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Abstract: In this article, we propose the mutual influence regression (MIR) model

to establish the relationship between the mutual influence matrix of actors and

a set of similarity matrices induced by their associated attributes. This model

is able to explain the heterogeneous structure of the mutual influence matrix by

extending the commonly used spatial autoregressive model, while allowing it to

change with time. To facilitate inferences using the MIR, we establish param-

eter estimation, weight matrices selection, and model testing. Specifically, we

employ the quasi-maximum likelihood estimation method to estimate the un-

known regression coefficients. Then, we demonstrate that the resulting estimator

is asymptotically normal, without imposing the normality assumption and while

allowing the number of similarity matrices to diverge. In addition, we introduce

an extended BIC-type criterion for selecting relevant matrices from the divergent
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number of similarity matrices. To assess the adequacy of the proposed model,

we propose an influence matrix test, and develop a novel approach to obtain the

limiting distribution of the test. The results of our simulation studies support our

theoretical findings, and a real example is presented to illustrate the usefulness

of the proposed MIR model.

Key words and phrases: Extended Bayesian Information Criterion, Mutual Influ-

ence Matrix, Similarity Matrices, Spatial Autoregressive Model

1. Introduction

The possibility of relationships between subjects (such as network connec-

tions or spatial interactions) means that the traditional data assumption

of independent and identically distributed (i.i.d.) observations is no longer

valid, and there can be a complex structure of mutual influence between

subjects. Accordingly, understanding such mutual influence has become an

important topic in fields such as business, biology, economics, medicine, so-

ciology, political science, psychology, engineering, and science. For example,

studying the mutual influence between actors can help to identify influen-

tial users within a network (see Trusov, Bodapati, and Bucklin (2010)). In

addition, investigating the mutual influence between geographic regions is

essential for exploring spillover effects in spatial data (see Golgher and Voss

(2016); Zhang and Yu (2018)). For example, this type of analysis is impor-
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tant to our understanding of how COVID-19 spreads between countries and

cities (see Han et al. (2021)). Moreover, quantifying the mutual influence in

mobile social networks can provide important insights related to the design

of social platforms and applications (see Peng et al. (2017)). These exam-

ples motivate us to introduce the mutual influence regression (MIR) model,

with which we can effectively and systematically study mutual influence.

Let Y1t, · · · , Ynt be the responses of n actors observed at time t, for

t = 1, · · · , T . To characterize the mutual influence among the n actors, the

following regression model can be considered for each actor i = 1, · · · , n at

t = 1, · · · , T :

Yit = bi1tY1t + · · ·+ bi(i−1)tY(i−1)t + bi(i+1)Y(i+1)t + · · ·+ bintYnt + εit, (1.1)

where bijt is the effect of Yjt on Yit, and εit is random noise. Define Yt =

(Y1t, · · · , Ynt)> ∈ Rn, εt = (ε1t, · · · , εnt)> ∈ Rn, and Bt = (bijt) ∈ Rn×n,

with biit = 0. Then, we have the matrix form of (1.1),

Yt = BtYt + εt, (1.2)

where Bt is called the mutual influence matrix, which characterizes the

degree of mutual influence among the n actors at time t.

Estimating model (1.2) is a challenging task because it involves a large

number of parameters, specifically, n(n− 1) for each t. The regularization-
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type methods studied by Manresa (2013), de Paula et al. (2019), and Kwok

(2020) are not applicable when n is large. To avoid the probem of high

dimensionality, a common approach uses the spatial autoregressive (SAR)

model, which parameterizes the mutual influence matrix Bt by Bt = ρW (t),

where W (t) is the adjacency matrix of a known network, or a spatial weight

matrix with elements that are a function of geographic or economic dis-

tances. In addition, ρ is the single influence parameter that characterizes

the influence power among the n actors; see, for example, Lee (2004), Zou et

al. (2017), and Huang et al. (2019), and the references therein, for detailed

discussions and the references therein. Accordingly, model (1.2) becomes es-

timable, becasue the number of parameters is greatly reduced from n(n−1)

to one.

Because the SAR model involves only a single influence parameter ρ,

it may not fully capture the influential information of Bt. Hence, Lee and

Liu (2010), Elhorst, Lacombe, and Piras (2012), Lee and Yu (2014), Kwok

(2019), and Lam and Souza (2020) consider higher-order SAR models that

include multiple weight matrices (i.e., W (t)s), along with their associated

parameters. Gupta and Robinson (2015, 2018) extend these models further

by allowing the number of weight matrices to diverge. In general, the ele-

ments of the weight matrix W (t) are functions of the geographic or economic
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distances between the n actors. For example, a typical choice of distance

measure for spatial data is geographic distance (Dou, Parrella, and Yao

(2016); Zhang and Yu (2018); Gao et al. (2019)). In addition, a natural

choice of distance measure for network data is whether there exists a link

between actors using the adjacency matrix (Zhou et al. (2017); Zhu et al.

(2017); Huang et al. (2019)). However, the above weight settings cannot

be applied directly to the higher-order SAR model for non-geographic or

non-network data, because these distance measures are not well defined for

other types of data. Accordingly, how to parameterize the mutual influence

matrix for non-geographic and non-network data is an unsolved problem

that needs further investigation. This motivates us to study the following

two important and challenging subjects: (i) how to define weight matrices

for general non-geographic and non-network data; and (ii) how to assess

the adequacy of the selected weight matrices.

To resolve challenge (i), we propose using similarity matrices induced

from the attributes (e.g., gender or income) as our weight matrices to ac-

commodate non-geographic and non-network data. Specifically, let Z(t) =

(z
(t)
1 , · · · , z(t)

n )> ∈ Rn denote the vector of values obtained from the n ac-

tors for a given attribute. Then, for any two actors j1 and j2, the squared

distance between j1 and j2 can be defined as the distance between z
(t)
j1
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and z
(t)
j2

, for example, (z
(t)
j1
− z

(t)
j2

)2. Following the suggestion of Jenish

and Prucha (2012), we consider the similarity matrix as a nonincreas-

ing function of the squared distance between actors j1 and j2, that is,

A(t) = (a{−(z
(t)
j1
−z(t)

j2
)2})n×n, for some bounded and nondecreasing function

a(·). Furthermore, we can employ the same procedure to create a set of sim-

ilarity matrices A(t) from the actors’ attributes. In practice, these similarity

matrices change with time t. To this end, we introduce time heterogeneous

matrices, A(t), which link naturally to the mutual influence matrix Bt. To

overcome challenge (ii), we introduce an influence matrix test to examine

the adequacy of the selected similarity matrices (i.e., weight matrices) for

the high-dimensional and time-varying mutual influence matrix.

This study makes two main contributions to the literature. The first is

to propose the MIR model, which establishes the relationship between the

mutual influence matrix and a set of similarity matrices induced by the ac-

tors’ attributes. The proposed model not only increases the usefulness of the

traditional SAR model, but also captures the heterogeneous structure of the

mutual influence matrix by allowing it to change with time. Accordingly,

we study the parameter space of the model, and then employ the quasi-

maximum likelihood estimation method (see, e.g., Wooldridge (2002)) to

estimate the unknown regression coefficients. By thoroughly studying the
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convergence of the Hessian matrix in the Frobenius norm, we show that the

resulting estimator is asymptotically normal under some mild conditions,

without imposing the normality assumption, while allowing the number of

similarity matrices to diverge. Because the number of similarity matrices is

diverging, we use an extended BIC-type criterion motivated from Chen and

Chen (2008) to select the relevant matrices. We show that this extended

BIC-type criterion is consistent, based on a novel result of the exponential

tail probability for the general form of quadratic functions.

The second is to introduce an influence matrix test for assessing whether

the mutual influence matrix Bt satisfies a linear structure of the time-

varying weight matrices. Based on this setting, cov(Yt) is a nonlinear func-

tion of the time-varying weight matrices. Thus, our test differs from the

common hypothesis test for testing whether cov(Yt) is a linear structure

of the weight matrices (e.g., see Zheng et al. (2019)). However, under a

nonlinear structure for the mutual influence matrix Bt, however, the quasi-

maximum likelihood estimators (QMLEs) of the regression coefficients can

result in a larger variance in the test statistic. As a result, obtaining the

asymptotic distribution of the test statistic becomes a challenging task, es-

pecially when the number of similarity matrices is diverging. To overcome

such difficulties, we develop a novel approach to show the asymptotic nor-
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mality of a summation of the product of quadratic forms with a diverging

number of similarity matrices.

The remainder of this paper is organized as follows. Section 2 intro-

duces the MIR model, studies the parameter space, and obtains QMLEs

of the regression coefficients, which are asymptotically normal. Section 3

presents the extended BIC-type selection criterion, as well as its consis-

tency property. In addition, we provide a high-dimensional covariance test

to examine the model adequacy, and theoretical properties of this test. Sim-

ulation studies and an empirical example are presented in Sections 4 and

5, respectively. Section 6 concludes the paper. All theoretical proofs are

relegated to the Supplementary Material.

2. MIR Model and Estimation

2.1 Model and Notation

We first construct similarity matrices, before modeling the mutual influ-

ence matrix Bt as a regression function of them. Let Z
(t)
k be the kth n× 1

continuous attribute vector collected at the tth time, for k = 1, · · · , d.

Adapting the approach of Jenish and Prucha (2012) to incorporate the

time effect t, we then obtain the following heterogeneous similarity matri-

ces: A
(t)
k = A

(t)
k (Z

(t)
k ) = (a{−(Z

(t)
kj1
− Z

(t)
kj2

)2})n×n, for j1 = 1, · · · , n and

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0035



2.1 Model and Notation

j2 = 1, · · · , n, where a(·) is a bounded and nondecreasing function, and

Z
(t)
kj1

and Z
(t)
kj2

are the j1th and j2th elements, respectively, of Z
(t)
k . For

continuous attributes, we consider a(·) equal to the exponential function,

with a{−(Z
(t)
kj1
− Z(t)

kj2
)2} = exp{−(Z

(t)
kj1
− Z(t)

kj2
)2} when |Z(t)

kj1
− Z(t)

kj2
| < φ

(t)
k ,

for some prespecified positive constant φ
(t)
k , and a{−(Z

(t)
kj1
− Z

(t)
kj2

)2} =

0 otherwise. That is, once the distance between any two actors, mea-

sured using their associated attributes in Z
(t)
k , exceeds a threshold, the

two actors are not mutually influenced. For discrete attributes Z
(t)
k , we

define a(Z
(t)
kj1
, Z

(t)
kj2

) = 1 if Z
(t)
kj1

and Z
(t)
kj2

belong to the same class, and

a(Z
(t)
kj1
, Z

(t)
kj2

) = 0 otherwise. In this case, A
(t)
k can be regarded as the adja-

cency matrix of the network induced by the attributes Z
(t)
k .

To establish the relationship between the mutual influence matrix and

a set of similarity matrices, following Anderson (1973), Qu, Lindsay, and

Li (2000), and Zheng et al. (2019), we parameterize the mutual influence

matrix Bt as a function of attributes Z
(t)
k (k = 1, · · · , d):

Bt(λ) , Bt(Z
(t)
1 , · · · , Z(t)

d , λ) = λ1W
(t)
1 + · · ·+ λdW

(t)
d , (2.1)

where w(Z
(t)
kj1
, Z

(t)
kj2

) = a(Z
(t)
kj1
, Z

(t)
kj2

)/
∑

j2
a(Z

(t)
kj1
, Z

(t)
kj2

) andW
(t)
k = (w(Z

(t)
kj1
, Z

(t)
kj2

))n×n

is the row-normalized version of A
(t)
k . We call W

(t)
k , for k = 1, · · · , d,

the weight matrix or the similarity matrix. The reason for adopting the

row-normalization method is primarily its wide applicability (see, e.g., Lee
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2.1 Model and Notation

(2004)). In practice, several alternative normalization methods can be con-

sidered, such as column normalization and the normalization based on the

maximum absolute row (or column) sum norm; see Kelejian and Prucha

(2010) for detailed discussions.

Substituting (2.1) into (1.2), we introduce the following MIR model:

Yt = Bt(Z
(t)
1 , · · · , Z(t)

d , λ)Yt + εt =
(
λ1W

(t)
1 + · · ·+ λdW

(t)
d

)
Yt + εt, (2.2)

where λ1, · · · , λd are unknown regression coefficients. This model explains

the structure of the mutual influence matrix Bt at each time t using a set of

similarity matrices W
(t)
k , induced by the covariates Z

(t)
k and their associated

influence parameter λk. For ease of notation, we use Bt rather than Bt(λ)

in the rest of paper. Define ∆t(λ) = In−Bt = In−
(
λ1W

(t)
1 + · · ·+λdW

(t)
d

)
,

where In is the identity matrix of dimension n. Then, model (2.2) leads to

∆t(λ)Yt = εt. To ensure that (2.2) is identifiable, we require that ∆t(λ) be

invertible.

Note that, for d = 1 and W
(t)
1 = W constructed from network or spa-

tial data, the MIR model is the classical SAR model of LeSage and Pace

(2009). Furthermore, by model (2.1), we have bj1j2t = λ1w(Z
(t)
1j1
, Z

(t)
1j2

)+· · ·+

λdw(Z
(t)
dj1
, Z

(t)
dj2

). Accordingly, the influence effect of node j2 on j1, bj1j2t, is

the linear combination of the similarity matrices at time t. Specifically,

for k = 1, · · · , d, the similarity matrix w(Z
(t)
kj1
, Z

(t)
kj2

) measures the distance
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2.1 Model and Notation

between nodes j1 and j2, and its effect is determined by the influence pa-

rameter λk. Suppose λk > 0. Based on the MIR model (2.2), for any

two actors j1 and j2, the smaller the distance between Z
(t)
kj1

and Z
(t)
kj2

, the

larger the influence effect between Yj1t and Yj2t. Therefore, the covariate

Z
(t)
k yields a positive effect on the mutual influence between the responses

of the n actors. In summary, models (2.1) and (2.2) link the mutual influ-

ence matrix with many exogenous attributes to responses, which can lead

to insightful findings and provide practical interpretations.

Remark 1: Our concept is similar to the covariance tapering of Furrer et

al. (2006). For any given t = 1, · · · , T , we follow Furrer et al. (2006) in

assuming that Yit, the response of node i, can be affected by the responses

of nearby nodes. However, our method differs from theirs in two respects.

First, for the geographic data considered in Furrer et al. (2006), the dis-

tance between nodes is well defined. However, for general non-geographic

and non-network data, the “distance” measure is not clearly defined. Mo-

tivated by the concept of the near-epoch dependent (NED) process of Jen-

ish and Prucha (2012), we define the similarity matrices induced by the

distances between the attributes of actors. Second, the goals of the two

methods are different. The goal of our proposed model is to establish the

relationship between the mutual influence matrix of actors and a set of sim-
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2.2 Parameter Estimation

ilarity matrices induced by their associated attributes, whereas Furrer et al.

(2006) focus on the interpolation of large spatial data sets.

2.2 Parameter Estimation

We assume that εt are i.i.d. random variables with mean zero and covari-

ance matrix σ2In, for t = 1, · · · , T , where σ2 is a scaled parameter. By

(2.2), we have Yt = ∆−1
t (λ)εt. Then, E(Yt) = 0 and Var(Yt) , Σt =

σ2∆−1
t (λ){∆>t (λ)}−1, and we obtain the quasi-log-likelihood function, fol-

lowing Lee (2004),

`(θ) = −nT
2

log(2π)− nT

2
log(σ2) +

T∑
t=1

log |det(∆t(λ))| (2.3)

− 1

2σ2

T∑
t=1

Y >t ∆>t (λ)∆t(λ)Yt,

where θ = (λ>, σ2)>.

We next employ the concentrated quasi-likelihood approach to estimate

θ. Specifically, given λ, one can estimate σ2 using

σ̂2(λ) = (nT )−1
∑
t

Y >t ∆>t (λ)∆t(λ)Yt.

Plugging this into (2.3), the resulting quasi-concentrated log-likelihood func-

tion is

`c(λ) = −nT
2

log(2π)− nT

2
− nT

2
log
{
σ̂2(λ)

}
+

T∑
t=1

log |det(∆t(λ))|. (2.4)
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2.2 Parameter Estimation

Accordingly, we obtain the QMLE of λ, which is λ̂ = argmaxλ∈Λ`c(λ), and

Λ is the parameter space. To make λ̂ estimable, it is necessary to specify the

parameter space Λ. From model (2.2) and the definition of ∆t(λ), we require

that, for any λ ∈ Λ, ∆t(λ) is invertible. Note that a sufficient condition for

the invertibility of ∆t(λ) is ‖
∑d

k=1 λkW
(t)
k ‖ < 1, where ‖ · ‖ denotes the L2

(i.e., spectral) norm. Using the fact that W
(t)
k is row-normalized, we have

that ‖
∑d

k=1 λkW
(t)
k ‖ ≤ maxk ‖W (t)

k ‖
∑d

k=1 |λk| ≤
∑d

k=1 |λk|. Accordingly,

a sufficient condition for the invertibility of ∆t(λ) is
∑d

k=1 |λk| < 1. This

leads us to define the parameter space of λ as follows:

Λ =
{
λ :

d∑
k=1

|λk| < 1− ς
}
,

where ς is some sufficiently small positive number. The reason for intro-

ducing ς is to ensure that
∑d

k=1 |λk| is away from one. In practice, we can

set ς to be a small positive number, such as 0.01. This specification does

not affect the parameter estimation, as long as
∑d

k=1 |λk| is smaller than

one.

Using the assumption of σ2 > 0, the parameter space of θ is

Θ =
{
θ = (λ>, σ2)> : λ ∈ Λ and σ2 > 0

}
.

In addition, σ2 can be estimated using σ̂2 = σ̂2(λ̂), which leads to the

QMLE, θ̂ = (λ̂>, σ̂2)>.
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2.2 Parameter Estimation

Denote by θ0 = (λ>0 , σ
2
0)> the unknown true parameter vector, where

λ0 = (λ01, · · · , λ0d)
> ∈ Λ and σ2

0 > 0. By Lemma 3 and Condition (C4)

in Section S1 of the Supplementary Material, the second-order derivative

matrix of `(θ) is negative definite for sufficiently large nT in a small neigh-

borhood of θ0. Accordingly, the parameter estimator θ̂ exists and lies in

Θ. To avoid the problem of local optima when computing the QMLE, we

recommend using a random initialization method (see, e.g., Wang et al.

(2022)). Specifically, we generate many randomized initial values, and find

the solution that yields the maximum value of the objective function. Our

simulation results in Section 5 indicate that this algorithm works satisfac-

torily in various settings. The asymptotic property of θ̂ is given in the

following theorem.

Theorem 1. Under Conditions (C1)–(C5) in Section S1 of the Supple-

mentary Material, as nT → ∞, (nT/d)1/2DI(θ0)(θ̂ − θ0) is asymptoti-

cally normal with mean zero and covariance matrix G(θ0), where D is an

arbitrary M × (d + 1) matrix, with M < ∞ satisfying ‖D‖ < ∞ and

d−1DJ (θ0)D> → G(θ0), and I(θ0) and J (θ0) defined in Condition (C4).

Note that nT → ∞ inTheorem 1 means that either n or T go to in-

finity. To make this theorem practically useful, we need to estimate I(θ0)

and J (θ0) consistently. For k = 1, · · · , d + 1 and l = 1, · · · , d + 1, de-
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2.2 Parameter Estimation

fine InT (θ0) = −(nT )−1E{∂
2`(θ0)
∂θ∂θ>

} , (InT,kl) ∈ R(d+1)×(d+1) and JnT (θ0) =

(nT )−1Var(∂`(θ0)
∂θ

) , (JnT,kl) ∈ R(d+1)×(d+1). By Condition (C4), it suffices

to show that the plug-in estimators InT (θ̂) and JnT (θ̂) are consistent with

I(θ0) and J (θ0), respectively.

After a simple calculation, we have that, for any k = 1, · · · , d and

l = 1, · · · , d,

InT,k(d+1) , −(nT )−1E
{ ∂2`(θ0)

∂λk∂σ2

}
=

1

nTσ2

T∑
t=1

tr(W
(t)
k ∆−1

t (λ0)) =
1

nTσ2
tr(Uk),

InT,kl , −(nT )−1E
{∂2`(θ0)

∂λk∂λl

}
= (nT )−1

T∑
t=1

tr{∆−1>
t (λ0)W

(t)>
k W

(t)
l ∆−1

t (λ0)}

+(nT )−1

T∑
t=1

tr{W (t)
k ∆−1

t (λ0)W
(t)
l ∆−1

t (λ0)} =
2

nT
tr(UkUl),

where Uk = diag
{
s(W

(1)
k ∆−1

t (λ0)), · · · , s(W (T )
k ∆−1

T (λ0))
}
∈ R(nT )×(nT ) and

s(A) = (A+ A>)/2, for any arbitrary matrix A. In addition,

InT,(d+1)(d+1) , −(nT )−1E
{∂2`(θ0)

∂2σ2

}
=

1

2σ4
0

.

Using the result θ̂ →p θ0 in Theorem 1, we have InT (θ̂) →p InT (θ0). This,

together with Condition (C4), implies that InT (θ̂)→p I(θ0).

After algebraic calculation, we next obtain that, for any k = 1, · · · , d

and l = 1, · · · , d,

JnT,k(d+1) , (nT )−1cov
{∂`(θ0)

∂λk
,
∂`(θ0)

∂σ2

}
=

1

2nTσ2
0

{
(µ(4) − 1)tr(Uk)

}
and
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2.2 Parameter Estimation

JnT,kl , (nT )−1cov
{∂`(θ0)

∂λk
,
∂`(θ0)

∂λl

}
=

2

nT
tr(UkUl) +

µ(4) − 3

nT
tr(Uk ⊗ Ul),

where µ(4) = E(ε4it)/σ
4
0 can be estimated as µ̂(4) = (nT )−1

∑n
i=1

∑T
t=1 ε̂

4
it/σ̂

4,

with ε̂t = ∆−1
t (λ̂)Yt and ε̂t = (ε̂1t, · · · , ε̂nt)>. Furthermore,

JnT,(d+1)(d+1) , (nT )−1Var
{∂`(θ0)

∂σ2

}
=

1

4σ4
0

{
2 + (µ(4) − 3)

}
.

As a result, J (θ0) can be consistently estimated using JnT (θ̂). In summary,

we can practically apply Theorem 1 by replacing I(θ0) and J (θ0) with their

corresponding estimators InT (θ̂) and JnT (θ̂), respectively.

According to Theorem 1, we can assess the significance of λ0k, which

allows us to determine the influential similarity matrices, W
(t)
k , induced by

their associated covariates Z
(t)
k , for k = 1, · · · , d. In addition, based on

the estimated λ̂, the mutual influence matrix Bt can be estimated using

B̂t = λ̂1W
(t)
1 + · · · + λ̂dW

(t)
d , the asymptotic property of which is given in

the following theorem.

Theorem 2. Under Conditions (C1)–(C5) in Section S1 of the Supplemen-

tary Material, as nT →∞, supt≤T ‖B̂t −Bt‖ = Op{d(nT )−1/2}.

Theorem 2 indicates that the estimated mutual influence matrix B̂t is con-

sistent uniformly for any t under the L2 norm, as either n or T goes to

infinity, and d = o{(nT )1/4} is from Condition (C5). Hence, B̂t can be a

consistent estimator of Bt, even for finite T . After estimating the mutual
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influence matrix, we next examine how to select the similarity matrices and

test the fitness of Bt.

3. Similarity Matrix Selection and Influence Matrix Test

3.1 Selection Consistency

In the MIR model, the number of similarity matrices is diverging, which

motivates us to consider the similarity matrix selection. Note that assessing

the significance of λ0k separately for k = 1, · · · , d using Theorem 1 can result

in multiple testing problems (see, e.g., Storey et al. 2004 and Fan et al.

2012). In addition, the traditional BIC becomes overly liberal when d is

diverging, as demonstrated by Chen and Chen (2008). Hence, we modify

the extended Bayesian information criterion (EBIC) to select the similarity

matrices. To this end, we define the true model ST = {k : λ0k 6= 0},

which consists of all relevant W
(t)
k . In addition, let SF = {1, · · · , d} denote

the full model, and S represent an arbitrary candidate model, such that

S ⊂ SF . Moreover, let θ̂S = (θ̂k,S : k ∈ S) be the maximum likelihood

estimator of θ0S = (θ0k : k ∈ S) ∈ R|S|. In practice, the true model ST

is unknown. Following Chen and Chen (2008), we propose the following

information criterion for selecting the similarity matrices:

EBICγ(S) = −2`(θ̂S) + |S| log(nT ) + γ|S| log(d),
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3.1 Selection Consistency

for some γ > 0. Based on this criterion, we can select the optimal model,

which is Ŝ = argminSEBICγ(S). Note that the third term in EBICγ(S)

(i.e., γ|S| log(d)) represents the effect of assigning different prior probabil-

ities to candidate models with different numbers of weight matrices, and

the tuning parameter γ characterizes this strength; refer to Chen and Chen

(2008) for a more detailed discussion.

Define A0 = {S : ST ⊂ S, |S| ≤ q} and A1 = {S : ST 6⊂ S, |S| ≤ q} as

the sets of overfitted and underfitted models, respectively, where the size

of any candidate model is no larger than the positive constant q defined

in Condition (C7) in Section S1 of the Supplementary Material. Then, we

obtain the theoretical properties of EBICγ, as follows.

Theorem 3. Under Conditions (C1)–(C7) in Section S1 of the Supplemen-

tary Material, as nT →∞, we have

P
{

min
S∈A1

EBICγ(S) ≤ EBICγ(ST )
}
→ 0,

for any γ > 0, and

P
{

min
S∈A0,S6=ST

EBICγ(S) ≤ EBICγ(ST )
}
→ 0,

for γ > q2C2
w/τ2cmin,3σ

4
0−4, where Cw, cmin,3, and τ2 are finite positive con-

stants defined in Conditions (C3) and (C7) and Lemma 3 (ii), respectively,

in Section S1 of the Supplementary Material.
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3.2 Influence Matrix Test

The above theorem holds as long as either n or T go to infinity. Note

that the assumption mink∈ST |λ0k|{nT/ log(nT )}1/2 → ∞ given in Condi-

tion (C6) is modified from Chen and Chen (2008). This assumption is

essential for showing the selection consistency of the EBIC. Specifically,

we demonstrate that λ̂k for k /∈ ST converges to zero of order (nT )−1/2.

Under some mild conditions, we can further show that maxk/∈ST |λ̂k| =

Op(
√

log(d)/nT ) = Op(
√

log(nT )/nT ). Thus, Condition (C6) indicates

that mink∈ST |λ0k| is larger than maxk/∈ST |λ̂k| asymptotically, even with the

diverging number of similarity matrices. Our simulation results indicate

that γ = 2 performs satisfactorily under various settings. Note that we

employ the popular backward elimination method to implement the EBIC

(see, e.g., Zhang and Wang (2011) and Schelldorfer et al. (2014)). This

approach reduces the computational complexity from 2d to O(d2). Thus,

the EBIC is computable when d is large.

3.2 Influence Matrix Test

To examine the adequacy of model (2.1) for modeling the mutual influence

matrix Bt as a linear combination of weight matrices W
(t)
k (k = 1, · · · , d),
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3.2 Influence Matrix Test

we consider the following hypotheses:

H0 : Bt = λ01W
(t)
1 + · · ·+ λ0dW

(t)
d , for all t = 1, · · · , T, vs.

H1 : Bt 6= λ01W
(t)
1 + · · ·+ λ0dW

(t)
d , for some t = 1, · · · , T. (3.1)

Note that, under H0, we have Σt = σ2
0(In − Bt)

−1(In − B>t )−1, which is

a nonlinear function of the weight matrices W
(t)
k . This differs from the

covariance structure considered in Qu, Lindsay, and Li (2000) and Zheng et

al. (2019), which assumes that Σt is a linear function of the weight matrices.

To test (3.1), we compare the estimates of Bt calculated under the null

and alternative hypotheses. Then, we reject the null hypothesis of (3.1)

if their difference is relatively large. However, the computation of Bt un-

der the alternative hypothesis is infeasible because it involves n(n − 1)T

unknown parameters. Hence, we propose testing (3.1) by comparing the

covariance matrix of Yt under the null and alternative hypotheses. Un-

der H0, we have cov(Yt) = Σt = σ2
0(In − Bt)

−1(In − B>t )−1. Based on

Theorem 2, Bt can be consistently estimated as B̂t = Bt(λ̂). Accordingly,

we can approximate cov(Yt) using Σ̂t = σ̂2(In − B̂t)
−1(In − B̂>t )−1, where

σ̂2 = (nT )−1
∑

t Y
>
t ∆>t (λ̂)∆t(λ̂)Yt. On the other hand, cov(Yt) can be ap-

proximated by its sample version under the alternative, and we expect that

E(YtY
>
t ) ≈ Σ̂t under the null hypothesis, Thus, we use the quadratic loss

function tr(YtY
>
t Σ̂−1

t − In)2 to measure the difference between YtY
>
t and
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3.2 Influence Matrix Test

Σ̂t. It is expected that, under H0, the difference should be small across

t = 1, · · · , T . Hence, we propose the following test statistic:

Tql = (nT )−1

T∑
t=1

tr(YtY
>
t Σ̂−1

t − In)2,

to assess the adequacy of (2.1).

To show the asymptotic distribution of Tql, let µql = n+ µ(4) − 2 and

σ2
ql = (4µ(4) − 4)n/T + 4n−2T−4σ4

0

∑
t1 6=t2 6=t3

∑
k1,l1

∑
k2,l2

[I−1
k1l1

(θ0)I−1
k2l2

(θ0)

×{tr(Ut1k1Ut1k2) + (µ(4) − 3)tr(Ut1k1⊗Ut1k2)}tr(Vt2l1)tr(Vt3l2)]

+(8µ(4) − 8)n−1T−3σ4
0

∑
t1 6=t2

∑
k,l

I−1
kl (θ0)tr(Ut1k)tr(Vt2l), (3.2)

where I−1
kl (θ0) is the klth element of I−1(θ0), Utk = s{W (t)

k ∆−1
t (λ0)}, Vtk =

{∆−1
t (λ0)}>Λ̃tk∆

−1
t (λ0), and Λ̃tk is the matrix form of ∂vec{Σ−1

t (θ0)}/∂θk,

for t1, t2, t3, t = 1, · · · , T , k1, k2, k = 1, · · · , d, and l1, l2, l = 1, · · · , d. Then,

the next theorem presents the asymptotic property of Tql.

Theorem 4. Under the null hypothesis of H0, Conditions (C1)–(C5) in

Section S1 of the Supplementary Material and assuming that n/T → c and

σ2
ql > cσ for some finite positive constants c and cσ, we have

(Tql − µql)/σql →d N(0, 1),

as nT →∞.
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3.2 Influence Matrix Test

Unlike Theorems 1–3, the above result requires that both n and T tend to

infinity with n/T → c, for some finite positive constant c. This condition

is reasonable, because we need the replications of the similarity matrices to

test the adequacy of the MIR model. Note that this condition is commonly

used to test high-dimensional covariance structures (see, e.g., Ledoit and

Wolf (2002) and Zheng et al. (2019)). The above theorem indicates that

the asymptotic variance of Tql is σ2
ql, which is given in (3.2), and it includes

three components. The first component, (4µ(4) − 4)c, is the leading term

of the variance of (nT )−1
∑T

t=1 tr(YtY
>
t Σ−1

t − In)2, obtained by assuming

that λ0 is known. Th final two components are of orders O(d2) and O(d),

respectively, and cannot be ignored. These two nonnegligible components

are mainly induced by the estimator λ̂, which makes the proof of Theo-

rem 4 more complicated. Thus, we develop Lemma 4 in Section S1 of the

Supplementary Material to resolve this challenging task.

To make the above theorem practically useful, one needs to estimate

the two unknown terms µql and σql. Note that µ(4) in µql can be consistently

estimated using µ̂(4), which is defined in the explanation of Theorem 1. As

a result, µ̂ql = n+ µ̂(4)−2 is a consistent estimator of µql. Furthermore, Utk,

Vtk, and I−1
kl (θ0) can be consistently estimated using Ûtk = s(W

(t)
k ∆−1

t (λ̂)),

V̂tk = {∆−1
t (λ̂)}>Λ̂tk∆

−1
t (λ̂), and I−1

kl (θ̂), respectively, for t = 1, · · · , T and
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k, l = 1, · · · , d, where Λ̂tk is the matrix form of ∂vec{Σ−1
t (θ̂)}/∂θk, and

s(A) = (A + A>)/2 for any arbitrary matrix A, defined in Section 2.2.

Accordingly, σ̂ql, obtained by replacing the unknown parameters with their

corresponding estimators, is a consistent estimator of σql. Consequently,

for a given significance level α, we are able to reject the null hypothesis of

H0 if |Tql − µ̂ql| > σ̂qlz1−α/2, where zα stands for the αth quantile of the

standard normal distribution.

4. Simulation Studies

To demonstrate the finite-sample performance of our proposed MIR model,

we conduct the following simulation studies. The similarity matrices A
(t)
k =

(a(Z
(t)
kj1
, Z

(t)
kj2

)) ∈ Rn×n with zero diagonal elements, and a(Z
(t)
kj1
, Z

(t)
kj2

) =

exp{−(Z
(t)
kj1
− Z(t)

kj2
)2} if |Z(t)

kj1
− Z(t)

kj2
| < φ

(t)
k , and is zero otherwise, where

j1 and j2 range from one to n, and Z
(t)
k = (Z

(t)
k1 , · · · , Z

(t)
kn)> are i.i.d.

according to a multivariate normal distribution with mean zero and co-

variance matrix In, for k = 1, · · · , d and t = 1, · · · , T , and φ
(t)
k is se-

lected to control the density of A
(t)
k (i.e., the proportion of nonzero el-

ements), defined as 10/n for any k and t (see, e.g., Zou et al. (2017)).

Accordingly, we obtain W
(t)
k = (w(Z

(t)
kj1
, Z

(t)
kj2

))n×n, with w(Z
(t)
kj1
, Z

(t)
kj2

) =

a(Z
(t)
kj1
, Z

(t)
kj2

)/
∑

j2
a(Z

(t)
kj1
, Z

(t)
kj2

). The random errors εit are i.i.d. and simu-
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lated from three distributions: (i) the standard normal distribution N(0, 1);

(ii) the standardized exponential distribution; and (iii) the mixture distri-

bution 0.9N(0, 5/9) + 0.1N(0, 5). The latter two distributions allow us to

examine the robustness of the parameter estimates to other distributions.

Finally, the response vectors Yt are generated using Yt = (In−λ1W
(t)
1 −· · ·−

λdW
(t)
d )−1εt, for t = 1, · · · , T . Note that the random error εt is independent

of Z
(t)
k , for any k = 1, · · · , d and t = 1, · · · , T .

For each of the random error distributions, we consider three numbers of

observations, T = 25, 50, and 100, three numbers of actors n = 25, 50, and

100, and all of the results are generated with 500 realizations. Because the

results for all three error distributions are qualitatively similar, we present

only those for the standard normal distribution; the results for the mix-

ture normal and standardized exponential distributions are relegated to

the Supplementary Material.

To assess the performance of the parameter estimators, we consider

three numbers of covariates, d = 2, 6, and 12, where d = 2 is borrowed

from Zou et al. (2017)), d = 6 is used in our real-data analysis, and d =

12 is an exploration of larger similarity matrices. Because the simulation

results for d = 12 are qualitatively similar to those for d = 2 and 6, we

report them in the Supplementary Material. The regression coefficients are
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λk = 0.1, for k = 1, · · · , d. In addition, let λ̂(m) = (λ̂
(m)
1 , · · · , λ̂(m)

d )> ∈

Rd be the parameter estimate in the mth realization, obtained using the

proposed QMLE. For each k = 1, · · · , d, we evaluate the average bias of

λ̂
(m)
k as BIAS=500−1

∑
m(λ̂

(m)
k − λk). Using the results of Theorem 1, we

compute the standard error of λ̂
(m)
k using its asymptotic distribution, and

denote it as SE(m). Then, the average of the estimated standard errors

is SE=500−1
∑

m SE(m). To assess the validity of the estimated standard

errors, we also calculate the true standard error using the 500 realizations,

and denote it as SE∗ = 500−1
∑

m(λ̂
(m)
k − λ̄k)2, where λ̄k = 500−1

∑
m λ̂

(m)
k .

Table 1 presents the results for BIAS, SE, and SE∗ over 500 realizations

for k = 1, · · · , d and d = 2 and 6. The results show that the biases of the

parameter estimates are close to zero for any n and T , and they become

smaller as either n or T increases. In addition, the variation of the param-

eter estimate, SD, shows similar findings to those of BIAS. Moreover, the

difference between SD and SD∗ is quite small when either n or T is large.

In summary, Table 1 demonstrates that the asymptotic results obtained in

Theorem 1 are reliable and satisfactory.

We next assess the performance of the proposed EBIC by considering

three sizes of the full model, d = 6, 8, and 12, with the size of the true

model |ST | = 3. We set λk = 0.2, for any k ∈ ST , and λk = 0 otherwise.
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To implement the EBIC, we set γ = 2 in this simulation study. Four

performance measures are used: (i) the average size (AS) of the selected

model |Ŝ|; (ii) the average percentage of the correct fit (CT), I(Ŝ = ST );

(iii) the average true positive rate (TPR), |Ŝ∩ST |/|ST |; and (iv) the average

false positive rate (FPR), |Ŝ ∩ ScT |/|ScT |. Because the results for all three

values of d exhibit a quantitatively similar pattern, we present only the

results for d = 8.

Table 2 shows that the average percentage of correct fit, CT, increases

toward 100% when either n or T becomes large. Note that the CTs are

larger than 70%, even when both n and T are small, that is, n = 25 and

T = 25. Furthermore, the average TPR is 100%, which indicates that the

EBIC is unlikely to select an underfitted model, even when both n and

T are small. In contrast, the average FPR decreases toward zero when

either n or T becomes large. Moreover, the AS of the selected model,

|Ŝ|, approaches the true model size. These results indicate that the EBIC

performs satisfactorily in finite samples.

Lastly, we examine the performance of the proposed goodness of fit test.

We consider a generative model Bt = λ1W
(t)
1 + · · ·+λdW

(t)
d +κEE>, where

E ∈ Rn is a random normal vector of dimension n, with elements that are

i.i.d. and are simulated from a standard normal distribution. The param-
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Table 1: The bias and standard error of the parameter estimates when

the true parameters are λk = 0.1, for k = 1, · · · , d, and the random errors

follow a normal distribution. BIAS: the average bias; SE: the average of

the estimated standard errors from Theorem 1; SE∗: the standard error of

the parameter estimates calculated from 500 realizations.

d = 2 d = 6

n T λ1 λ2 λ1 λ2 λ3 λ4 λ5 λ6

25 25 BIAS -0.009 0.006 -0.001 -0.004 0.001 0.000 -0.002 -0.006

SE 0.054 0.054 0.055 0.055 0.055 0.055 0.055 0.055

SE∗ 0.058 0.055 0.056 0.055 0.054 0.056 0.052 0.052

25 50 BIAS -0.002 -0.004 0.001 -0.006 0.001 -0.002 0.001 -0.001

SE 0.038 0.038 0.039 0.039 0.039 0.039 0.039 0.039

SE∗ 0.039 0.041 0.039 0.042 0.042 0.039 0.038 0.039

25 100 BIAS -0.001 -0.002 0.002 -0.002 -0.000 -0.002 -0.000 0.001

SE 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027

SE∗ 0.027 0.029 0.028 0.027 0.024 0.026 0.027 0.027

50 25 BIAS -0.002 -0.003 -0.003 -0.003 -0.001 -0.000 0.001 -0.000

SE 0.038 0.038 0.037 0.037 0.037 0.037 0.037 0.037

SE∗ 0.038 0.037 0.035 0.034 0.038 0.037 0.033 0.036

50 50 BIAS -0.001 0.000 0.000 -0.000 -0.001 0.001 0.001 -0.005

SE 0.027 0.027 0.026 0.026 0.026 0.026 0.026 0.026

SE∗ 0.025 0.028 0.026 0.028 0.028 0.027 0.027 0.028

50 100 BIAS -0.001 -0.002 -0.001 -0.001 -0.000 -0.000 0.001 0.001

SE 0.019 0.019 0.018 0.018 0.018 0.018 0.018 0.018

SE∗ 0.019 0.019 0.018 0.020 0.019 0.018 0.017 0.019

100 25 BIAS 0.000 -0.001 -0.001 -0.000 -0.003 0.000 0.001 -0.002

SE 0.026 0.027 0.026 0.026 0.026 0.026 0.026 0.026

SE∗ 0.026 0.028 0.026 0.026 0.028 0.026 0.028 0.026

100 50 BIAS -0.001 0.001 0.000 -0.001 0.000 0.001 0.001 0.000

SE 0.019 0.019 0.018 0.018 0.018 0.018 0.018 0.018

SE∗ 0.019 0.018 0.017 0.016 0.018 0.019 0.016 0.018

100 100 BIAS -0.001 -0.001 -0.000 -0.001 0.001 0.002 -0.000 0.001

SE 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013

SE∗ 0.013 0.013 0.012 0.013 0.014 0.012 0.013 0.013
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Table 2: Model selection using the EBIC when d = 8 and the random

errors are normally distributed. AS: the average size of the selected model;

CT: the average percentage of the correct fit; TPR: the average true positive

rate; FPR: the average false positive rate.

n T AS CT TPR FPR

25 25 3.3 72.6 91.8 9.8

50 3.2 77.1 95.7 8.5

100 3.1 81.2 100.0 5.9

50 25 3.2 78.2 94.0 7.9

50 3.1 80.8 97.2 5.8

100 3.1 84.7 100.0 5.1

100 25 3.1 82.3 100.0 6.7

50 3.1 83.8 100.0 5.1

100 3.0 87.7 100.0 4.2
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eter κ is a measure of departure from the null model of H0. Specifically,

κ = 0 corresponds to the null model, and κ > 0 represents alternative mod-

els. Accordingly, the results for κ = 0 represent empirical sizes, whereas

the results for κ > 0 denote empirical powers.

Table 3 indicates that the empirical sizes are slightly conservative when

both n and T are small. However, they approach the significance level of

5% when either n or T becomes large. Furthermore, the empirical powers

increase as either n or T becomes larger. Moreover, they become stronger

when κ increases; in particular the empirical power approaches one when

either n or T is equal to 100 and κ = 0.2. The above findings are robust to

nonnormal error distributions; see Tables S.4 and S.7 in the Supplementary

Material. Consequently, our proposed goodness-of-fit test not only controls

the size well, but is also consistent. Note that the above estimation, selec-

tion, and test findings are also robust to nonnormal error distributions; see

Tables S.2 to S.7 in the Supplementary Material.

5. Real-Data Analysis

5.1 Background and Data

To demonstrate the practical use of our proposed MIR model, we present an

empirical example in whch we explore the mechanism of spillover effects in
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5.1 Background and Data

Table 3: The empirical sizes and powers of the goodness-of-fit test. Here,

κ = 0 corresponds to the null model, and κ > 0 represents alternative

models. The random errors are normally distributed, and the full model

sizes are d = 2 and 6.

d=2 d=6

n T κ=0 κ=0.1 κ=0.2 κ=0 κ=0.1 κ=0.2

25 25 0.030 0.296 0.664 0.024 0.242 0.584

50 0.034 0.528 0.838 0.030 0.424 0.748

100 0.042 0.660 0.910 0.042 0.560 0.822

50 25 0.028 0.434 0.772 0.022 0.342 0.654

50 0.037 0.582 0.878 0.036 0.476 0.786

100 0.044 0.706 0.974 0.048 0.654 0.954

100 25 0.034 0.510 0.976 0.030 0.452 0.964

50 0.040 0.738 1.000 0.034 0.588 0.996

100 0.048 0.910 1.000 0.046 0.830 1.000
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5.1 Background and Data

Chinese mutual funds. The income and profit of a mutual fund are largely

compensated by management fees, which are charged as a fixed proportion

of the total net assets under management. As a result, the variation in

cash flow over time is one of the most influential indices, and is closely

monitored by fund managers. Thus, exploring the cash flow mechanism is

essential (see, e.g., Spitz (1970); Nanda, Wang, and Zheng (2004); Brown

and Wu (2016)). However, past studies have focused mainly on the char-

acteristics of mutual funds that affect their cash flow from a cross-sectional

prospective (see, e.g., Brown and Wu (2016)). In this study, we employ our

proposed MIR model to identify mutual fund characteristics that yield a

mutual influence on fund cash flows (i.e., a spillover effect), from a network

perspective.

To proceed with our study, we collect quarterly data from 2010–2017

on actively managed open-ended mutual funds from the WIND financial

database, one of the most authoritative databases on the Chinese financial

market. After removing funds with missing observations or that had existed

for less than one year, we have n = 90 mutual funds in this empirical study,

with T = 32. The response variable, namely, the cash flow rate of fund i at

time t, is calculated as follows (Nanda, Wang, and Zheng (2004)):

Cit =
TAit − TAi,t−1(1 + rit)

TAit
,
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5.1 Background and Data

where TAit and rit are the total net assets and the return of fund i at time

t, respectively.

We next generate the similarity matrices to explore the mechanism of

spillover effects among mutual funds. To this end, we consider the fol-

lowing five covariates, following Spitz (1970): (i) Size, the logarithm of

the total net assets of fund i at time t − 1; (ii) Age, the logarithm of

the age of fund i at time t − 1; (iii) Return, the return of fund i at time

t − 1; (iv) Alpha, the risk-adjusted return of fund i at time t − 1, mea-

sured by the intercept of the Carhart (1997) four-factor model; and (v)

Volatility, the standard deviation of the weekly return of fund i and time

t− 1. We next generate the similarity matrices. For the Size covariate, we

standardize the data to have zero mean and unit variance, and denote it

as SIZEit for i = 1, · · · , n and t = 1, · · · , T . Then, the similarity matrix

induced by Size is A
(t)
1 = (a(Z

(t)
1j1
, Z

(t)
1j2

)), with zero diagonal elements, and

a(Z
(t)
1j1
, Z

(t)
1j2

) = exp{−(Z
(t)
1j1
−Z(t)

1j2
)2} when |Z(t)

1j1
−Z(t)

1j2
| < φ

(t)
1 for a prespec-

ified finite positive constant φ
(t)
1 , and a(Z

(t)
1j1
, Z

(t)
1j2

) = 0 otherwise. As in the

simulation studies, φ
(t)
1 is selected so that the proportion of nonzero elements

of A
(t)
1 is 10/n. Subsequently, we obtain W

(t)
1 = (w(Z

(t)
1j1
, Z

(t)
1j2

))n×n and

w(Z
(t)
1j1
, Z

(t)
1j2

) = a(Z
(t)
1j1
, Z

(t)
1j2

)/
∑

j2
a(Z

(t)
1j1
, Z

(t)
1j2

), which is the row-normalized

version of A
(t)
1 . Analogously, we can construct the similarity matrices
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5.2 Empirical Results

W
(t)
2 , · · · ,W (t)

5 associated with the remaining four covariates.

5.2 Empirical Results

We first use the adequacy test to assess whether the five covariates are

sufficient to explain the mutual influence matrix. The resulting p-value for

testing the null hypothesis of H0 in (3.1) is 0.660, which is not statistically

significant under the significance level of 5%. This indicates that one or

more of the five covariates in the MIR model provide a good fit to the data.

We next use the proposed QMLE method to estimate the model. Table

5 presents the parameter estimates, standard errors, and their associated

p-values. The results show that the covariates Return, Age, and Volatility

are statistically significant and positive. Note that these three covariates

are all related to the funds’ performance and operating capacity. Hence,

we conclude that the funds’ cash flows are influenced by other funds with

similar performance and operating capacity. Furthermore, the estimate of

Size is positive and statistically significant, which implies that the funds’

cash flows are influenced by other funds of similar size. In other words,

investors tend to invest in larger mutual funds. Moreover, the estimate

of Alpha is positive, but not statistically significant. Hence, investors pay

more attention to raw returns than they do to risk-adjusted returns when
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5.2 Empirical Results

judging the performance of a fund. This may be because raw returns are

easier to observe.

Table 4: The QMLE parameter estimates and associated standard errors

and p-values for the five covariates.

Estimate Standard-Error p-Value

Alpha 0.005 0.027 0.853

Return 0.569 0.019 0.000

Size 0.330 0.014 0.000

Age 0.036 0.018 0.046

Volatility 0.209 0.020 0.000

Subsequently, we use the EBIC to determine the most relevant covari-

ates related to the cash flow, with γ = 2, as in the simulation studies. The

resulting model consists of the covariates Return and Size. This implies that

fund managers tend to learn relevant information from other funds with a

large size and good performance. This finding is consistent with those of

existing studies (see, e.g., Brown, Harlow, and Starks (1996)). To check the

robustness of our results against the selection of φ
(t)
k , we also consider φ

(t)
k ,

so that the proportion of nonzero elements of the weight matrices are 5/n

and 20/n. The results yield similar findings to those for 10/n. Moreover,

we consider the two alternative nondecreasing functions of a(·), namely,
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a(x) = 1/(1 + x2) and a(x) = 1/(1 + x2)2. The estimation results (not

reported here) are almost identical to those in Table 4. Hence, our results

are not affected by these two alternatives. In summary, the MIR model

can provide valuable insight into the mechanism of mutual influence among

mutual funds.

6. Conclusion

We have proposed the MIR model to explore the mechanism of mutual

influence by establishing a relationship between the mutual influence ma-

trix and a set of similarity matrices induced by their associated attributes

among the actors. In addition, we allow the number of similarity matri-

ces to diverge, and establish the theoretical properties of the MIR model’s

estimations, selections, and assessments. The results of our Monte Carlo

studies support our theoretical findings, and we use an empirical example

to show how to use the proposed model in practice.

To broaden the usefulness of the MIR model, we identify six possible

avenues for future research. The first is to allow the regression coefficients

to change with t in order to increase the model flexibility. The second is to

generalize the model by accommodating discrete responses. The third is to

extend the linear regression structure of the MIR model to nonparametric
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or semiparametric settings by changing λkW
(t)
k to g(λk,W

(t)
k ), for some

unknown smooth function g(·). The fourth is to develop a fast algorithm

with a theoretical justification for implementing the MIR model when n or

d is large, such as the one-step estimate proposed by Gupta (2021). The

fifth is to develop a criterion to obtain the optimal γ for the EBIC. Finally,

we would like to introduce a method for choosing the thresholds or cut-off

points of the weight matrices. We believe that these efforts would further

increase the applicability of the MIR model.

Supplementary Material

The online Supplementary Material contains the conditions and proofs of

the theorems, as well as additional simulation settings and results.
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