and 0.19, respectively. In addition, Figure 4 plots the residual

ACFs ρ̂k and γ̂k up to lag 18, all of which fall within their corresponding 95% pointwise

CIs, except for γ̂3, which is slightly beyond its 95% CI. Clearly, almost all residual ACFs

are nonsignificant, both individually and jointly, at the 5% significance level, and hence the

fitted model at (5.1) is adequate.

For comparison, the Gaussian quasi-maximum likelihood estimation method in Section

2.2 is also used to fit {yt}. Based on pmax = 10, the BICG in Remark 2 selects the same order

p = 3 for the linear DAR model, and obtains the following fitted model:

yt = 0.10980.0579yt−1 + 0.12680.0547yt−2 + 0.17330.0586yt−3 + η̃tσ̃t,

σ̃t = 0.08210.0146 + 0.23480.1324|yt−1|+ 0.16740.1260|yt−2|+ 0.25190.1348|yt−3|, (5.2)

where the subscripts are the standard errors of the estimated coefficients, and {σ̃t} and {η̃t}

are the fitted volatilities and residuals, respectively. The diagnosis from the residuals {η̃t} in

24

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0049



5 AN EMPIRICAL EXAMPLE QML Inference for LDAR Models

the Supplementary Material indicates that the fitted model at (5.2) is adequate. Moreover,

we estimate the linear DAR model of order three using the DWQRE of Zhu, Zheng, and

Li (2018) for comparison. To facilitate a comparison between the E-QMLE and DWQRE,

the volatility coefficients of the fitted model using the DWQRE are reparametrized to ensure

E(|ηt|) = 1. As a result, the fitted model using the DWQRE method based on quantile levels

τk = k/10, for k = 1, . . . , 9, is given by

yt = 0.13110.0447yt−1 + 0.08540.0394yt−2 + 0.06270.0357yt−3 + η̌tσ̌t,

σ̌t = 0.0384 + 0.33290.0972|yt−1|+ 0.20200.0762|yt−2|+ 0.12090.0630|yt−3|, (5.3)

where the subscripts are the standard errors of the estimated coefficients, {σ̌t} are the fit-

ted volatilities, and {η̌t} are the standardized residuals, such that E(|ηt|) = 1. To com-

pare the efficiency of the three estimation methods, we approximate the ARE(θ̂n, θ̃n) and

ARE(θ̂
⋆

n, θ̌
⋆opt

n ) defined in Sections 2.2 and 2.3, respectively, using parameter estimates and

sample averages. We have ÂRE(θ̂n, θ̃n) ≈ 1.6223 and ÂRE(θ̂
⋆

n, θ̌
⋆opt

n ) ≈ 0.8967, implying

that the E-QMLE is slightly less efficient than the DWQRE and that both are more efficient

than the G-QMLE for fitting {yt}. In addition, note that the conditional mean structures of

the three fitted models (5.1)–(5.3) are significant at the 5% significance level, which suggests

that the BTC market was not efficient during the examined period (Urquhart, 2016).

For financial time series, an important application of linear DAR models is to forecast

risk measures, such as the value-at-risk (VaR). The VaR is actually a tail quantile of the

loss series’ conditional distribution, and thus the τth conditional quantile of yt, denoted

by Qyt(τ | Ft−1), is the negative τth VaR. To examine the forecasting performance of the

linear DAR model estimated using the E-QMLE and G-QMLE, we conduct one-step-ahead

predictions using a rolling forecasting procedure, with a fixed moving window of size 350.
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Specifically, we estimate the linear DAR model using the E-QMLE (or G-QMLE) for each

moving window, and calculate the one-week-ahead forecast of the τth conditional quantile of

yt+1 using Q̂yt+1(τ | Ft) = µ̂t+1+σ̂t+1b̂τ (or Q̃yt+1(τ | Ft) = µ̃t+1+σ̃t+1b̃τ ), where µ̂t+1 (or µ̃t+1)

and σ̂t+1 (or σ̃t+1) are the predicted conditional mean and standard deviation, respectively,

using the E-QMLE (or G-QMLE), and b̂τ (or b̃τ ) is the τth sample quantile of the residuals

{η̂t} (or {η̃t}). For example, the rolling one-week-ahead forecasts at τ = 5% are displayed

in Figure 2. Here, the negative VaRs based on the E-QMLE and G-QMLE are close to each

other and change according to the volatility of the data, and yt occasionally falls below its

one-week negative VaR forecast.

We next compare the forecasting performance of the proposed E-QMLE and G-QMLE

with that of the DWQRE. We conduct a rolling forecasting procedure with a fixed moving

window of size 350 for the DWQRE approach, and compute the one-week-ahead forecast of

the τth conditional quantile of yt+1 using Q̌yt+1(τ | Ft) = µ̌t+1 + σ̌t+1b̌τ , where µ̌t+1 and σ̌t+1

are the predicted conditional mean and conditional standard deviation, respectively, using

the DWQRE, and b̌τ is the τth sample quantile of the corresponding residuals. To evaluate

the forecasting performance of the three estimation methods, we calculate the empirical

coverage rate (ECR), and perform VaR backtests for the forecasts at τ = 5%, 10%, 90%, and

95%. Specifically, the ECR is calculated as the proportion of observations that fall below

the corresponding conditional quantile forecast for the last 176 data points. We use three

VaR backtests, namely, the likelihood ratio tests for correct unconditional coverage (UC)

in Kupiec (1995), correct conditional coverage (CC) in Christoffersen (1998), and dynamic

quantile (DQ) test in Engle and Manganelli (2004). Let Ht = I(yt < Qyt(τ | Ft−1)) be the

hit, where I(·) is an indicator function. The UC test examines the accuracy of the VaR
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forecasts using the null hypothesis that E(Ht) = τ . The null hypothesis of the CC test is

that, conditional on Ft−1, {Ht} are i.i.d. Bernoulli random variables with success probability

τ . For the DQ test, we regress Ht on regressors including a constant, three lagged hits Ht−i,

for i = 1, 2, 3, and the VaR forecast at the time point t. The null hypothesis of the DQ test

is that the intercept is equal to τ and all regression coefficients are zero.

Table 4 reports the ECRs and p-values of the three VaR backtests for one-week-ahead

forecasts obtained using the three estimation methods at four quantile levels. The proposed

E-QMLE performs well at all four quantile levels, with p-values not less than 0.1 for the

backtests. In addition, the proposed G-QMLE performs well, except for τ = 95%, with

the p-value of the DQ test slightly smaller than 0.1, whereas the DWQRE performs less

satisfactorily at three quantile levels in terms of the DQ tests. For the ECRs, those of the

E-QMLE are closest to the nominal quantile level, except for τ = 90%. Overall, the linear

DAR model fitted using the proposed E-QMLE method outperforms that of the DWQRE

in forecasting VaRs. The G-QMLE method performs worse than the E-QMLE, probably

because the G-QMLE is not suitable for the data.

In addition, to compare the forecasting performance of the linear DAR model with that

of the DAR model (1.2) and the AR-GARCH model fitted using QMLEs, we apply the DAR

model of order three and an AR(3)-GARCH(1, 1) model to the data using the E-QMLE and

G-QMLE. The results based on the same rolling forecasting procedure are reported in Table

4. Here, both DAR models are comparable in the VaR backtests, and the linear DAR model

fitted using the E-QMLE outperforms the DAR model in the ECRs for τ = 10%, 90%, and

95%. This demonstrates the forecasting superiority of the linear DAR model for heavy-tailed

data, which possibly benefits from its linear structure on the conditional standard deviation
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instead of on the conditional variance for the DAR model. Furthermore, the linear DAR

model is competitive with the AR-GARCH model in both the ECRs and the backtests.

In summary, the proposed E-QMLE procedure of a linear DAR model seems to be more

reasonable and suitable for the considered BTC data set in terms of fitting and forecasting.

6. Conclusion

We have proposed two QMLEs, namely, the E-QMLE and the G-QMLE, for linear DAR

models, which are simpler to compute than the DWQRE of Zhu, Zheng, and Li (2018).

Under only a finite fractional moment of the process {yt}, we establish the consistency and

asymptotic normality for both QMLEs. We compare the E-QMLE with the G-QMLE and

DWQRE in terms of asymptotic efficiency, and provide practical suggestions on choosing

a suitable estimator. Moreover, we propose two BICs for order selection and two mixed

portmanteau tests to check the adequacy of the fitted models based on the two QMLEs, and

obtain their asymptotic properties without any moment conditions on the observed process.

A real-data example confirms the usefulness and superiority of the proposed robust inference

tools in terms of data fitting and forecasting.

The robust inference tools presented here can be extended in two directions. First, there

is a practical need to consider a linear DAR model with different orders for the conditional

location and scale components. The proposed robust inference tools can be adapted to

such an extension using a self-weighting approach. Second, the linear DAR model can be

generalized to a vector form to jointly model multivariate time series. In the framework of a

vector linear DAR model, it would be interesting to investigate whether the good properties

of robust inference can be preserved. We leave these topics for future research.
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Supplementary Material

The online Supplementary Material contains additional results for the simulation and the

empirical analysis, as well as technical details for Theorems 1–5 and Remarks 1–3.
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Table 1: Biases (×10), ESDs, and ASDs of the E-QMLE θ̂n and G-QMLE θ̃n when the

innovations follow the normal, Laplace, or Student’s t3 distribution.

Normal Laplace t3

n Bias ESD ASD Bias ESD ASD Bias ESD ASD

E-QMLE

α 500 -0.002 0.065 0.069 -0.013 0.044 0.051 -0.039 0.052 0.056

1000 0.006 0.047 0.048 -0.009 0.031 0.036 -0.017 0.037 0.039

ω 500 0.075 0.071 0.072 0.063 0.088 0.088 0.018 0.102 0.100

1000 0.034 0.050 0.051 0.036 0.061 0.062 0.010 0.073 0.072

β 500 -0.059 0.045 0.045 -0.073 0.056 0.056 -0.027 0.070 0.066

1000 -0.021 0.032 0.032 -0.036 0.039 0.039 -0.018 0.049 0.047

G-QMLE

α 500 0.000 0.050 0.051 -0.001 0.055 0.054 -0.002 0.061 0.058

1000 0.000 0.036 0.036 0.000 0.039 0.038 0.000 0.042 0.042

ω 500 0.048 0.064 0.063 0.037 0.091 0.089 -0.279 0.201 0.150

1000 0.026 0.044 0.045 0.035 0.064 0.064 -0.169 0.162 0.125

β 500 -0.060 0.052 0.051 -0.106 0.082 0.081 0.074 0.250 0.157

1000 -0.025 0.037 0.036 -0.065 0.057 0.058 0.022 0.177 0.129
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Figure 1: The ARE(θ̂n, θ̃n) (left panel) and ARE(θ̂
⋆

n, θ̌
⋆opt

n ) (right panel) for δ = k/20 (k =

0, 1, . . . , 20), where m(x) is the pdf of the N(0, 6) (◦), standard Laplace (□), or t3 (+)

distribution.

Table 2: Percentages of underfitted, correctly selected, and overfitted models by the BIC

and BICG when the innovations follow the normal, Laplace, or Student’s t3 distribution.

Normal Laplace t3

n Under Exact Over Under Exact Over Under Exact Over

BIC 300 40.7 58.9 0.4 12.8 87.1 0.1 15.3 84.4 0.3

500 15.1 84.5 0.4 2.1 97.4 0.5 3.0 96.1 0.9

1000 1.0 99.0 0.0 0.0 100.0 0.0 0.0 99.8 0.2

BICG 300 33.5 66.5 0.0 32.2 66.6 1.2 32.7 58.2 9.1

500 10.1 89.8 0.1 9.8 88.4 1.8 11.8 78.1 10.1

1000 0.0 100.0 0.0 0.3 98.7 1.0 0.4 83.9 15.7
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Table 3: Rejection rates of the tests Q(6) and QG(6) at the 5% significance level, where the

innovations follow the normal, Laplace, or Student’s t3 distribution.

Normal Laplace t3

c1 c2 500 1000 500 1000 500 1000

Q 0.0 0.0 0.041 0.042 0.049 0.051 0.049 0.048

0.1 0.0 0.194 0.443 0.216 0.462 0.207 0.469

0.3 0.0 0.996 1.000 0.995 1.000 0.977 0.998

0.0 0.1 0.123 0.340 0.099 0.228 0.076 0.173

0.0 0.3 0.898 1.000 0.633 0.975 0.487 0.874

QG 0.0 0.0 0.058 0.047 0.076 0.053 0.155 0.133

0.1 0.0 0.228 0.449 0.252 0.485 0.340 0.532

0.3 0.0 0.999 1.000 0.999 1.000 0.991 1.000

0.0 0.1 0.106 0.194 0.091 0.132 0.151 0.167

0.0 0.3 0.733 0.993 0.366 0.837 0.338 0.630
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Figure 2: Time plot for centered weekly log returns in percentage (black line) of BTC from

July 18, 2010, to August 16, 2020, with one-week negative VaR forecasts at the level of 5%

based on the G-QMLE (dotted line) and the E-QMLE (dashed line) from March 26, 2017,

to August 16, 2020.
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Figure 3: QQ plots of the residuals {η̂t} against the Student’s t2 (left panel), t3 (middle

panel), and t4 (right panel) distributions.

Figure 4: Residual ACF plots for ρ̂l (left panel) and γ̂l (right panel), where the dashed lines

are the corresponding 95% pointwise confidence intervals.
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Table 4: Empirical coverage rates (%) and p-values of three VaR backtests at the 5%, 10%,

90%, and 95% conditional quantiles. M1, M2, and M3 represent the linear DAR model fitted

using the E-QMLE, G-QMLE, and DWQRE, respectively; M4 and M5 represent the DAR

model fitted using the E-QMLE and G-QMLE, respectively; and M6 and M7 represent the

AR-GARCH model fitted using the E-QMLE and G-QMLE, respectively. The ECRs closest

to the nominal level are marked in bold.

τ = 5% τ = 10% τ = 90% τ = 95%

ECR UC CC DQ ECR UC CC DQ ECR UC CC DQ ECR UC CC DQ

M1 5.68 0.68 0.79 0.13 10.23 0.92 0.99 0.48 88.07 0.41 0.34 0.19 94.89 0.95 0.61 0.37

M2 6.25 0.46 0.71 0.22 10.80 0.73 0.94 0.31 88.64 0.55 0.48 0.29 93.75 0.46 0.37 0.09

M3 6.25 0.46 0.71 0.07 9.09 0.68 0.82 0.45 89.77 0.92 0.99 0.06 94.32 0.68 0.50 0.07

M4 5.68 0.68 0.50 0.71 11.93 0.41 0.67 0.54 86.93 0.20 0.33 0.67 94.32 0.68 0.50 0.73

M5 6.25 0.46 0.37 0.48 9.65 0.88 0.83 0.48 87.50 0.29 0.23 0.56 93.75 0.46 0.37 0.50

M6 6.82 0.29 0.56 0.14 9.66 0.88 0.83 0.50 89.20 0.73 0.09 0.34 95.45 0.79 0.66 0.71

M7 5.11 0.95 0.76 0.26 9.66 0.87 0.83 0.54 89.77 0.92 0.75 0.87 96.02 0.52 0.61 0.75
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