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Abstract: Although multivariate Poisson autoregressive models are popular for fitting count

time series data, statistical inferences are quite challenging. The network Poisson autoregres-

sive (NPAR) model reduces the inference complexity by incorporating network information

into the dependence structure, where the response of each individual can be explained by its

lagged values and the average effect of its neighbors. However, the NPAR model makes the

strong assumption that all individuals are homogeneous and share a common autoregressive

coefficient. Here, we propose a grouped network Poisson autoregressive (GNPAR) model, in

which individuals are classified into groups, using group-specific parameters to describe het-

erogeneous nodal behaviors. We present the stationarity and ergodicity of the GNPAR model

and study the asymptotic properties of the maximum likelihood estimation. We develop an

expectation-maximization algorithm to estimate the unknown group labels, and investigate

the finite-sample performance of our estimation procedure using simulations. We analyze

Chicago Police Investigatory Stop Report data, and find distinct dependence patterns in

different neighborhoods of Chicago, which may help with future crime prevention.

Key words and phrases: EM algorithm, Individual heterogeneity, Maximum likelihood esti-

mation, Multivariate Poisson autoregression, Network data.
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1. Introduction

Count time series data are often observed in practice. The monograph of Weiß (2018)

summarizes the development of count time series analysis, and Davis et al. (2021) give

a comprehensive methodological review. Count time series have unique features, in-

cluding being integer-valued, over-dispersed, zero-inflated, and time-dependent, and

having a nonnegative autocorrelation. Most existing works on count time series mod-

eling focus on univariate cases. For example, Du and Li (1991) propose an integer-

valued AR model, and Ferland, Latour, and Oraichi (2006) propose an integer-valued

GARCH model, also called the Poisson autoregression (PAR) mdoel. Others have

studied variants of the PAR, along with their statistical inference and applications

(see, e.g., Fokianos, Rahbek, and Tjøstheim (2009), Fokianos and Tjøstheim (2011,

2012), Neumann (2011), Wang et al. (2014), Ahmad and Francq (2016), and Davis

and Liu (2016)). On the other hand, only a few theoretical results are available

for multivariate count time series (see Latour (1997), Liu (2012), Pedeli and Karlis

(2013), Andreassen (2013), Lee, Lee, and Tjøstheim (2018)), despite their important

applications in many fields, such as environmental science, sociology, finance, mar-

keting, and medicine, among others (Mahamunulu (1967), Aitchison and Ho (1989),

Karlis and Meligkotsidou (2005, 2007), Weiß (2018), Fokianos et al. (2020), Davis et

al. (2021)).

For a multivariate PAR model, a maximum likelihood-based statistical inference
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is quite challenging, because the probability mass function of a multivariate Pois-

son random vector usually has a complicated functional form. To circumvent such

difficulties, Fokianos et al. (2020) present a copula method, and develop a novel

conceptual framework to handle multivariate count time series. To reduce the com-

plex structure of a multivariate count time series model, following Zhu et al. (2017),

Armillotta and Fokianos (2021) propose a network PAR (NPAR) model that incorpo-

rates the network structure into a multiple or high-dimensional PAR. This technique

is widely used to reduce model complexity; see, for example, Zhu et al. (2019a,b,

2020), Huang et al. (2020), Zhou et al. (2020), and Zhu, Cai, and Ma (2021).

The NPAR model assumes that all individuals share a common dependence struc-

ture, which is often too stringent in practice. For example, if we consider district-

level crime cases in Chicago, we find that crimes occur frequently in some districts,

whereas others are relatively safer. Therefore, it is unreasonable to assume that the

data-generating mechanism for all districts is the same. Furthermore, the intensity

process in the NPAR model regresses only on the lagged observations.

In this paper, we propose a grouped NPAR (GNPAR) model in which individuals

are classified into groups, using group-specific parameters to describe heterogeneous

nodal behaviors. Such an extension is of both theoretical and methodological impor-

tance, because it reduces the computational complexity of general multivariate PAR

models, while providing a more realistic and flexible setup and interpretation than
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those of NPAR models. Moreover, our model involves lags of the intensity process,

in addition to the lagged observations and the average effect of its neighbors, which

allows greater flexibility.

The remainder of the paper is organized as follows. Section 2 proposes a GNPAR

model and gives its stationarity and ergodicity conditions. Section 3 studies the

maximum likelihood estimation (MLE) of the GNPAR model, with its asymptotics,

when prior information about the group label is known, and develops an expectation-

maximization (EM) algorithm to estimate the group ratio and labels when they are

unknown. Section 4 reports on our numerical studies conducted to assess the finite-

sample performance of our estimation procedure. We study Chicago district-level

crime data in Section 5.

Throughout the paper, we denote ‖x‖d =
(∑p

i=1 |xi|
d
)1/d

as the `d-norm of a

p-dimensional vector x. For a q×p matrix A = (aij), the generalized matrix norm is

defined by |||A|||d = max‖x‖d=1 ‖Ax‖d. In particular, |||A|||1 = max1≤j≤p
∑q

i=1 |aij|

and |||A|||2 =
√
ρ (A′A), where ρ(·) denotes the spectral radius, and ′ denotes the

transpose of a matrix or vector. |||A|||2 is in fact the operator norm of A. The

Frobenius norm of A is denoted by |||A|||F =
√∑

i,j |aij|
2.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0040



2. GNPAR MODEL 5

2. GNPAR Model

2.1 Previous Models

Following Lee, Lee, and Tjøstheim (2018) and Fokianos et al. (2020), we assume that

{Yt = (Y1t, Y2t, ..., YNt)
′, t ≥ 1} is an N -dimensional count time series, and {λt =

(λ1t, λ2t, ..., λNt)
′, t ≥ 1} denotes the corresponding N -dimensional intensity process.

Here, N is fixed and finite, and FY,λ
t is the σ-field generated by {Yt, · · · ,Y0,λ0},

with λ0 being an initial value of {λt}. The multivariate PAR model is defined as

follows: for each i = 1, 2, . . . , N and t ≥ 1,

Yi,t | FY,λ
t−1 ∼ Poisson (λi,t) , λt = d + Aλt−1 + BYt−1, (2.1)

where d is an N -dimensional constant vector and A,B are N × N matrices. The

elements of d,A, and B are assumed to be positive to ensure λi,t > 0, for all i and t.

In fact, for general A and B, a statistical inference of model (2.1) is quite chal-

lenging when N is large. To reduce the complexity of model (2.1), following Zhu et

al. (2017) and Zhou et al. (2020), we introduce a network structure on the observed

counts into model (2.1). Assume a known adjacency matrix A = (aij) ∈ RN×N is

defined as aij = 1 if there is a directed edge from object i to object j, and aij = 0

otherwise. Let aii = 0, for 1 ≤ i ≤ N . An NPAR model assumes that object i

is affected only by the objects that it follows. It has the following form: for each
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i = 1, 2, . . . , N and t ≥ 1,

Yi,t | FY,λ
t−1 ∼ Poisson (λi,t) , (2.2)

λi,t = ω0 + α0Yi,t−1 + ρ0d
−1
i

∑
j 6=i

aijYj,t−1 + β0λi,t−1,

where
∑

j 6=i means
∑N

j=1,j 6=i, and di =
∑N

j=1 aij is the out-degree of i, which is the

total number of objects to which i points. If there is no edge starting from object

i, that is, di = 0, we define that d−1
i

∑
j 6=i aijYj,t−1 = 0. Note that α0 measures

the dependence on the previous count, ρ0 measures the dependence on the network

structure, that is, the average effect that the neighbors have on each object, and β0

measures the dependence on the previous intensity. The network structure reduces

the inference complexity and makes the model more interpretable. Model (2.2) dif-

fers from the NPAR model proposed by Armillotta and Fokianos (2021), because it

includes the lags of the intensity process λt.

In model (2.2), however, all individuals are treated homogeneously, because they

share the same regression coefficients. This assumption is unrealistic in practice. For

instance, the coefficient ρ0 implies that all individuals are affected by their neigh-

bors to the same extent, whereas in social networks, celebrities are less likely to be

influenced by others than normal people are.
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2.2 GNPAR Model

To relax the homogeneous assumption, following Zhu and Pan (2020), we assume

that all individuals can be classified into K groups, and each group is characterized

by a specific set of parameters θk = (ωk, αk, ρk, βk)
′ ∈ R4, for 1 ≤ k ≤ K, with

each parameter being positive. Define a latent variable zik ∈ {0, 1} for each object

i, where zik = 1 if object i is from the kth group, and zik = 0 otherwise. Assume

{(zi1, . . . , ziK)′, 1 ≤ i ≤ N} is a sequence of independent and identically distributed

(i.i.d.) multinomial random vectors, with number of events n = 1 and probability

γ = (γ1, . . . , γK)′. Here, γk represents the group proportion satisfying γk ≥ 0 and∑K
k=1 γk = 1. A GNPAR model can be constructed as

Yi,t | FY,λ
t−1 ∼ Poisson (λi,t) ,

λi,t =
K∑
k=1

zik

(
ωk + αkYi,t−1 + ρkd

−1
i

∑
j 6=i

aijYj,t−1 + βkλi,t−1

)
,

(2.3)

for each i = 1, . . . , N and t ≥ 1. Following the NPAR model, the parameters

ωk, αk, ρk, and βk represent the group-specific baseline effect, regression coefficient on

past observations, network effect, and regression coefficient on past intensity process,

respectively. Note that we assume the adjacency matrix A is asymmetric, which

includes the special case of symmetric networks.
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2.3 Stationarity and Ergodicity

In this subsection, we give a stationarity and ergodicity solution to model (2.3). Here,

the dimension N is fixed throughout. Let Yt = (Y1,t, . . . , YN,t)
′, λt = (λ1,t, . . . , λN,t)

′,

D = diag (d1, . . . , dN), and Zk = diag(zik : 1 ≤ i ≤ N). Furthermore, define

B0 =
∑K

k=1 ωkZk1N , B1 =
∑K

k=1 αkZk, B2 =
∑K

k=1 ρkZk, and B3 =
∑K

k=1 βkZk, where

1N = (1, . . . , 1)′. Following Fokianos et al. (2020), model (2.3) can be rewritten as

Yt = Nt(λt), λt = B0 + (B1 + B2D
−1A)Yt−1 + B3λt−1, (2.4)

where {Nt(·)} is a sequence of independent N -dimensional copula-Poisson processes.

See Subsection 4.1 for more details on generating Nt(·).

Because Yt is integer-valued, the ergodicity for model (2.4) is not sufficient to

obtain the asymptotics of the parameter estimation, as discussed in Fokianos, Rah-

bek, and Tjøstheim (2009), Fokianos and Tjøstheim (2011), and Tjøstheim (2012).

Thus, ergodicity should be strengthened to geometric ergodicity. However, it is very

difficult to establish geometric ergodicity directly, particularly the φ-irreducibility

of (2.4). To obtain the φ-irreducibility, a perturbation method is helpful, that is,

adding a continuous component into the innovation; see Chapter 6 of Meyn and

Tweedie (1993). Thus, following Fokianos, Rahbek, and Tjøstheim (2009), we define

the perturbed model as

Ym
t = Nt (λmt ) , λmt = B0 + (B1 + B2D

−1A)Ym
t−1 + B3λ

m
t−1 + εmt , (2.5)
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with εmt = cmVt, where the sequence cm is strictly positive and tends to zero as m→

∞, and Vt is an N -dimensional vector consisting of independent positive random

variables, each with a bounded support of the form [0,M ], for some M > 0. From

Lemma 1 in the Supplementary Material, the difference between the unperturbed

model (2.4) and the perturbed model (2.5) can be arbitrarily small, in some sense.

The following proposition gives a sufficient condition for the geometric ergodicity

of model (2.5), together with a stationary and ergodic condition for model (2.4). The

proof of Proposition 1 is postponed to the Supplementary Material.

Proposition 1. (i). The process {λmt , t > 0} is a geometrically ergodic Markov chain

with finite rth moments, for any r > 0, if ||| max
1≤k≤K

(αk+βk)IN+ max
1≤k≤K

ρkD
−1A|||2 < 1.

Moreover, the process {(Ym
t ,λ

m
t , εt), t > 0} is a VY,λ,ε-geometrically ergodic Markov

chain with VY,λ,ε = 1 + ||Y||r2 + ||λ||r2 + ||ε||r2, for r > 0.

(ii). If |||
(

max
1≤k≤K

αk
)
IN +

(
max

1≤k≤K
ρk
)
D−1A|||1 + max

1≤k≤K
βk < 1, then there exists

a unique stationary and ergodic solution {(Yt,λt)} to model (2.4) that is nonantic-

ipative and satisfies E||Yt||rr <∞ and E||λt||rr <∞, for any r > 0.

Remark 1. In Proposition 1, (i) is developed using the perturbation technique,

and (ii) is based on the notion of weak dependence. The latter does not require

a perturbed model, but the obtained sufficient conditions are much stronger. In

what follows, we prefer the sufficient stationarity and ergodicity condition (i) for

the perturbed process, and use the closeness between the perturbed model and the
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unperturbed one to obtain the asymptotic normality of the MLE of model (2.4).

Note that the geometric ergodicity of the perturbed process makes it possible to

employ classical statistical inference theory, similarly to GARCH models.

Remark 2. Proposition 1 is constructed using a fixed N , which does not necessarily

hold if N is diverging, because no stationarity and ergodicity conditions are available

when min{N, T} → ∞. In fact, how to define the stationarity of a time series

with a diverging dimension in general remains an open problem. Moreover, the

ergodicity conditions in Proposition 1 differ from those of the NPAR model proposed

by Armillotta and Fokianos (2021), because the latter does not contain lags of the

intensity process λt.

3. Parameter Estimation

This section studies the MLE of the GNPAR model and establishes its asymptotics.

Because there exists a latent variable zik as a group label, the parameter estimation

and group classification need to be conducted simultaneously. We first study the

MLE of the model parameter when the group labels are known, and then develop an

EM algorithm for estimating the group labels when they are unknown. The former

is useful if we have prior information for group classification, and the latter is more

practical when there is little prior information available.

Statistica Sinica: Preprint 
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3.1 MLE when group labels are known

Suppose zik is known, and define Gk = {i ≤ N : zik = 1} and Nk = |Gk|, for

1 ≤ k ≤ K, denoting the group member and group size, respectively. Assume

that the observations {Yt, t = 1, . . . , T} are from model (2.4), with true param-

eter θ0 = (ωk0, αk0, ρk0, βk0 : 1 ≤ k ≤ K)′ ∈ R4K
+ , where R+ = (0,∞). Let

Y
(k)
t = (Yi,t : i ∈ Gk)′ ∈ RNk , for t = 1, . . . , T , be in the kth group. Define λ

(k)
t =

(λi,t : i ∈ Gk)′ ∈ RNk , D(k) = diag (di : i ∈ Gk) ∈ RNk×Nk , and A(k) = (aij : i ∈ Gk,

1 ≤ j ≤ N) ∈ RNk×N . Then, the GNPAR model (2.4) can be rewritten as

Y
(k)
t = Nt

(
λ

(k)
t

)
, λ

(k)
t = ωk0 + αk0Y

(k)
t−1 + ρk0(D(k))−1A(k)Yt−1 + βk0λ

(k)
t−1, (3.1)

for 1 ≤ k ≤ K. Under this setting, the true parameter θk0 = (ωk0, αk0, ρk0, βk0)′ can

be estimated separately for each group. Without loss of generality, we consider the

MLE for the kth group hereafter.

Let θk = (ωk, αk, ρk, βk)
′ ∈ R4

+ be the parameter. The conditional likelihood

function, given λ0, is given by

L(θk) =
T∏
t=1

∏
i∈Gk

{
λ
Yi,t
i,t (θk) exp (−λi,t(θk))

Yi,t!

}
, (3.2)

and the log-likelihood function (ignoring the constant) is

l(θk) =
1

T

T∑
t=1

lt(θk), lt(θk) =
1

Nk

∑
i∈Gk

(Yi,t log λi,t(θk)− λi,t(θk)) . (3.3)
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The MLE of θk0 is defined as

θ̂k = (ω̂k, α̂k, ρ̂k, β̂k)
′ = arg max

θk∈Θk

l(θk). (3.4)

Let Θ := Θ1 × · · · ×ΘK ⊂ R4K
+ be the parameter space and θ ∈ Θ. Before we

study the asymptotics of θ̂k, we first give two assumptions.

Assumption 1. The parameter space Θ is a compact set of R4K
+ , and the true

parameter θ0 is an interior point of Θ.

Assumption 2. θ0 satisfies ||| max
1≤k≤K

(αk0 + βk0)IN + max
1≤k≤K

ρk0D
−1A|||2 < 1.

The following theorem states the strong consistency and asymptotic normality

of the MLE θ̂k.

Theorem 1. If Assumptions 1–2 hold, then there exists an open neighborhood, say,

O (θk0) = {θk : ‖θk−θk0‖2 < δ}, of θk0 such that, with probability tending to one as

T →∞, the equation ST (θk) = 0 has a unique solution, denoted by θ̂k. Furthermore,

θ̂k is strongly consistent, that is, θ̂k → θk0 a.s., and is asymptotically normal, that is,

√
NkT

(
θ̂k−θk0

) d→ N (0,H−1GH−1), as T →∞, where “
d→” stands for convergence

in distribution. The matrices G := G(θk0) and H := H(θk0) are defined by

G(θk0) =
1

Nk

∑
i∈Gk

∑
j∈Gk

E

{
1

λi,t(θk0)λj,t(θk0)
Σ

(k)
ij,t(θk0)

∂λi,t(θk0)

∂θk

∂λj,t(θk0)

∂θ′k

}
and

H(θk0) =
1

Nk

∑
i∈Gk

E

{
1

λi,t(θk0)

∂λi,t(θk0)

∂θk

∂λi,t(θk0)

∂θ′k

}
, and

∂λ
(k)
t

′
(θk0)

∂θk
=
(
1Nk

,Y
(k)
t−1, (D

(k))−1A(k)Yt−1,λ
(k)
t−1

)′
+ βk0

∂λ
(k)
t−1

′
(θk0)

∂θk
,
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where Σ
(k)
t (θk0) is the covariance matrix of Y

(k)
t , Σ

(k)
ij,t(·) is the (i, j)th entry of Σ

(k)
t (·),

and the expectation is taken with respect to the invariant stationary distribution of

{Y(k)
t }.

The proof of Theorem 1 is postponed to the Supplementary Material. Note that

when the components of the process
{
Y

(k)
t

}
are uncorrelated, we have G = H, and

thus the asymptotic covariance matrix reduces to the standard one for the ordinary

MLE. In practice, the above quantities can all be consistently estimated using their

respective sample counterparts, for example,

Ĥ =
1

NkT

∑
i∈Gk

T∑
t=1

{
1

λi,t(θ̂k)

∂λi,t(θ̂k)

∂θk

∂λi,t(θ̂k)

∂θ′k

}
.

Remark 3. From Theorem 1, the convergence rate depends on both Nk and T ,

although Nk is fixed. The network structure characterized by A and the number of

groups K are fixed in our model setting. There are no additional assumptions on the

network structure. Because the parameters θk from different groups are uncorrelated

in the asymptotic covariance matrix, the MLE of θk0 for each group can be conduct-

ed separately. Thus, the fixed group number K does not affect the convergence rate

in each group’s estimation, whereas a larger value may consume more computational

time, because more unknown parameters are involved. Furthermore, if Nk is diverg-

ing, Theorem 1 may break. In this case, we need to impose some connectivity and

uniformity assumptions on the network structure and some regularity assumptions
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on the structure of the dependence between the errors; see, for example, Zhu et al.

(2017) and Armillotta and Fokianos (2021). This is left to future research.

3.2 Estimation with unknown group labels

When the group labels are unknown, the estimation includes the latent variables. A

common method for dealing with such mixture models is the EM algorithm. Recall

that zik ∈ {0, 1} indicates whether object i belongs to the kth group. The full

likelihood function is given by

L(θ) =
N∏
i=1

K∏
k=1

{
γk

T∏
t=1

λ
Yi,t
i,t (θk) exp (−λi,t(θk))

Yi,t!

}zik

. (3.5)

The EM algorithm consists of two steps: an expectation step, and a maximization

step. First, we set initial values for the parameters θ̂(0) and γ̂(0), and follow the

procedure described below. Specifically, in the mth (m ≥ 1) iteration, the estimation

procedure is as follows:

• E-STEP. Estimate zik using its posterior mean z
(m)
ik . Here,

z
(m)
ik = E

(
zik
∣∣θ̂(m−1)

)
=

γ̂
(m−1)
k

∏T
t=1 ∆̂

(m−1)
it,k∑K

j=1 γ̂
(m−1)
j

∏T
t=1 ∆̂

(m−1)
it,j

, (3.6)

where ∆̂
(m−1)
it,k = λ

Yi,t
i,t

(
θ̂

(m−1)
k

)
exp

(
−λi,t

(
θ̂

(m−1)
k

))
(omitting the constant term),

and θ̂
(m−1)
k is an estimate in the (m− 1)th iteration.

• M-STEP. Given an estimate z
(m)
ik , we maximize the following Q-function with

Statistica Sinica: Preprint 
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respect to θk and γk (ignoring the constant term):

Q
(
θ
∣∣θ̂(m−1)

)
= E

{
logL(θ | Y, z)

∣∣Y, θ̂(m−1)
}

= E

{
N∑
i=1

K∑
k=1

zik

(
log γk +

T∑
t=1

(Yi,t log λi,t(θk)− λi,t(θk))
)∣∣∣Y, θ̂(m−1)

}

=
N∑
i=1

K∑
k=1

z
(m)
ik

(
log γk +

T∑
t=1

(Yi,t log λi,t(θk)− λi,t(θk))
)
.

Thus, we have

θ̂
(m)
k = arg max

θk∈Θk

{
N∑
i=1

z
(m)
ik

T∑
t=1

(Yi,t log λi,t(θk)− λi,t(θk))

}
,

γ̂
(m)
k =

1

N

N∑
i=1

z
(m)
ik .

(3.7)

Repeat steps (3.6)–(3.7) until the EM algorithm converges, yielding the EM estimates

θ̂k and γ̂k, for 1 ≤ k ≤ K. Note that the EM estimator θ̂k given in (3.7) can be

viewed as a weighted MLE estimator in (3.4), with the latent group variables zik as

the weights.

Remark 4. In practice, the computation of the E-Step (3.6) may be unstable and

sensitive to initial values, especially when the sample size T is large, which leads to

unsatisfactory performance of the estimator γ̂. To address this problem, we adopt

the two-step (TS) estimation method introduced by Zhu and Pan (2020) to set the

initial value. Specifically, we first estimate the coefficient parameter θ at the nodal

level and obtain N sets of MLE θ̂k, for 1 ≤ k ≤ N . Next, we apply some cluster
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doi:10.5705/ss.202022.0040



3. PARAMETER ESTIMATION 16

algorithm (e.g., k-means clustering) to partition these N sets of estimates into K

groups. Let Ĝk be the corresponding members in group k, and N̂k := |Ĝk| be the

cardinality. Then, the initial value of the group proportion γk can be estimated as

γ̂
(0)
k = N̂k/N , for all 1 ≤ k ≤ K. Finally, given the group information Ĝ, we estimate

θ using the MLE (3.4), and set the estimate as the initial value of θ, that is, θ̂(0).

Remark 5. How to select a reasonable number of groups K is a long-standing prob-

lem. Here, we recommend two procedures to determine K.

The first is from the perspective of the model setting. Because nodes in the

same group are characterized by the same set of parameters θk, we can adopt the TS

estimation method introduced in Remark 4 and classify the estimated parameters

using classical cluster algorithms. Specifically, we first estimate the coefficient pa-

rameter θ at the nodal level and obtain N sets of ML estimates θ̂k, for 1 ≤ k ≤ N .

Then, we apply k-means clustering to partition these N sets of estimates into K

groups, and select an optimal K based on the elbow plot, silhouette coefficient, or

gap statistic.

The second procedure is from the perspective of model fitting. As discussed

in Section 4.3, we can try model fitting with different numbers of groups, say

K = 1, . . . , 5, then compare their out-of-sample predicted RMSEs in (4.2) among

candidate models, and choose a reasonable K from the RMSEs. The in-sample

fitted RMSEs in (4.1) can also be used as an auxiliary measure to select K.
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4. Simulation Studies

In this section, we investigate the finite-sample performance of the proposed model

and estimation procedure. We first explore the performance of the MLE of θ when the

group labels are unknown. Then, we evaluate the model estimation and prediction

accuracy when the number of groups K is misspecified. The performance of the MLE

of θ when the group labels are known is reported in the Supplementary Material S2.1.

4.1 Simulated data

We first generate the adjacency matrix A using two mechanisms: the Erdös–Rényi

model, and the stochastic blockmodel. These mechanisms are chosen to illustrate the

performance of our model under different network structures A, and are independent

of the membership-generating mechanism. Note that directed graphs are considered

here, which include undirected graphs.

Case 1: The Erdös–Rényi model

The Erdös–Rényi model (Erdös and Rényi, 1960) is the most thoroughly studied

network model in the literature. It assumes that given a number of vertices Nv,

all edges are independent with a given probability p ∈ (0, 1). The Erdös–Rényi

model has the property that for large Nv, the degree distribution of the graph is

approximately Poisson distributed with mean p(Nv − 1). Here, we set p = 3/Nv.

Loops are not allowed. A visualization of the network structure and the histogram
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of the degree distributions of one realization are shown in Fig. 1, with Nv = 50.
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Figure 1: The network visualization and histogram of the degree for the Erdös–Rényi

model, with Nv = 50 and p = 0.06.

Case 2: Stochastic Blockmodel

The stochastic blockmodel (Holland, Laskey, and Leinhardt, 1983) is another

popular network topology. It assumes that the nodes in the same block are more

likely to be connected to each other than they are to those from different blocks.

Here, we set Kv = {3, 5, 10} as the total number of blocks, and Nv = {20, 50, 100} as

the total number of nodes, with each block having Nv/Kv nodes. We assume there

is a directed edge to every pair of vertices with probability 3Kv/Nv if they belong

to the same community, and 0.3/Nv for those in different communities. A network
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visualization and histogram of the degree with Nv = 50 and Kv = 5 are shown in

Fig. 2.
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Figure 2: The network visualization and histogram of the degree for the stochastic

blockmodel, with Nv = 50 vertices and Kv = 5 blocks.

We generate the adjacency matrix A once, after which it is fixed throughout the

remaining simulation studies. We set the number of groups to K = 3. To characterize

different nodal behaviors, we set different parameters θk = (ωk, αk, ρk, βk)
′ for each

group, as listed in Table 1. Group 1 has relatively low regression coefficients on

past observations and the past intensity process (i.e., α and β), but a relatively high

network effect (i.e., ρ), implying that the behavior of most objects is affected by

the objects they follow. In contrast, Group 3 has a lower ρ and a higher ω, α, and
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β, representing influential nodes that are more likely to be self-driven and rely less

on others. They account for 20% of the objects. Group 2 has medium coefficients

and a medium group size. Note that the parameters satisfy Assumptions 1–2. We

randomly assign each node to the K groups based on the group proportion γk.

Table 1: True parameters in model (2.3) for each group, with K = 3.

ω α ρ β γ

Group 1 0.2 0.1 0.3 0.2 0.5

Group 2 0.5 0.2 0.2 0.3 0.3

Group 3 1 0.3 0.1 0.4 0.2

Given an initial value λ0 = 4, the observed time series Y0 are generated as an

N -dimensional count time series with intensity λ0, and {Yt,λt; t ≥ 1} are simulated

consecutively, conditioned on the previous information, using the GNPAR model

(2.3). The first 50 samples are discarded to eliminate the effect of initial values. As

mentioned before, to establish a well-defined joint distribution of multivariate count

data with a marginal Poisson distribution, we use the copula-based data-generating

process introduced in Fokianos et al. (2020). This process has the advantage that

the copula is defined uniquely for continuous multivariate random variables, and

it imposes arbitrary dependence among the marginal Poisson components. Denote

{Nt} as a sequence of independent N -dimensional copula-Poisson processes. The
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data-generating process is given below. Suppose that λ0 = (λ1,0, . . . , λp,0)′ is an

initial value.

(1) Let Ul = (U1,l, . . . , UN,l)
′, for l = 1, . . . , S, be a sample from an N -dimensional

copula C (u1, . . . , uN), where Ui,l, for l = 1, . . . , S, follows the uniform distribu-

tion U(0, 1), for i = 1, . . . , N .

(2) Consider the transformation Xi,l = −(logUi,l)/λi,0, for i = 1, . . . , N . Then,

Xi,l, for l = 1, . . . , S, follows an exponential distribution with parameter λi,0, for

i = 1, . . . , N .

(3) Define Yi,0 = max
{

0 ≤ s ≤ S :
∑s

l=1 Xi,l ≤ 1
}

, for i = 1, . . . , N , by taking S

large enough. Then, Y0 = (Y1,0, . . . , YN,0)′ is a set of marginal Poisson processes

with parameter λ0.

(4) Use model (2.3) to obtain λ1, return to step (1) to obtain Y1, and so on.

In practice, the sample size S should be large, say S = 1000. The copula C(·)

can be chosen as the Gaussian or the Clayton copula, and the unknown parameter of

the copula, say φ, needs to be determined based on the contemporaneous correlation

among the random variables. A parametric bootstrap-based algorithm can be used

to identify the copula structure and unknown parameter; see S-7 in Fokianos et al.

(2020). In this section, we employ the Gaussian copula with parameter φ = 0.5,

allowing for arbitrary dependence among the marginal Poisson components.
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4.2 Simulation results when group labels are unknown

To assess the finite-sample performance of the MLE when the group labels are un-

known, we apply the EM algorithm to estimate θ0 and γ0 simultaneously. The initial

value is set using the TS estimation method described in Remark 4. Two types

of network structures are considered, each with combinations of network size (i.e.,

N = 20, 50, 100) and sample size (i.e., T = 100, 200, 400). Each case is random-

ly simulated with R = 1000 replicates. Denote the estimates obtained in the rth

simulation as θ̂(r) = (ω̂(r), α̂(r), ρ̂(r), β̂(r))′ and γ̂(r), where 1 ≤ r ≤ R. Moreover,

the group label for each node is estimated as ẑ
(r)
i = arg maxk{ẑ(r)

ik }. The simula-

tion results are summarized in Tables 2–3 for the Erdös–Rényi model and stochastic

blockmodel, respectively.

First, the RMSE is calculated for each estimator. Here, we report the av-

erage RMSE taken over all groups. For example, for the network effect coeffi-

cient ρ, RMSEρ = {(KR)−1
∑K

k=1

∑R
r=1(ρ̂

(r)
k − ρk)

2}1/2. For the group ratio γ,

RMSEγ = {(KR)−1
∑K

k=1

∑R
r=1(γ̂

(r)
k − γk)

2}1/2. Next, we employ the misclassifi-

cation rate (MCR) to evaluate the accuracy of the estimated group label. Specif-

ically, MCR = (NR)−1
∑R

r=1

∑N
i=1 I(ẑ

(r)
i 6= zi), where zi is the true group label

of object i. The last column calculates the network density, which is defined as

{N(N − 1)}−1
∑

i,j aij.

Tables 2–3 show that the RMSEs are all very small for the estimators α̂, ρ̂, β̂,
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and γ̂. For the baseline effect estimator ω̂k, the RMSEs are relatively large. As the

network dimension N and sample size T increase, the RMSEs of θ̂ and γ̂ decrease

toward zero, which implies more accurate estimates and smaller standard deviations.

Moreover, the misclassification rates of the group labels are quite small, and decrease

rapidly as the network size and sample size increase. These facts indicate the good

performance of the MLE and the effectiveness of the EM algorithm.

Table 2: Simulation results for the Erdös–Rényi model. The RMSEs (×102) are

reported with the misclassification rate (%) and the network density (%).

N T ω α ρ β γ MCR Network Density

20

100 39.09 7.24 9.70 18.19 5.28 7.39

13.16%200 23.93 5.14 7.00 11.33 3.90 3.37

400 16.98 4.00 5.73 8.12 3.33 2.95

50

100 27.44 4.72 6.51 14.99 2.85 2.49

7.10%200 19.59 3.37 4.72 8.87 2.51 0.96

400 14.53 2.63 3.21 6.25 2.72 1.07

100

100 21.86 3.96 4.53 12.66 2.45 1.45

3.10%200 14.84 2.60 2.90 7.56 1.80 0.37

400 9.13 1.81 2.05 5.20 0.96 0.19
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Table 3: Simulation results for the stochastic blockmodel. The RMSEs (×102)

for each estimator are reported with the misclassification rate (%) and the network

density (%).

N T ω α ρ β γ MCR Network Density

20

100 43.03 7.00 7.22 16.89 5.42 8.98

13.16%200 28.10 4.60 4.76 10.16 4.27 3.03

400 15.32 3.39 3.61 6.84 2.87 2.02

50

100 26.56 5.12 6.69 15.12 3.46 3.30

6.24%200 15.80 3.11 4.39 8.36 2.29 0.60

400 11.70 2.49 3.22 6.15 2.20 0.73

100

100 22.86 4.03 4.38 12.55 2.20 1.31

2.92%200 15.63 2.74 2.78 7.59 2.39 0.62

400 10.58 1.91 2.03 5.40 1.58 0.25

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0040



4. SIMULATION STUDIES 25

4.3 Model performance when the number of groups K is misspecified

Thus far, we have set the group number as K = 3. However, in reality, the true

number of groups is unknown and could be specified incorrectly. In this subsection,

we study the effects of such a misspecification on the model estimation and prediction

accuracy.

The data are generated under the stochastic blockmodel, and the true number

of groups is K = 3, with the same parameters as those in Table 1. We choose K =

1, 2, 4, 5 as the misspecified number of groups. The network size is N = 20, 50, 100,

and the sample size is T = 100, 200, 400, each with R = 1000 replicates. The total

period of the generated data is T + 20, where the first T periods are used for the

parameter estimation, and the remaining 20 periods are used for the prediction.

For each selected number of groups K, denote Ŷt as the fitting response for

t = 1, . . . , T , and the predicted value for t = T+1, . . . , T+20. Because the parameter

estimation error cannot be defined naturally when the number of groups is incorrect,

we employ the estimation error of the response instead to compare the performance

of the model with different K. The in-sample RMSE for the fitted value is defined

as

RMSEesti =
{

(NT )−1

T∑
t=1

||Ŷt − E(Yt|Ft−1,Z)||2
}1/2

, (4.1)

where E(Yt|Ft−1,Z) is the conditional expectation of the response Yt based on the
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historical and group information, which is equal to λt in our model. The out-of-

sample predictive RMSE is defined as

RMSEpred =
{

(20N)−1

T+20∑
t=T+1

||Ŷt −Yt||2
}1/2

. (4.2)

The mean values of these statistics are summarized in Table 4. We can see that

both the estimation errors and the prediction errors shrink sharply from K ≤ 2 to

the true value K = 3 in all scenarios, and decrease smoothly as K increases. In

particular, the prediction errors remain steady for K ≥ 3. Therefore, in practice, we

could try model fitting with different numbers of groups, say K = 1, . . . , 5, compare

the prediction errors among the candidate models, and then select a reasonable num-

ber of groups K. This confirms the effectiveness of the second K-selection method

in Remark 5. We verify the performance of the first method using simulations; see

the Supplementary Material S2.2.

5. Case study: Chicago Police Department Investigatory Stop Report

(ISR) data

5.1 Data description

Here, we apply the proposed methodology to crime data from Chicago. Chicago is

one of the most racially and socio-economically segregated cities in America, and

its crime rate remains high, even by worldwide standards. We use data from the
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Table 4: Simulation results for different numbers of groups K in stochastic block-

models with 500 replicates. The RMSEesti(×102) and the RMSEpred are reported.

N T
Estimation Prediction

K=1 K=2 K=3 K=4 K=5 K=1 K=2 K=3 K=4 K=5

20

100 50.68 31.30 19.81 20.04 20.97 1.50 1.45 1.43 1.43 1.44

200 49.94 29.08 13.49 14.18 14.97 1.49 1.44 1.42 1.42 1.42

400 49.54 28.02 10.56 10.69 11.34 1.50 1.45 1.42 1.42 1.42

50

100 45.19 27.87 14.33 14.44 15.21 1.38 1.34 1.32 1.32 1.32

200 44.51 26.04 9.56 10.00 10.60 1.39 1.34 1.32 1.32 1.32

400 44.22 25.39 6.68 6.80 7.21 1.39 1.34 1.32 1.32 1.32

100

100 46.55 26.78 12.79 13.15 13.70 1.42 1.37 1.35 1.35 1.35

200 45.90 26.68 8.52 8.96 9.41 1.40 1.36 1.34 1.34 1.34

400 45.59 25.52 5.94 6.21 6.52 1.42 1.37 1.35 1.35 1.35
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Chicago Police Department Investigatory Stop Report (ISR). A police officer can

perform an investigatory stop if there are specific and articulable facts leading to a

suspicion of criminal activity. Thus, the number of investigatory stops in which any

enforcement action was taken can be viewed as a measure of the crime index in an

area. Here, we study the dynamic and spatial patterns of investigatory stops and

how the crime numbers from different districts interact with each other, which will

be helpful in crime prevention and policy making.

We consider the number of daily investigatory stops that involve an enforcement

action (arrest, personal service citation, etc.) in each district in 2019 (T = 365) as the

response Yit. The data set is taken from the public data of the Chicago Police Depart-

ment, named “ISR Data 2019” (https://home.chicagopolice.org/statistics-data/isr-

data/). The Chicago Police Department divides the city into N = 22 districts, as

shown in Fig. 3 (a). The figure shows the criminal homicide distribution by district

in 2019, where darker colors represent districts with relatively more criminal homi-

cide cases. We see that the crime rate is high in the middle and southern part of

Chicago, and relatively low in the northeast areas. Fig. 3 (b) shows the construction

of the symmetric adjacency matrix, which is based on the spatial distribution of the

districts, that is, there is an edge between district i and j if the two districts share

a border. The network density is 19.9%. Larger nodes indicate more investigatory

stops in these districts, and smaller nodes denote fewer stops. We can see that the
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distributions of the investigatory stops and criminal homicide are very similar.
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Figure 3: (a) District division in Chicago (2019 Criminal Homicide by Distric-

t). Note that Nos.13, 21, and 23 are unused. The figure is from the 2019 an-

nual report of the Chicago Police Department (https://home.chicagopolice.org/wp-

content/uploads/2020/09/19AR.pdf). (b) The constructed network structure, where

the node’s color and size denote the level of 2019 yearly investigatory stops (involving

enforcement action). Bigger nodes with deeper colors indicate that a greater number

of investigatory stops occurred in this district.

The time series of the number of daily investigatory stops for Districts 1 and 6 are
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Figure 4: Number of daily investigatory stops in Districts 1 and 6.

plotted in Fig. 4, for illustration. There exists a dependency within the individual

series. The average variance-to-mean ratio for each district is 1.85, and the overall

variance-to-mean ratio is 3.16, which imply over-dispersion in the data.

5.2 Model estimation and interpretation

To determine the number of groups, we follow the two approaches described in Re-

mark 5. First, we fit the data using different numbers of groups, say K = 1, . . . , 5,

and calculate the RMSEs. The first 11 months are employed for model training,

and the last month is used for prediction evaluation. The in-sample RMSEs, defined

as RMSEesti = {(N(T − 31))−1
∑T−31

t=1 ||Ŷt −Yt||2}1/2, are 2.81, 2.78, 2.77, 2.77, and
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2.76 for each K, respectively, and the out-of-sample RMSEs, defined as RMSEpred =

{(31N)−1
∑T

t=T−30 ||Ŷt − Yt||2}1/2, are 2.50, 2.51, 2.51, 2.51, and 2.50, respectively.

It appears that 3, 4, and 5 are reasonable candidates for K. We then try the clus-

tering method, that is, we estimate the coefficient parameter θ at the nodal level,

and apply k-means clustering to partition these N sets of estimates into K groups.

Fig. 5 illustrates the selection of the optimal number of groups based on the elbow

plot, silhouette coefficient, and gap statistic. All measures recommend K = 3. Thus,

K = 3 is chosen in the following analysis.
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Figure 5: The selection of optimal number of groups based on the elbow plot, sil-

houette coefficient, and gap statistic, respectively.

We fit the GNPAR model (2.3) to the data set with K = 3. The results are

summarized in Table 5. For all groups, the estimated regression coefficient on the
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past intensity process β̂ appears to be much bigger than the regression coefficients

on the past observations α̂ and the network effect ρ̂, implying that districts with a

large (small) number of investigatory stops are more likely to have a large (small)

number of investigatory stops in the future.

Table 5: Estimation results for ISR data using model (2.3), with K = 3.

ω̂ α̂ ρ̂ β̂ γ̂

Group 1 0.0503 0.0931 0.0140 0.8650 0.4125

Group 2 1.4464 0.1109 0.1124 0.3281 0.2689

Group 3 0.0527 0.0659 1.9e-04 0.9259 0.3186

Fig. 6 (a) plots the estimated group labels for each district, and Fig. 6 (b) dis-

plays a boxplot for the number of daily investigatory stops Yit in a grouped manner.

The proportion of districts in each group is 0.41, 0.27, and 0.32, respectively.

The three groups show distinct numbers of stops and patterns of dependence.

The districts in Group 3 are mainly in the southwest part of the city, which coincide

with those areas with the highest level of crime risk in Fig. 3. Group 3 has the highest

number of stops, and the intensity of the count does not depend on its surroundings,

but mostly on its past intensity. Group 1 contains the safest areas, and also has

a very small network effect, indicating that it is less likely to be affected by the

surrounding areas. The future stops for Groups 1 and 3 can be predicted reliably
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Figure 6: (a) Estimated group label for each district, marked in different colors and

shapes. The size of each node denotes the level of yearly investigatory stops, with

bigger nodes representing more crimes occurred in that district. (b) Box plot for the

number of daily investigatory stops in a grouped manner.
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using historical information. In contrast, Group 2 has a moderate crime level and

the districts surround high-risk areas. Group 2 has a relatively large network effect,

implying that the intensity of the districts in Group 2 tend to be affected by events

in their neighborhood.

The above observations also imply that although the network structure is sym-

metric, the mutual network effects between each pair of nodes could be different.

The districts in Group 3 that are connected to districts in Group 2 are little affect-

ed by their neighbors, whereas those in Group 2 are more likely to be affected by

events in their neighborhood. We guess that the latent flow network of the popula-

tion of Chicago is directed and asymmetric, but more data are needed to verify this

conjecture.

We also fit the NPAR model (2.2) that does not involve a group structure on the

same data set for comparison. The estimation results are summarized in Table 6.

For each estimator, the standard deviations are computed as HT (θ̂)−1GT (θ̂)HT (θ̂)−1,

where HT and GT are given in (S1.3) and (S1.4), respectively, in the Supplementary

Material. All estimates are statistically significant at the 1% level. Still, the mo-

mentum effect is much greater than the network effect. The results show that the

group-wise information provided by the GNPAR model provides greater insight into

the real data and exhibits better interpretability. The AIC values for the GNPAR

and NPAR models are 37340.57 and 37500.59, respectively, which suggests that the
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Table 6: Estimation results for ISR data using NPAR model (2.2). The estimates,

estimated standard deviations, and p-values for each estimator are summarized.

ω̂ α̂ ρ̂ β̂

Estimate 0.0128 0.0770 0.0033 0.9159

ŜE 0.0014 0.0015 7.1e-05 0.0017

p-value < 0.001 < 0.001 < 0.001 < 0.001

GNPAR model fits the data better.

In summary, we have divided the districts in Chicago into three groups, and

each group has its own spatial and dynamic patterns of investigatory stops. We find

that the spatial distribution of investigatory stops with enforcement action taken

largely agrees with that of actual crime that occurred, confirming the efficiency of

the Investigatory Stop System.

6. Conclusion

We have proposed a GNPAR model. Compared with the traditional multivariate

Poisson autoregressive model, our model has the following merits: (i) it incorporates

network information to reduce the number of unknown parameters and the compu-

tational complexity; (ii) individual heterogeneity is introduced to describe different

nodal behaviors for different groups, which makes the model more flexible and realis-
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tic; and (iii) the estimated group information and network effect can provide insight

into real social problems and lead to better practical interpretations.

Our model can be generalized in several ways. First, we consider the linear

form of the PAR, although the log-linear form of the PAR is also popular, and

can be extended easily to the grouped case. Second, we assume that the network

structure is fixed, but in practice, nodes may drop in and out of the model, and the

association between nodes may change over time. Therefore, a time-varying network

structure is worth studying. Third, additional covariates of the nodes or network

structure information could be incorporated into the model for better fitting and

group estimation. Lastly, in existing methods, the network dimension N is fixed,

and we study the asymptotic properties with increasing time sample size T . If

N is diverging, the stationarity and ergodicity of count time series are unavailable

under current methods, and the estimation could become problematic, because the

parameters grow quickly with the dimension of the matrix. This remains an open

problem, and is left to future research.

Supplementary Material

The online Supplementary Material contains technical proofs of Proposition 1, The-

orem 1, and several useful lemmas, as well as further simulation results when a group

label is known and the performance of the first K-selection method in Remark 5.
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