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Abstract: This study aims to develop homogeneity tests for high-dimensional

mean vectors and covariance matrices, in which the number of features may be

greater than the sample size. We introduce two categorically weighted statis-

tics to test the equality of means and of covariance matrices. We establish the

asymptotic distributions of the proposed test statistics under certain mild con-

ditions, and develop simplified algorithms to facilitate the implementation and

application. Simulation studies demonstrate the satisfactory performance of the

proposed tests in terms of the empirical size and power. We also apply the

proposed test procedures to two microarray data sets.

Key words and phrases: Homogeneity, K-sample problem, High-dimension, Lo-

cation and scale, MANOVA.

1. Introduction

Despite numerous studies on homogeneity tests for distributions or distribu-

tion features (mean vectors or covariance matrices) in different populations,
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a crucial remaining problem is establishing whether gene expression levels

differ among predefined patient populations in order to identify a disease’s

capital causal gene. However, in modern biological and financial studies,

the data dimension is often much larger than the sample size. This “large p,

small n” paradigm poses a considerable challenge to classical homogeneity

tests, which were originally designed for fixed-dimensional problems.

This study focuses on homogeneity tests for high-dimensional mean vec-

tors and covariance matrices. Assume that homogeneity tests for means,

consider R groups. When R = 2, the traditional Hotelling T2 test is op-

timal for normally distributed data when p is fixed. Several extensions of

the Hotelling T2 test have been proposed to accommodate high dimension-

ality; examples include those of Bai and Saranadasa (1996), Srivastava

and Du (2008), Chen and Qin (2010), Cai et al. (2013), Feng et al. (2016),

and Chang et al. (2017). When R > 2, researchers often use a multivari-

ate analysis of variance (MANOVA) to investigate whether the population

mean vectors are the same under the “large n, small p” paradigm. Cai

and Xia (2014) test the equality of multiple high-dimensional sparse mean

vectors under dependency. Recently, Hu et al. (2017) proposed a test for

the equality of high-dimensional mean vectors based on the work of Chen

and Qin (2010).
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Several studies also test covariances based mostly on entropy or a

quadratic loss function. Studies that examine the case of R = 2 include

Wolf (2002), Bai et al. (2009), Chen et al. (2010), Li and Chen (2012), Cai

and Ma (2013), Jiang and Yang (2013), Cai and Liu (2016), and Chang

et al. (2017). For R > 2, Zhang et al. (2018) extend the two-sample test for

covariances presented by Li and Chen (2012) , and obtain the asymptotic

distribution of the statistic in a high-dimension case. Zheng et al. (2020)

propose a homogeneity test for high-dimensional covariances, and enhance

its power by comparing covariance matrices. Liu et al. (2017) also propose

a two-sample homogeneity test for means and covariances.

In this study, we consider this kind of homogeneity test from a different

perspective. Assume that Y is a categorical variable with R categories, and

X is a p-dimensional random vector. Cui et al. (2015) propose a mean-

variance index defined by MV (X|Y ) = EX[varY F (x|Y )], where F (x|Y )

stands for the conditional distribution function of X given Y . MV (X|Y )

indicates that X and Y are independent if and only if the conditional dis-

tributions Fr = F (x|Y = r), for r = 1, · · · , R, are homogenous. Then,

the homogeneity test for distributions can be regarded as an independence

test between a categorical variable and a multivariate random vector. The

mean-variance index takes advantage of the probabilities of the categorical
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variable, which motivates us to introduce a categorically weighted index to

measure the differences between the mean vectors and covariance matrices

of different groups.

To accommodate high dimensionality, we correct the bias by adjusting

the weights, and propose two statistics for testing the mean vectors and

covariance matrices. Moreover, we obtain the asymptotic distributions of

the proposed statistics under certain mild conditions. The proposed tests

have four advantages. (1) They accommodate the high-dimensional set-

ting. (2) No explicit distribution is imposed on the p-dimensional vectors;

hence, our tests have high theoretical and practical value. (3) The proposed

categorically weighted tests optimize the information of the categorical vari-

able to improve the performance. (4) Simplified algorithms are proposed to

calculate the associated statistics, thereby facilitating implementation and

application.

The remainder of this paper is organized as follows. Sections 2 and

3 describe the methodology and asymptotic distributions of testing means

and covariances, respectively. Section 4 introduces simplified algorithms to

calculate the test statistics. Section 5 presents Monte Carlo simulations for

assessing the performance of the proposed tests. Applications to gene ex-

pression data analysis are given in Section 6. Technical proofs are provided
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in the Supplementary Material.

2. Homogeneity Test for Mean Vectors

We consider the homogeneity test for mean vectors, that is,

H10 : µ1 = µ2 = · · · = µR = µ, (2.1)

versus the composite alternative H11: µr 6= µs, for 1 ≤ r < s ≤ R, where

µr = E(X|Y = r), µ = E(X) =
∑R

r=1 prµr, and pr is the probability that

X comes from the rth population.

2.1 Measuring the difference between mean vectors

Similarly to the analysis of Cui et al. (2015), we use the variance of the

conditional means of X given Y , varY {E(X|Y )}, to measure the difference

between the mean vectors, as expressed in Definition 1.

Definition 1. The variance of the conditional expectations of X given

Y = r, for r = 1, · · · , R, can be defined by

U(X|Y ) = E(XT

1X2)

{
R∑
r=1

I(Y1 = r)I(Y2 = r)

pr
− 1

}
,

where (X1, Y1) and (X2, Y2) are independent copies of (X, Y ), and I(·) is

the indicator function.
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2.1 Measuring the difference between mean vectors

The following lemma shows that Definition 1 is reasonable.

Lemma 2.1. If X has a finite first moment, then U(X|Y ) = varY {E(X|Y )} ≥

0, and the equality holds if and only if the null hypothesis (2.1) is true.

Section S1 of the Supplementary Material shows the proof of Lemma

2.1. For observed random samples {(Xk, Yk) : k = 1, 2, · · · , n}, we define

Mn,p =
∗∑

(i,j)

XT

i Xj

{
R∑
r=1

I(Yi = r)I(Yj = r)

p̂r
− 1

}
,

where
∑∗

(i,j) denotes summations over distinct indices, and p̂r = (Nr −

1)/(n− 1), with Nr =
∑n

i=1 I(Yi = r). Notably, p̂r is a consistent estimator

of pr, and more importantly, it enables
∑

i6=j ci

{∑R
r=1 I(Yi = r)I(Yj = r)/p̂r − 1

}
=

0, where ci is any function of the ith sample. The good properties of the

estimator p̂r make our test applicable to high-dimensional data.

Remark 1. Using an elemetary calculation, we obtain

Mn,p =
R∑
r>s

NrNs

{∑Nr

i6=j XT
riXrj

Nr(Nr − 1)
+

∑Ns

i6=j XT
siXsj

Ns(Ns − 1)
− 2

∑Nr

i=1

∑Ns

j=1 XT
riXsj

NrNs

}
,

(2.2)

where Xri denotes the ith sample of the rth group, that is, Yi = r. We

show the proof in Section S2 of the Supplementary Material. When R = 2,

Equation (2.2) indicates that Mn,p is proportional to the statistic proposed

by Chen and Qin (2010), which they use to measure the distance between
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2.2 Main results for the homogeneity test for means

two sample means, that is, ‖µ1 − µ2‖2. Therefore, our proposed statistic

can be regarded as a weighted summation of the distances between the

means in two different categories.

2.2 Main results for the homogeneity test for means

To establish the limiting distribution of Mn,p, we assume the following con-

ditions.

Condition 1. Suppose that R is fixed, and there exist two positive con-

stants c1 and c2, such that c1/R ≤ min1≤r≤R pr ≤ max1≤r≤R pr ≤ c2/R.

Condition 2. Suppose that the random expression of Xi given Yi = r is

Xi|(Yi = r) = µr + ΓrZi, where µr is the conditional mean vector, Γr is a

p×p matrix, Zi is independent of Yi, and the coordinates of Zi are assumed

to be independent and identically distributed (i.i.d.); the first coordinate,

denoted as Zi1, satisfies E(Zi1) = 0, E(Z2
i1) = 1 and E(Z4

i1) = 3+ M<∞.

Condition 3. p = p(n)→∞ as n→∞; tr(ΣrΣsΣkΣt) = o{tr2(Σ2)}, for

r, s, k, t ∈ {1, 2, · · · , R}.

Condition 4. (µr−µs)TΣk(µr−µs) = o{n−1tr(Σ2)}, for r, s, k ∈ {1, 2, · · · , R}.

Condition 1 imposes that pr, for r = 1, 2, · · · , R, must not degenerate;

a similar condition appears in the study of Cui et al. (2015). Instead of im-
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2.2 Main results for the homogeneity test for means

posing a specific parametric distribution of X|Y , the pseudo-independence

assumption is required in Condition 2. The pseudo-independence model

was proposed by Bai and Saranadasa (1996), and is widely used in high-

dimensional theoretical models; see Chen and Qin (2010), Li and Chen

(2012), and Zhang et al. (2018). The eigenvalues of the conditional vari-

ance of (X|Y ) are assumed to satisfy Condition 3, which holds naturally

when the conditional covariances are bounded away from above and ze-

ro. We explore the asymptotic properties of the statistic Mn,p under high

dimensionality and local alternatives in Condition 4. This work does not

impose any explicit relationships between p and n, and our test applies to

high-dimensional data.

Theorem 2.1. Under Conditions 1, 2, 3, and either H10 or Condition 4,

we have

Mn,p −
∑R

r>sNrNs‖µr − µs‖2√
dn,p

d−→ N (0, 1)

as n, p −→∞, where dn,p = 2n(n−1){
∑R

r=1(1−pr)2tr(Σ
2
r)+
∑∗

(r,s) prpstr(ΣrΣs)},

where
d−→ denotes convergence in distribution.

Theorem 2.1 establishes the asymptotic normality of Mn,p, without

imposing explicit conditions on the relationship between n and p. Un-

der Condition 3, dn,p = O(n2p). Furthermore, if the conditional covari-

ances of (X|Y = r) are equal, that is, Σ1 = · · · = ΣR = Σ, then
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2.2 Main results for the homogeneity test for means

dn,p = 2n(n− 1)(R− 1)tr(Σ2). Under H10 in (2.1),

Mn,p√
dn,p

d−→ N (0, 1). (2.3)

We use (2.3) to formulate a test procedure based on Theorem 2.1; thus,

estimating dn,p is required. Here, we choose the estimators of tr(Σ2
r) and

tr(ΣrΣs) proposed by Li and Chen (2012), and use p̂r = (Nr−1)/(n−1) to

estimate pr. As n→∞, p̂r is consistent, by the law of large numbers, and

t̂r(Σ2
r) and ̂tr(ΣrΣs) are consistent under Conditions 1, 2, and 3 by The-

orem 2 in Li and Chen (2012). Additional details about the algorithm for

calculating t̂r(Σ2
r) and ̂tr(ΣrΣs) are discussed in Section 4. The proposed

test rejects H10 at significance level α if Mn,p ≥ d̂n,p
1/2
zα, where zα is the

upper-α quantile of N (0, 1). Theorem 2.1 also implies that the proposed

test has the asymptotic local power

ΨNew
1,n (µ1, · · · ,µR;α) = Φ

(
−zα +

n
∑

r>s prps‖µr − µs‖2√
dn,p/n2

)
.

When
∑

r>s prps‖µr−µs‖2 has a higher order of
√
p/n, the power converges

to one.
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3. Homogeneity Test for Covariance Matrices

In this section, we consider the homogeneity test for covariance matrices,

that is,

H20 : Σ1 = · · · = ΣR = Σ, (3.1)

versus the composite alternative H21: Σr 6= Σs, for 1 ≤ r < s ≤ R. Here,

Σr = var(X|Y = r) and Σ =
∑R

r=1 prΣr.

3.1 Measuring the difference between covariance matrices

Similarly to the analysis in Section 2, we propose an index to measure the

difference between Σr, for r = 1, 2, · · · , R. The expression of this index is

relatively complex compared with that of U(X|Y ).

Definition 2. The distance between the covariances of R categories is de-

fined by

V(X|Y ) =
1

4
E {(X1 −X2)

T(X3 −X4)}2 f1234,

where (Xi, Yi), for i = 1, · · · , 4, are independent copies of (X, Y ), and

f1234 =
R∑
r=1

I(Y1 = Y2 = Y3 = Y4 = r)
(1− pr)
p3r

−
∗∑

(r,s)

I(Y1 = Y2 = r)I(Y3 = Y4 = s)

prps
.

The following lemma ensures that Definition 2 is reasonable.
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3.2 Main results for the homogeneity test for covariance matrices

Lemma 3.1. If X has a finite second moment, then V(X|Y ) ≥ 0, and the

equality holds if and only if the null hypothesis (3.1) is true.

Similarly to the analysis for testing means, we define

Tn,p =
∗∑

(i1,i2,i3,i4)

1

4
{(Xi1 −Xi2)

T(Xi3 −Xi4)}
2 f̂i1i2i3i4 ,

where
∑∗

(i1,i2,i3,i4)
denotes summations over distinct indices, and

f̂i1i2i3i4 =
R∑
r=1

I(Yi1 = Yi2 = Yi3 = Yi4 = r)
(1− p̂r)
p̂3r

−
∗∑

(r,s)

I(Yi1 = Yi2 = r)I(Yi3 = Yi4 = s)

p̂rp̂s
,

with p̂r = (Nr − 1)/(n− 1) and p̂3r = (Nr − 3)(Nr − 2)(Nr − 1)/(n− 1)3.

3.2 Main results for the homogeneity test for covariance matri-

ces

Theorem 3.1. Suppose that Conditions 1, 2, and 3 hold. Then, we have

Tn,p − (n− 1)2
∑R

r>sNrNstr {(Σr −Σs)
2}√

δn,p

d−→ N (0, 1)

as p→∞ and n→∞, where

δn,p = 4n6


R∑
r=1

(1− pr)2tr2(Σ2
r) +

∗∑
(r,s)

prpstr
2(ΣrΣs)


+8n7

R∑
r=1

prtr
{

(Σ2
r −ΣrΣ)2

}
+44n7

R∑
r=1

prtr {ΓT

r (Σr −Σ)Γr ◦ ΓT

r (Σr −Σ)Γr} .
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Theorem 3.1 establishes the asymptotic normality of Tn,p. Under H20

and Condition 3, δn,p = 4n6(R− 1){tr(Σ2)}2 = O(n6p2). We define

δ0,n,p = 4n6

{
R∑
r=1

(1− pr)2tr2(Σ2
r) +

∑
r 6=s

prpstr
2(ΣrΣs)

}
.

From Theorem 3.1, we obtain

Tn,p√
δ0,n,p

d−→ N (0, 1),

under H20. To formulate a test procedure based on Theorem 3.1, we choose

δ̂0,n,p = 4n6

[
R∑
r=1

(1− p̂r)2
{

t̂r(Σ2
r)
}2

+
∑
r 6=s

p̂rp̂s

{
̂tr(ΣrΣs)

}2
]
.

The proposed test rejects H20 at significance level α if Tn,p ≥ δ̂0,n,p
1/2
zα.

Theorem 3.1 also implies that the proposed test has asymptotic power

ΨNew
2,n (µ1, · · · ,µR;α) = Φ

[
−

√
δ0,n,p
δn,p

zα +

∑
r>s prpstr {(Σr −Σs)

2}√
δn,p/n8

]
.

When
∑R

r>s prpstr {(Σr −Σs)
2} is of order p/n, the power converges to

one.

4. Implementation

In this section, we introduce two efficient algorithms for our proposed tests

for mean vectors and covariance matrices.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0048



4.1 Testing for mean vectors

4.1 Testing for mean vectors

When calculating the statistics of two tests, we need to introduce an efficient

algorithm to estimate tr(Σ2
r) and tr(ΣrΣs). We use the estimators of tr(Σ2

r)

and tr(ΣrΣs) proposed by Li and Chen (2012). That is,

t̂r(Σ2
r) =

1

Nr(Nr−1)

∗∑
(i,j)

(XT

riXrj)
2 − 2

Nr(Nr − 1)(Nr − 2)

∗∑
(i,j,k)

XT

riXrjX
T

rjXrk

+
1

Nr(Nr − 1)(Nr − 2)(Nr − 3)

∗∑
(i,j,k,l)

XT

riXrjX
T

rkXrl,

̂tr(ΣrΣs) =
1

NrNs

∑
i

∑
j

(XT

riXsj)
2 − 1

NrNs(Nr − 1)

∗∑
(i,k)

∑
j

XT

riXsjX
T

sjXrk

− 1

NrNs(Ns − 1)

∗∑
(i,k)

∑
j

XT

siXrjX
T

rjXsk

+
1

Nr(Nr − 1)Ns(Ns − 1)

∗∑
(i,j,k,l)

XT

riXsjX
T

rkXsl.

Then, we obtain

t̂r(Σ2
r) =

1

Nr(Nr − 3)

∑
i6=j

ArijA
r
ij, (4.1)

where Arij = arij − ari/(Nr − 2)− arj/(Nr − 2) + ar/(Nr − 1)/(Nr − 2), with

arij = ‖Xri −Xrj‖2/2, ari =
∑Nr

k=1 a
r
ik, and ar =

∑Nr

k=1

∑Nr

l=1 a
r
kl.

Similarly,

̂tr(ΣrΣs) =
1

(Nr − 1)(Ns − 1)

Nr∑
i=1

Ns∑
j=1

{
(Xri −Xr)

T(Xsj −Xs)
}2
, (4.2)
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4.2 Testing for covariance matrices

where Xt =
∑Nt

i=1 Xti/Nt, for t = 1, 2, · · · , R. Because the proofs of Equa-

tions (4.1) and (4.2) require complicated calculations, we omit them here.

Interested readers can derive them through numerical calculations.

4.2 Testing for covariance matrices

As indicated in Subsection 4.1, δ̂0,n,p can be calculated straightforwardly.

Hence, we discuss only the calculation of Tn,p in the following. We write

Dr =
1

4

∗∑
(i,j,k,l)

{(Xri −Xrj)
T(Xrk −Xrl)}2 ,

Drs =
1

4

∗∑
(i,j)

∗∑
(k,l)

{(Xri −Xrj)
T(Xsk −Xsl)}2 .

Then, Tn,p =
∑R

r=1Dr(1 − p̂r)/p̂
3
r −

∑∗
(r,s)Drs/(p̂rp̂s). Similarly to the

analysis for Equations (4.1) and (4.2), we obtain

Dr = (Nr − 1)(Nr − 2)
∗∑

(i,j)

ArijA
r
ij,

Drs = NrNs

Nr∑
i=1

Ns∑
j=1

{
(Xri −Xr)

T(Xsj −Xs)
}2
.

Using the derivations, the two statistics and the associated parameters are

expressed in the form of order two. Hence, these statistics are easy to

calculate.
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5. Simulation Study

We design several simulation experiments to evaluate the performance of

the two proposed tests by comparing them with other tests. Here, R is

designed to be three or four, with probabilities P1 = (0.4, 0.4, 0.2) or P2 =

(0.3, 0.3, 0.2, 0.2), respectively. We choose n = 100 or 200, and p ranges

from 50 to 400.

Example 1 Test for means

We compare the proposed test for means (NEW.mean) with the dis-

tance covariance (dCov) test developed by Székely et al. (2007), the rank

of distance test (HHG) proposed by Heller et al. (2013), and the HBWW

test suggested by Hu et al. (2017). The distances of Yi and Yj when ap-

plying the dCov and HHG tests are defined as one if they are different,

and zero otherwise. We randomly generate a categorical random variable

Y from R classes. Then, for each given Yi = r, the ith predictor Xi is

generated by letting Xi = µr + ξi, where ξi, for i = 1, · · · , n, are random

errors following N (0, Ip) or N (0,Σ), with Σ = (0.5|i−j|). We set µ1 =

signal ∗ (1, 2, 3, 0, · · · , 0)T/
√

14, µ2 = signal ∗ (1, · · · , 1, 0, · · · , 0)T/
√
p/2,

and µr = 0, for r 6= 1, 2. The tests are repeated 1000 times to simulate the

power.
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Table 1 shows the empirical sizes of the proposed test (NEW.mean)

and the related tests (dCov, HHG, and HBWW). As shown in Table 1, the

empirical sizes in all tests maintain the 5% nominal level. Figures 1 and 2

depict the empirical power of the tests when ε ∼ N (0, Ip). As the “signal”

increases, the proposed test outperforms the three other tests, and dCov

and HBWW tests exhibit similar performance. The HHG test is the least

effective in terms of detecting difference between the means of the R groups,

implying that considering only the rank of a distance leads to a severe loss

of information on distance. For example, when (n, p) = (100, 200), R = 3,

and signal = 1.4, the empirical power of the proposed test reaches as high

as 67.3%. In contrast, the dCov and HBWW tests have power of 56.2% and

51.0%, respectively, and the HHG test has power of only 7.0%. Figure 3

displays the empirical power as p increases. The proposed test consistently

outperforms the other tests.

Example 2 Test for covariance matrices

We compare our proposed test for covariances (NEW.cov) with the dis-

tance covariance (dCov) test developed by Székely et al. (2004) and Székely

et al. (2007), the rank of distance test (HHG) proposed by Heller et al.

(2013), the ZBHW test suggested by Zhang et al. (2018), and the ZLGY
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Table 1: Empirical sizes of the NEW.mean, dCov, HHG, and HBWW tests

for means at a significance level of 5% in Example 1.

n p R = 3 R = 4

NEW.mean dCov HHG HBWW NEW.mean dCov HHG HBWW

Case 1: ε ∼ N (0, Ip)

100 50 0.043 0.033 0.042 0.036 0.060 0.043 0.047 0.057

100 0.056 0.049 0.045 0.051 0.064 0.049 0.031 0.060

150 0.047 0.043 0.040 0.039 0.063 0.043 0.061 0.053

200 0.062 0.051 0.035 0.057 0.045 0.038 0.072 0.040

200 50 0.065 0.041 0.059 0.062 0.056 0.044 0.058 0.057

100 0.058 0.048 0.057 0.059 0.063 0.043 0.047 0.066

150 0.056 0.042 0.055 0.058 0.047 0.048 0.058 0.048

200 0.058 0.047 0.051 0.062 0.060 0.047 0.045 0.060

Case 2: ε ∼ N (0,Σ)

100 50 0.067 0.047 0.046 0.065 0.055 0.044 0.046 0.049

100 0.059 0.041 0.061 0.050 0.055 0.041 0.051 0.053

150 0.061 0.041 0.051 0.056 0.065 0.042 0.049 0.056

200 0.058 0.044 0.044 0.055 0.054 0.051 0.048 0.055

200 50 0.051 0.048 0.055 0.054 0.066 0.044 0.040 0.068

100 0.063 0.057 0.048 0.068 0.056 0.048 0.049 0.059

150 0.050 0.047 0.042 0.046 0.048 0.041 0.047 0.046

200 0.061 0.057 0.042 0.059 0.052 0.041 0.044 0.055
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Figure 1: Performance of tests for means with different (n, p) and R = 3.

test introduced by Zheng et al. (2020). We randomly generate a categorical

random variable Y from R classes. Then, for each given Yi = r, the ith pre-

dictor Xi is generated by letting Xi = Σ1/2
r Zi, where Zi, for i = 1, · · · , n,

are random errors following N (0, Ip). Set Σ1 = 3Ip + signal ∗ η1η
T
1 ,

Σ2 = 3Ip + signal ∗ diag(w1, · · · , wp), and Σr = 3Ip, for r 6= 1, 2, where

η1 = (3, 3, 3, 0, · · · , 0)T and wi
iid.∼ Unif(−3, 3).
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Figure 2: Performance of tests for means with different (n, p) and R = 4.

Table 2 presents the empirical sizes of the tests. As n and p approach

infinity, the sizes of the five tests are close to the 5% nominal level. Figures

4 and 5 show the empirical power of the tests. As the “signal” increases,

the proposed test outperforms the four other tests. Unlike in the test for

means, the HHG test for covariances performs much better than the dCov

test, which has power of around 5%. For example, when (n, p) = (100, 200),
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Figure 3: Performance of tests for means with different p values.

R = 3, and signal = 0.7, the empirical power of the proposed test reaches

as high as 80.1%. In contrast, the ZBHW test has power of around 67.4%,

the ZLGY test has power of around 62.8%, and the HHG test has power of

only around 36.8%. Figure 6 displays the empirical power as p increases.

Again, the proposed test consistently outperforms the other tests.
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Table 2: Empirical sizes of the NEW.cov, dCov, HHG, ZBHW, and ZLGY

tests for covariances at a significance level of 5% in Example 2.

n p R = 3 R = 4

NEW.cov dCov HHG ZBHW ZLGY NEW.cov dCov HHG ZBHW ZLGY

100 50 0.050 0.065 0.062 0.041 0.039 0.058 0.055 0.056 0.058 0.054

100 0.064 0.054 0.041 0.065 0.047 0.055 0.054 0.047 0.052 0.047

150 0.051 0.053 0.049 0.039 0.031 0.040 0.047 0.062 0.033 0.031

200 0.062 0.038 0.062 0.043 0.033 0.054 0.059 0.053 0.050 0.039

200 50 0.060 0.054 0.047 0.046 0.043 0.060 0.068 0.057 0.060 0.050

100 0.051 0.062 0.043 0.055 0.046 0.061 0.056 0.027 0.042 0.037

150 0.060 0.049 0.039 0.048 0.039 0.056 0.045 0.054 0.056 0.041

200 0.032 0.069 0.035 0.027 0.027 0.051 0.050 0.045 0.050 0.039

6. Application

6.1 Application 1

We apply the proposed test to a gene expression data set collected by Ko-

h et al. (2014) to identify gene sets with significant differences in their

mean vectors and covariances over time. The data set contains data on

11 pregnant women at four stages, namely, three stages during pregnancy

(i.e., the first, second, and third trimesters) and one stage after delivery

(i.e., postpartum). The microarray gene expression data in this data set

were measured repeatedly, using 33,297 genes for each pregnant woman
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6.1 Application 1

Figure 4: Performance of tests for covariances with different (n, p) and R = 3.

at the four stages. Based on their biological functions, the genes were

defined using gene ontology (GO), yielding 3,910 GO terms. The data

set is obtained from http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?

acc=GDS5088. For each GO term, our aim is to test whether the mean

vectors and covariance matrices of the gene expression data are the same

during the four stages. Table 3 shows the GO terms detected as significant
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6.1 Application 1

Figure 5: Performance of tests for covariances with different (n, p) and R = 4.

by the NEW.mean, dCov, HHG, HBWW, NEW.cov, ZBHW, and ZLGY

tests. The gene set GO:0008499 is detected as significant only by the pro-

posed NEW.mean test, and GO:0070513 and GO:0043008 are detected as

significant only by the dCov test. A possible reason for this finding is that

the proposed NEW.mean test is designed to detect the difference between

mean vectors, whereas the dCov test focuses on identifying the variation
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6.1 Application 1

Figure 6: Performance of tests for covariances with different p−values.

of distribution functions. The NEW.mean and HBWW tests identify 12

GO terms as significant. Of these, GO:0050786 and GO:0005212 are al-

so detected by the dCov and HHG tests, respectively, and GO:0005179 is

identified as significant by the dCov and HHG tests.

In addition, our proposed NEW.cov test and the ZBHW test identify 12

other GO terms as significant gene sets for covariance matrices. However,
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6.1 Application 1

the dCov and HHG tests fail to identify any of them. Note that the ZLGY

test identifies 219 significant GO terms, of which the trace-based term iden-

tifies nine, and the maximum norms detect the rest. This finding implies

that using dimension reduction or feature screening methods can further

enhance the power for detecting significant gene sets under sparse alterna-

tives. It also motivates a promising extension of our tests to incorporate

dimension reduction or feature screening.

Table 3: Significant GO terms obtained by the different tests at a signifi-

cance level of 5%.

GO term No. of genes Satisfied test(s) GO term No. of genes Satisfied test(s)

GO:0004869 36 NEW.mean GO:0008200 11 NEW.cov/ZBHW/ZLGY

GO:0070513 17 dCov GO:0008378 11 NEW.cov/ZBHW/ZLGY

GO:0043008 10 dCov GO:0047617 14 NEW.cov/ZBHW

GO:0008499 15 NEW.mean/HBWW GO:0015267 12 NEW.cov/ZBHW

GO:0008083 171 NEW.mean/HBWW GO:0004012 15 NEW.cov/ZBHW/ZLGY

GO:0019864 13 NEW.mean/HBWW GO:0032393 17 NEW.cov/ZBHW/ZLGY

GO:0015254 15 NEW.mean/HBWW GO:0019870 10 NEW.cov/ZBHW/ZLGY

GO:0015204 10 NEW.mean/HBWW GO:0070410 17 NEW.cov/ZBHW

GO:0015250 16 NEW.mean/HBWW GO:0016712 10 NEW.cov/ZBHW/ZLGY

GO:0048037 18 NEW.mean/HBWW GO:0033038 19 NEW.cov/ZBHW/ZLGY

GO:0005524 13 NEW.mean/HBWW GO:0030275 10 NEW.cov/ZBHW/ZLGY

GO:0016594 14 NEW.mean/HBWW GO:0030109 16 NEW.cov/ZBHW/ZLGY

GO:0050786 11 NEW.mean/dCov/HBWW

GO:0005212 20 NEW.mean/HHG/HBWW

GO:0005179 92 NEW.mean/dCov/HHG/HBWW
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6.2 Application 2

6.2 Application 2

Here, we apply the proposed tests to a gene expression data set collected by

Taylor et al. (2007) in a study to identify gene sets with significant differ-

ences in mean vectors and covariances over time. In this study, 69 patients

with the hepatitis C virus were treated for up to 48 weeks using a specific

clinical protocol. Their peripheral blood mononuclear cells were collected

before treatment (day 0), and on days 1, 2, 7, 14, and 28 during treatment.

The original data set is available at https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE7123. The microarray gene expression data were

measured using 22,283 genes for each patient repeatedly at six stages, de-

fined using GO, based on the biological function of these genes. There are

1,218 GO terms, and a given gene can be a member of multiple GO terms.

Further details about the data can be found in Taylor et al. (2007).

Before applying our tests, we preprocess the data by removing 11 in-

dividuals with an absent Microarray Suite 5.0 signal transcript, and keep

58 individuals with gene expression arrays at all six stages. We apply the

NEW.mean test, dCov test, HHG test, HBWW test, NEW.cov test, ZBHW

test, and ZLGY test to the 585 GO terms, with minimums of 10 genes. Let

X
(g)
ri |Yi = r (i = 1, 2, · · · , 58, r = 1, 2, · · · , 6, g = 1, 2, · · · , 585) be the gene

expression data for the gth GO term of the ith individual at the rth period,
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6.2 Application 2

where r = 1, 2, · · · , 6 represents day 0, 1, 2, 7, 14, and 28, respectively. For

each GO term, we test whether the means µ
(g)
r and covariance matrices Σ(g)

r

are the same across r = 1, 2, · · · , 6. Table 4 shows the various numbers of

GO terms detected as significant by tests.

In all six stages, the NEW.mean and HBWW tests identify 525 and 524

GO terms, respectively, as significant, where the New.mean test detects

GO:0005721, but the HBWW test does not. The dCov and HHG tests

simultaneously identify only 459 of the 524 GO terms as significant. For the

covariance matrices, the NEW.cov, ZBHW, and ZLGY tests identify 264,

263, and 297 GO terms, respectively, as significant, where the NEW.cov

and ZLGY tests detect GO:0000792, but the ZBHW test fails to do so.

Table 4: Number of significant GO terms detected by different tests at a

significance level of 5%

NEW.mean HBWW dCov HHG NEW.cov ZBHW ZLGY

Day 0, 1, 2, 7, 14, and 28 525 524 543 475 264 263 297

Day 0 and 1 525 525 535 447 297 296 310

Day 1 and 2 138 137 149 78 42 42 39

Day 2 and 7 315 311 395 248 126 126 123

Day 7 and 14 41 41 48 21 157 157 145

Day 14 and 28 55 54 40 26 122 122 122

After identifying the significant GO terms, we apply the tests on binary
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segmentation to identify the changes over time. As shown in Table 4, most

of the identified changes in the mean vectors and the covariance matrices

occurred within days zero and one. However, during the treatment, more

GO terms are detected as having significant changes in means between days

two and seven. In contrast, more significant changes are identified in the

covariance matrices between days 7 and 14. These findings complement the

results of Taylor et al. (2007), who observed that the majority of genes

altered expression.

7. Conclusion

This study develops two categorically weighted tests for means and co-

variance matrices in high dimensions. Simulation studies and applications

demonstrate the satisfactory performance of our tests. However, the present

study has limitations, providing opportunities of future work in this area.

While our proposed tests accommodate the high-dimensional setting, they

are affected adversely by an increasing dimension, as shown in Figures 3

and 6. Therefore, they cannot deal with ultrahigh-dimensional problem-

s. Moreover, the two tests are less powerful in detecting sparse signals of

means and covariance matrices, which may be corrected using dimension

reduction or feature screening.
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8. Supplementary Material

All technical proofs are provided in the Supplementary Material.
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