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Abstract:

Non-stationary spatial phenomena are common in various fields such as climate

and medical image processing. While many methods examine non-stationary spa-

tial covariance structures, more methods are needed for detecting sudden trend

breaks in spatial data. Based on the maximal value of the neighboring discrep-

ancy measurement in the sample space, this paper presents an extreme-value

test statistic to detect trend breaks. A simulation-based algorithm is developed

to detect breaks in spatial trends at various locations, from which the shape of

changing boundaries can be revealed. A simulation study reveals that the test is

very effective in detecting structural breaks, especially when they appear at the

boundary of the sampling region. Analyses of Australian rainfall and lung tumor

data demonstrate the accuracy and wide applicability of the proposed method.

Key words and phrases: change boundary, extreme value theory, inference, long-

run variance.
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1. Introduction

Non-stationary spatial phenomena are commonly detected in biological,

environmental and geographical fields. Non-stationarity can occur in both

spatial trends and covariance structures. While many studies have exam-

ined non-stationary covariance structures, non-stationarity in the spatial

trends needs more attention. One of the most popular methods for the in-

ference of spatial trends is kriging, as discussed by Cressie (1993). However,

when little is known about the covariance structure of the data, kriging

may not be effective. Furthermore, many kriging methods cannot accu-

rately detect a sudden change in trends, such as those reported by Jun and

Stein (2008) for air pollution, Sherwood (2007) for climate change model-

ing, Neill (2012) for infectious disease patterns, and Otto and Schmid (2016)

for computer tomography scans of tumors. It is essential to detect not only

structural breaks, but also specific spatial patterns in the underlying spatial

trend to avoid misspecifications of spatial models.

Specifically, assume that the data are described by the following spatial

model:

Y (s) = µ(s) + ϵ(s) ,

where s denotes a location in the sample space. That is, the data Y at point
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s is composed of the underlying trend µ and the zero-mean error term ϵ.

Without loss of generality, we assume that the dimension of the sample

space is 2. We also assume that the data are observed regularly on a grid.

Thus, the spatial model can be specified as

Y (i) = µ(i/n) + ϵi , (1.1)

where i = (i1, i2) ∈ {1, . . . , n1} × {1, . . . , n2} is the location vector in a 2-

dimensional sample space, n = (n1, n2), with each nj denoting the sample

size of the j-th dimension, j = 1, 2, and i/n = (i1/n1, i2/n2) . Assume that

the error term ϵi can be expressed as a function of an i.i.d. spatially random

process ηi, that is, ϵi = g(ηi−j, j ∈ Z2), where Z is the set of integers. A

typical error process is the spatial linear process ϵi =
∑

j∈Z2 α(i− j)ηj that

has been studied in Hallin et al. (2001) and Lahiri and Robinson (2016),

where {ηj} is a collection of independent zero mean random variables with

a common variance 1. In model (1.1), the sampling structure is the infill

asymptotics given in Cressie (1993), in which the sample space is fixed and

the distance between the neighboring samples tends to zero.

Assume that the trend function µ(·) is piecewise Hölder continuous on

the region I = [0, 1]2 ⊂ R2. If this function does not satisfy the Hölder

continuity condition in any neighbors of a point s ∈ I, then such a point

is considered as a structural break point. Accordingly, the following topics
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are pursued in this paper.

1. We determine whether a trend has no structural breaks on I, that

is, H0: the trend function µ(·) is α-order Hölder continuous on the

region I = [0, 1]2 ⊂ R2, which is written as

H0 : µ(·) ∈ Hα(I).

2. If the null hypothesis H0 is rejected, i.e., structural breaks exist, then

there exists at least one subset B of I, such that mini∈B,j∈Bc |µ(i) −

µ(j)| ≥ C for some constant C > 0. We aim to detect all possible

changing boundaries in the region I that partition I into disjoint

subsets Bi, such that the trend µ(·) is Hölder continuous in each Bi

but not in two adjacent regions Bi∪Bj, i ̸= j. Therefore, the changing

boundary can be expressed as ∂Bi.

Before modelling the structural breaks in the trend, we identify the

source of variability by examining some of the structural assumptions of

the error. As Tang and MacNeill (1993) noted, statistical properties of

change-point estimates can be significantly affected by the presence of serial

correlations. We follow the approach of Wu (2007) and Wu and Zhao (2007)

for the one-dimensional case and that of El Machkouri et al. (2013) for the

higher-dimensional cases to identify the variability in a trend from its error
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structure. To this end, for a given zero-mean stationary error process ϵi =

g(ηi−j, j ∈ Z2), where ηi are i.i.d. random variables and g is a measurable

function, denote an i.i.d. copy of ηi by η′i, and define

η∗i =


ηi, if i ̸= 0 ,

η′i, if i = 0 ,

with ϵ∗i = g(η∗i−j, j ∈ Z2). Then, the physical dependence measure for the

Lp random variable ϵi is given by

δi,p =|| ϵi − ϵ∗i ||p ,

where || · ||p is the Lp norm. Let SΓn =
∑

i∈Γn
ϵi, where the region Γn

satisfies | Γn |→ ∞ and |∂Γn|/|Γn| → 0, with | Γn | denoting the cardinality

of Γn, and ∂Γn denoting the boundary of Γn. If ∆2 =
∑

i∈Z2 δi,2 < ∞,

then the normalised summation of the stationary process ϵi in a region Γn,

i.e., SΓn/
√

| Γn |, converges to a normal distribution with a mean of zero

and variance σ2 =
∑

k∈Z2 E(ϵ0ϵk), which is known as the spatial long-run

variance, see El Machkouri et al. (2013). Moreover, we can approximate the

error process ϵi with σZi, which is the spatial long-run standard deviation

times an i.i.d. standard normal random process. We assume that the error

process satisfies all of the necessary conditions for a normal approximation,

that is, ∆2 < ∞. An important task here is to estimate σ.
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The remainder of this paper is organized as follows. Section 2 dis-

cusses existing methods for detecting breaks in trends, and then presents

an extreme-value type test statistic for detecting breaks in spatial trends

and examines its asymptotic distribution and power under some appropri-

ate conditions. Section 3 devises two long-run variance estimators for the

error term. Section 4 introduces a Monte Carlo-based algorithm to per-

form boundary-change detection. Section 5 details simulations and real

data analyses that demonstrate the efficiency and advantages of our meth-

ods. Section 6 concludes and proposes some directions for future research.

Proofs of the theorems are given in the Supplementary Material.

2. Extreme-Value Test Statistics

2.1 Review of Existing Methods

Many studies have been devoted to detecting the structural breaks for d =

1, that is, in a time series context. For independent error terms, Müller

(1992) and Wu and Chu (1993) proposed test statistics based on kernel-type

smoothers, while Spokoiny (1998) used a local polynomial estimator with

adaptive windows. Similarly, for dependent error terms, various methods

have been developed; see Robinson (1997), Davis et al. (2006) and Chan

et al. (2014). In particular, for situations where the dependence between Yi
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2.1 Review of Existing Methods

and Yj is described by their distance |i − j|, Wu and Zhao (2007) devised

two versions of maximum absolute deviation statistics based on the blocking

technique to test for H0 : µ(·) ∈ H1(I). They proved that the maximum

test statistic converges to a Gumbel distribution under certain regularity

conditions.

When the spatial dimension d ≥ 2, changes can occur in a spatial fash-

ion so the situation is more complicated. For such situations, methods such

as subset scanning in Kulldorff (2001) and Neill (2012), and the likelihood

ratio test for searching of the changing circle with a radius from an origin

(Otto and Schmid (2016)), have been proposed. However, these methods

suffer from different drawbacks. Subset scanning requires checking all of

the possible subsets of the data, meaning that up to 2n scans are needed for

a sample size of n. The likelihood ratio test requires the error terms to be

Gaussian with no spatial dependence structure, and is inapplicable when

more than two changes occur in different places.

Recently, Chan et al. (2022) use an Integrated Squared Error (ISE)

test statistic Gn to derive a test for structural changes based on the sample

means of several local discrepancy measurements. Specifically, with a sam-

ple of size n = n1n2 observed in n1 rows and n2 columns, several local win-

dows of size 2kn× 2kn are employed to scan and detect changes in different
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2.1 Review of Existing Methods

parts of the data. The local windows are centered at (xi, yj) := (ikn, jkn)

for i = 1, . . . ,m1 = [n1/kn] and j = 1, . . . ,m2 = [n2/kn], and they measure

the local discrepancy around the point (xi, yi) by

Tn(xi, yj) =
4∑

l=1

{Sl(xi, yj)− Sl+1(xi, yj)}2 , (2.1)

where Sl(xi, yj) =
1
k2n

∑
(p,q)∈Dl(xi,yj)

Y (p, q), l = 1, ..., 4, are respectively the

sample mean of observations on the sized kn × kn blocks,

D1(xi, yj) = [xi, xi + kn)× [yj, yj + kn) , D2(xi, yj) = [xi − kn, xi)× [yj, yj + kn) ,

D3(xi, yj) = [xi − kn, xi)× [yj − kn, yj) , D4(xi, yj) = [xi, xi + kn)× [yj − kn, yj) ,

in the four quadrants originating from (xi, yj), and S5(xi, yj) = S1(xi, yj);

see Figure 1 for an illustration. Note that there are in total m1 ×m2 local

windows and they are overlapping. The test statistic which combines all

local discrepancies is defined by

Gn =
k2
n

n

m1∑
i=0

m2∑
j=0

Tn(xi, yj) . (2.2)

Clearly, a large value of Gn indicates large discrepancies between spatial

regions, and thus favors the alternative hypothesis that structure breaks

exist.
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2.2 Extreme-Value Test Statistics

Figure 1: Blocks Dl(i0, j0), l = 1, . . . , 4, for a point (i0, j0).

2.2 Extreme-Value Test Statistics

Although the ISE test statistic is useful for testing structural breaks, it has

some drawbacks. Many applications suffer from the limitation of physical

constraints in the sense that when a structural break in spatial trends oc-

curs near the edge of the sampling region, there may not be enough data

points on both sides of the change boundary (see the Australian rainfall

example in Section 5.4). In such cases, the ISE method mostly captures

local discrepancies in the region where no structural breaks occur. Thus,

the pattern of actual structural breaks is difficult to detect. On the other

hand, observe that the discrepancy measurements {Tn} for a stationary pro-
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2.2 Extreme-Value Test Statistics

cess and that for a piecewise stationary process are different mainly at the

extremes. This is because the extremely large discrepancy measurements

mainly come from the neighbors of the change points which constitute a

small proportion of the spatial points. We therefore devise a test statistic

based on the extremal observations as

Ĝn = max
1≤i≤m1;1≤j≤m2

Tn(xi, yj) . (2.3)

By using extreme value theory and the strong invariance principle, the

following theorem asserts that the extreme-value statistic Ĝn converges to

a Gumbel distribution after a proper normalization.

Theorem 1.

i. Suppose that µ(·) ∈ Hα(I).

(a) If the error process {ϵi} satisfies ∆4 < ∞, || ϵi−ϵ∗i ||4= O(n−1(i1i2)
−2)

for i = (i1, i2) ∈ Z2, and

k(1+α)
n /min(n1, n2)

α + k−1
n n1/4 log n → 0 , (2.4)

as n, n1, n2 → ∞, then

(k2
nĜn/σ

2 − dm)/6 →d Λ , (2.5)

where σ2 =
∑

k∈Z2 E(ϵ0ϵk) is the spatial long-run variance, dn =

6[log n+ 1
3
log(log n)− log Γ(4/3)], Λ is a standard Gumbel distri-
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2.2 Extreme-Value Test Statistics

bution with distribution function Λ(x) = exp(−e−x) and Γ(x) =∫∞
0

tx−1e−t dt is the Gamma function.

(b) If the error is a linear process ϵi =
∑

j∈Z2 α(i− j)ηj satisfying∑
j∈Z2 α(i− j)2 < ∞ and α(i− j) = O(n−1e−max(|j1|,|j2|)), ηi ∈

Lq, q > 4, and

k(1+α)
n /min(n1, n2)

α + k−1
n n1/q → 0 , (2.6)

as n, n1, n2 → ∞, then (2.5) holds.

ii. If there exists a constant C > 0 and a subset B of I = [0, 1]2 with

a positive Lebesgue measure such that minx∈B,y∈Bc |µ(x)− µ(y)| ≥ C,

and (2.4) holds, then the power of the extreme-value test approaches

1 as n, n1, n2 → ∞.

Remark 1. Theorem 1(i) provides two sets of conditions that give the

convergence result (2.5). In both of the conditions (2.4) and (2.6), the first

term indicates that the block length kn should be small enough to ensure

that the differences between several approximated values of Brownian mo-

tions are controlled, whereas the second term indicates that kn should be

large enough so that the Brownian motion approximation in a single block

is valid. See Wu and Zhao (2007) for similar conditions in time series con-

text. Theorem 1i(a) imposes weaker dependence assumptions, and a proper
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2.2 Extreme-Value Test Statistics

choice of kn exists only when the Hölder exponent α > 1. That is, if the

trend is a constant. For example, when n1 = n2 =
√
n and α = 2.1, one

possible choice of kn is An1/3 for some A > 0. In Theorem 1i(b), the specific

assumption of linear error process allows an optimal kn to be determined

when α ≤ 1. In Section 5, several simulations and data analyses show that

the test is effective when kn = An1/3 with A ranges in [0.2, 0.4].

Remark 2. For the power analysis in Theorem 1 ii), the jump size C can

be relaxed as Cn which depends on the sample size n. In particular, the

arguments in the proof remain valid for log n = o(nC2
n). That is, even if

the break size Cn → 0 as n → ∞, the power of the test can still approach

1.

Remark 3. The block lengths in the two dimensions can be taken to be

different, say kn,1 and kn,2, to allow for different sampling rates in each

dimension. By similar approaches given in the proofs of the Supplementary

Materials, we can show that when

k
α+1/2
n,1 k

1/2
n,2n

−α
1 + k

α+1/2
n,2 k

1/2
n,1n

−α
2 + (kn,1kn,2)

−1/2n1/4 log n → 0 , (2.7)

holds as n, n1, n2 → ∞, then

(kn,1kn,2Ĝn/σ
2 − dm′)/6 →d Λ ,
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where m′ = [ n
kn,1kn,2

], and σ, dn, Λ are defined in Theorem 1. Similarly,

under the local alternative with a jump size Cn, the power of the test

approaches 1 if log n = o(nC2
n) and (2.7) holds.

3. Long-Run Variance Estimator

Use of the extreme-value statistics requires an adequate estimate of the

spatial long-run variance σ2 =
∑

k∈Z2 E(ϵ0ϵk), where ϵis are the underlying

zero-mean error terms. Several methods have been presented when the

spatial dimension is one, see Herrmann et al. (1992) and Hall et al. (1990).

In addition, a bootstrap method was proposed by Bühlmann (2002) and a

subsampling method was introduced in Politis et al. (1999). More recently,

Wu and Zhao (2007) applied a blocking method to devise several estimators

for the one-dimensional long-run variance when the trend function µ is

Lipschitz continuous. Some of these methods also exhibit good consistency

when µ has multiple structural breaks.

Following the blocking approach, we devise two spatial long-run vari-

ance estimators based on the mean and the median of the local discrepancy

measurements respectively as follows:

σ̂2
1 =

k2
n

8(m1 − 1)(m2 − 1)

m1−1∑
i=1

m2−1∑
j=1

Tn(xi, yj) , (3.1)
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and

σ̂2
2 =

k2
n

M0

median{Tn(xi, yj); i = 1, . . . ,m1, j = 1, . . . ,m2} , (3.2)

where M0 ≈ 6.1 is the median of the Gamma distribution Γ(4/3, 1/6).

We use σ̂2
2 in the following applications as it is a median of the local

discrepancy and is thus more robust when one encounters large jumps in

the trend µ, whereas σ̂2
1 is more vulnerable as it uses all of the data in the

sampling region. In particular, under some regularity conditions, we prove

the following theorem.

Theorem 2. Under the same conditions in Theorem 1(i), σ̂2
2 → σ2 in

probability.

Remark 4. The long-run variance estimator also requires a choice of block

length kn. The same choice of kn in Section 2 can be adopted. Alternatively,

in our simulation studies, we find that for a fixed sample size n, the esti-

mator of long-run variance first increases with kn, then remains relatively

stable for an interval of kn, before finally exploding when the block length

approaches the number of rows n1 or the number of columns n2. Thus, we

can obtain an estimator σ̂2
2 of long-run variance by choosing a kn which lies

in the interval where the estimator remains stable.
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4. Boundary Change Detection

In many applications, we are not only interested in detecting the existence

of structural breaks, but also in determining locations of the stationary

regions. In this section, we introduce a method for estimating the changing

boundaries based on the local discrepancy measure Tn in (2.1) when the

error process {ϵi} satisfies the assumptions given in Section 1, that is, ∆2 <

∞.

Compared with one-dimensional change point detection problems, spa-

tial change-boundaries have many more directions, shapes and complicated

dependence structures. Thus, an analytic approximation of the change-

boundary seems unachievable. Alternatively, using the Monte Carlo-based

hypothesis testing method of Kulldorff (1999), we develop a boundary es-

timation procedure as follows. The key idea is to compare the test statis-

tic computed from the observed process with the simulated test statistics

computed from random replications of a spatial white noise process which

mimics the observed process. The comparison is made for each spatial point

in the sampling region. Thus, adjustments for dependent multiple testings

are needed to control the false discovery rate. The detected change-points

are finally interpolated to constitute the estimated boundary. The detailed

algorithm is described as follows.
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The algorithm for estimating change-boundaries

1. Generate 2kn × 2kn i.i.d. standard normal samples Z11, ..., Z2kn,2kn ,

and compute Tn,Z =
∑4

i=1(Si+1,Z − Si,Z)
2, where S1,Z =

∑
ZijI(i >

kn, j > kn), S2,Z =
∑

ZijI(i ≤ kn, j > kn), S3,Z =
∑

ZijI(i ≤ kn, j ≤

kn), S4,Z =
∑

ZijI(i > kn, j ≤ kn), and S5,Z = S1,Z .

2. Repeat Step 1 for r times to obtain a series of {Tn,Z} to serve as the

benchmark under the null hypothesis. Denote the order statistics of

the series as Tn,Z(1)
≤ ... ≤ Tn,Z(r)

.

3. Let σ̂2 = σ̂2
1 or σ̂2

2 be an estimator of the long-run variance σ2 for the

observed process Y as discussed in Section 3. For each of {(i, j); i =

1, . . . , n1, j = 1, . . . , n2}, compute Tn((xi, yj)) and the correspond-

ing p-value pi,j = 1
r

∑r
k=1 I(Tn((xi, yj))/σ̂

2 < Tn,Z(k)
). Let the order

statistics of the p-values be p(1) ≤ ... ≤ p(n), and denote the sample

point associated with p(v) as (xiv , yjv).

4. Apply the adjustment given in Benjamini and Hochberg (1995) and

Benjamini and Yekutieli (2001). Specifically, for v = 1, ..., n and a

prescribed desired false discovery rate α, if p(v) < α v
n
, then we declare

that (iv, jv) is a change point with a confidence level of (1− α).

5. Connect all of the change points with line segments and draw the
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estimated change boundary.

Some examples of the use of this approach are discussed in Section 5.

5. Simulations and Data Analysis

In this section, we present simulation studies and data analyses to investi-

gate the performance of the proposed spatial long-run variance estimator,

extreme-value test, and change-boundary estimation algorithm. Moreover,

two real data sets drawn from climate and medical imaging studies are

analysed to demonstrate the applicability of our method. In all subse-

quent discussions in this section, a spatial location is generally denoted as

s = (s1, s2), and the sample size is denoted as n = n1n2, that is, the samples

are distributed in n1 rows and n2 columns.

5.1 Estimation of Spatial Long-Run Variance

First, we investigate the performance of the spatial long-run variance es-

timators. We consider the following four error processes {ϵij} that are

generated from a standard normal white noise process {ηij}.

1. An i.i.d. error process: ϵij = ηij ;

2. A weakly dependent spatial AR (1,1) process: ϵij = 0.1ϵi−1,j+0.2ϵi,j−1+

0.1ϵi−1,j−1 +
√
1− 0.42ηij ;

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0029



5.2 Testing for Structural Breaks: Different Locations

3. A strongly dependent spatial AR(1,1) process: ϵij = 0.3ϵi−1,j+0.2ϵi,j−1+

0.3ϵi−1,j−1 +
√
1− 0.82ηij .

4. A negatively dependent spatial AR (1,1) process: ϵij = −0.1ϵi−1,j −

0.2ϵi,j−1 − 0.1ϵi−1,j−1 +
√
1− 0.42ηij ;

As the sum of the absolute values of the coefficients of the AR terms is less

than 1, these four processes are stationary. However, the third process has

a stronger dependence and is closer to nonstationarity since the sum of the

absolute values of the coefficients is closer to 1.

We apply σ̂2
1 and σ̂2

2 to estimate the long-run variance of each of the

process under sample size n1 = n2 = 900 and 100 replications. The block

length is taken as kn = 0.2n1/3 ≈ 18. The means and standard deviations

of the estimated long-run variances are reported in Table 1. It can be seen

that the two methods have similar performance.

5.2 Testing for Structural Breaks: Different Locations

Here, we apply our extreme-value test statistic (2.2), termed as “Max SE”

herein, to test the hypothesis: H0 : µ(s) = 0 versus H1 : µ(s) = j ·I(s ∈ R),

where j is the jump size, I(·) is the indicator function, and R is a spatial

region. We consider two types of structural breaks of the mean function

that appear in different locations in the sampling region, namely,
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5.2 Testing for Structural Breaks: Different Locations

Table 1: Estimated long-run variance value.

Estimator σ̂2
1 σ̂2

2

error type mean s.d. mean s.d.

i.i.d. error 1.002 0.028 0.999 0.033

Weakly dependent error 2.089 0.061 2.139 0.079

Strongly dependent error 5.696 0.145 5.885 0.162

Negatively dependent error 0.446 0.013 0.455 0.014

1. a center-jump: µ(s) = j · I(1/3 < s1, s2 < 2/3); and

2. an edge-jump: µ(s) = j · I(s1, s2 ≥ 122/125),

where s = (s1, s2), s1, s2 ∈ [0, 1]. In the center-jump case, the structural

breaks appear in a large area in the center, whereas in the edge-jump case,

the structural breaks appear in a small area near the edge of the sampling

region. The error processes are the four types given in Section 5.1.

As indicated in Wu and Zhao (2007), the extreme-value-type conver-

gence is slow and it needs a large sample size n to reach an accurate approx-

imation. As an alternative, by employing the idea of the strong invariance

principle given in Wu (2007) and El Machkouri et al. (2013), we apply the

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0029



5.2 Testing for Structural Breaks: Different Locations

following Monte-Carlo simulation steps to conduct the test:

� Generate n = n1n2 i.i.d. samples Z11, ..., Zn1n2 from the standard nor-

mal distribution, and obtain Ĝn,Z using (2.2) with the pre-specified

block length kn. Repeat the process 104 times to obtain the critical

value defined as the empirical quantile CV = q0.95(Ĝn,Z) with signifi-

cant level 0.95.

� Compute the Ĝn for the observed spatial process Y (s), and reject the

null hypothesis if Ĝn/σ
2 > CV .

Besides the proposed extreme-value test, we perform the ISE test in

Chan et al. (2022) as a benchmark. For each test, the significant level is set

to be 0.05, and 1000 replications are performed. Also, the block length kn is

set as 0.4 3
√
n1n2. Table 2 reports the sizes (false rejection ratios) of the ISE

test and the extreme-value test under the null hypothesis for sample sizes

(n1, n2) = (125,125) and (250,250), under different error processes. Observe

that the false positive rates of ISE and Max SE tests using the Monte Carlo

approach are similar in different cases. We can also see that strong positive

dependent errors yield a smaller test size, and negative dependent errors

yield a larger false discovery rate. Meanwhile, the extreme-value asymptotic

approach does not perform well when the sample size is small.
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5.2 Testing for Structural Breaks: Different Locations

Table 2: Test size of ISE and Max SE test under different error structures

and sample sizes.

Sample size (n1,n2) (125,125) (250,250)

Error type

Test
ISE

Max SE

(MC)

Max SE

(Asym.)

ISE
Max SE

(MC)

Max SE

(Asym.)

i.i.d. 0.049 0.050 0.031 0.054 0.053 0.034

Weakly dependent 0.040 0.042 0.058 0.047 0.046 0.054

Strongly dependent 0.035 0.028 0.013 0.043 0.032 0.040

Negatively dependent 0.082 0.067 0.100 0.058 0.057 0.078
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5.2 Testing for Structural Breaks: Different Locations

Next, Figure 2 presents the power of the test against jump sizes in

the edge-jump cases. Figure 3 presents the power of the test against jump

sizes in the center-jump cases with sample size (n1, n2) = (250, 250). The

results for the center-jump cases with sample size (n1, n2) = (125, 125) do

not contain much new information and thus are reported in Section S2 of

the Supplementary Material.

The results show that the extreme-value test and the ISE test are both

effective when a break region is large and located at the center of the sam-

pling region. The extreme-value test statistic, however, is much more ef-

fective than the ISE test statistic when structural breaks occur in a small

area near the boundary of the sampling region.

Moreover, the effectiveness of the extreme-value test statistic increases

as the sample size increases because the invariance principle approximation

becomes more accurate. Observe also that the stronger dependence of the

error structure has an undesirable effect on the test. In particular, the

rejection threshold, which equals q0.95(Ĝn,Z) · σ2, is much higher than that

in the i.i.d. and weak-dependence cases. Hence, the jump of the trend

needs to be large enough to be detectable. From the perspective of test

size, we draw similar conclusions: the size is accurate in the i.i.d., and

weak-dependence cases but decays in the strong-dependence error cases.
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5.2 Testing for Structural Breaks: Different Locations

(a) Sample size (n1, n2) = (125, 125). (b) Sample size (n1, n2) = (250, 250).

Figure 2: Test power against jump size for the i.i.d., weakly dependent,

strongly dependent and negatively dependent error term, edge-jump case.
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5.3 Pointwise Detection: Identifying the Change Boundary

Furthermore, there is a slight tradeoff between the extreme-value test

and the ISE test, as the latter can detect small jumps in a large central

area more efficiently than the former (Figure 3). Nevertheless, compared

with the superiority of the extreme-value test statistic in the edge-jump

cases (Figure 2), the advantage of ISE test only exists in a narrower range

of jump sizes.

We also consider the issue of the block length (kn) selection. Figure 4

reports the power of the Max SE test with sample size 250×250 for various

jump sizes, error structures, and kn. Specifically, block lengths of kn =10

(≈ 0.25n1/3), 15 (≈ 0.4n1/3) and 20 (≈ 0.5n1/3) are explored. It can be seen

that the test gives similar results when using different kn. Nevertheless, it

seems that for a larger structural break region (center-jump case), a larger

kn gives better performance, whereas for a smaller structural break region

(edge-jump case), a smaller kn gives slightly better performance.

5.3 Pointwise Detection: Identifying the Change Boundary

We consider the following example, in which the two-dimensional trend µ

is set as µ(s) =


0 , if s21 + (s2 − 1)2 < 1/4 ,

5 , if s21 + (s2 − 1)2 ≥ 1/4 and s1 + s2 > 1 ,

10 , otherwise ,

see Figure 5. In this setting, the trend µ has multiple breaks, and the
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5.3 Pointwise Detection: Identifying the Change Boundary

(a) i.i.d. error. (b) Weak dependence.

(c) Strong dependence. (d) Negative dependence.

Figure 3: Tradeoff in center-jump case.
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5.3 Pointwise Detection: Identifying the Change Boundary

(a) Center-jump case. (b) Edge-jump case.

Figure 4: Test power against jump size for various kn using the extreme-

value test statistic.
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5.4 Real Data Analysis: Australian Rainfall

Figure 5: Actual boundary for trends µ(s) = 0, µ(s) = 5, and µ(s) = 10.

shape of the change boundary consists of both straight lines and curves.

The error term is set to be i.i.d., weakly dependent, strongly dependent

or negatively dependent, as discussed above. The sample size is taken as

(n1, n2) = (100, 100), and the block length is set as kn = 0.2 3
√
n1n2. Using

the method presented in Section 4, we estimate the change boundary by

connecting the brown points; see Figure 6. Observe that the estimated

change boundaries are consistent with the true ones.

5.4 Real Data Analysis: Australian Rainfall

An example of a dataset that shows structural breaks in the edges of sam-

pling regions is the annual rainfall data of Australia, which can be found at
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5.4 Real Data Analysis: Australian Rainfall

(a) i.i.d. error. (b) Weak dependence.

(c) Strong dependence. (d) Negative dependence.

Figure 6: Estimated boundary for the trends in the 0.95 confidence level.
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5.4 Real Data Analysis: Australian Rainfall

http://www.bom.gov.au/. The map in Figure 7 depicts the average annual

rainfall for the period 1961 to 1990. The data takes the form of a matrix

with 691 rows and 886 columns in row-major order. That is, it is written

row by row starting at the northern-most row (row 1), and in each row, the

data points are arranged from west to east.

Since the altitude of inland Australia is high, the moist air coming from

the ocean is not able to reach the large interior part of the continent. Hence,

rainfall is low in the inland but is concentrated in the small coastal areas of

Australia. The structural difference in rainfall patterns between the inland

and coastal areas is an obvious example of structural breaks in a spatial

trend near the boundary of a sampling region.

To analyze the rainfall data, we first obtain a robust long-run variance

estimate of the error structure. Specially, we standardize the data by sub-

tracting the mean and dividing by the standard deviation, and compute

the long-run variance estimator as σ̂2
2 = 73.9. This value is relatively high

since precipitation data usually has a very strong local dependence, and

thus induces a large long-run variance.

Next, following the discussions in Remark 1, we conduct the Max SE

and ISE tests under block lengths kn = [An1/3] for several choices of A

ranging from 0.25 to 0.35. For each of the Max SE and ISE methods, we
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5.4 Real Data Analysis: Australian Rainfall

Table 3: The critical values Gn,Z and Ĝn,Z , test statistics Gn and Ĝn under

different block lengths kn for Australian rainfall data.

Coefficient: A 0.25 0.27 0.29 0.32 0.35

Block length: kn 21 23 25 27 30

Critical Value (ISE): Gn,Z 0.019 0.016 0.014 0.012 0.010

Critical Value (Max SE): Ĝn,Z 0.191 0.162 0.131 0.111 0.089

Test Statistic (ISE): Gn/σ̂
2
2 0.006 0.007 0.007 0.007 0.009

Test Statistic (Max SE): Ĝn/σ̂
2
2 0.236 0.216 0.211 0.260 0.141

compute the test statistic for the standardized rainfall data and employ the

simulation method in Section 5.2 to obtain critical values at 99% significance

level. The results are reported in Table 3. It can be seen that under all

block lengths, the ISE test fails to reject the null hypothesis of no structural

breaks, while the Max SE test rejects the null hypothesis and suggests the

existence of structural breaks. This is in line with the findings in Section

5 that the proposed Max SE test is more effective in detecting breaks near

the boundary of the spatial area.

Moreover, we apply the change-boundary estimation procedure to the

data, Figure 8(a) provides a heatmap of the rainfall data and Figure 8(b)
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5.4 Real Data Analysis: Australian Rainfall

shows the estimated change boundaries. The estimated change boundaries

are mainly along the east coast of Australia, which run from Cairns to Mel-

bourne and bound the rainfall-abundant areas. In the south and southwest,

the detected changes are near populated cities such as Adelaide and Perth.

Indeed, these cities are the only populated areas in Southern and Western

Australia because they are the only areas with adequate precipitation. In

the far south, southwest and northwest, change boundaries are also detected

in the sea far from the coast. These boundaries are due to an artifact in

the data set that the values in those regions are all zeros.

To further justify the assumption of piecewise Hölder continuous of

the spatial trends, we show that there is no trend break in each of the

estimated regions using the Max SE test. Since the proposed Max SE test

and all relevant tests for trend stationarity in the existing literature, up to

our knowledge, focus on rectangular regions, we conduct the Max SE test

on some rectangular regions which cover most of Australian inland; see the

red, blue and yellow rectangular areas in Figure 8(b). Using a block length

of 1/3n1/3, the values of the test statistic Ĝn/σ̂
2
2 and the critical values at

99% significance level are reported in Table 4. All the test statistics are

smaller than the respective critical values in these cases, which implies a

stationary rainfall trend in inland Australia. Moreover, observations along
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5.5 Real Data Analysis: Lung-Tumor Computed Tomography Scans

Table 4: The critical values Ĝn,Z , test statistics Ĝn of different rectangle

areas in Figure 8(b).

Lines of rectangle long dashed short dashed dotted

Sample size: n1 × n2 320× 670 490× 300 430×420

Block length: 1/3n1/3 20 18 19

Critical Value (Max SE): Ĝn,Z 0.191 0.230 0.211

Test Statistic (Max SE): Ĝn/σ̂
2
2 0.066 0.025 0.126

two paths across Australia are depicted in Figures 8c) and 8d). Observe

that both paths indicate continuity in the level of the observations within

each estimated region, with sharp changes at the estimated boundaries.

5.5 Real Data Analysis: Lung-Tumor Computed Tomography

Scans

Medical images play a significant role in diagnosis and monitoring of dis-

eases. As it is relatively time-consuming to rely on health professionals to

manually examine medical images, an automatic framework for processing

medical images would be useful. A medical image can be regarded as a

two-dimensional or a three-dimensional sample space of the human body.
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5.5 Real Data Analysis: Lung-Tumor Computed Tomography Scans

The boundary change detection algorithm is thus applicable in this context.

We consider the data reported by Otto and Schmid (2016), which con-

sists of six left-lung computed tomography (CT) scans, presented in Figures

9 and 10. The space between each slice is 5 mm, and each slice contains

100× 100 voxels, where the gap between each row and column of voxels is

0.5 mm. Each CT scan is transformed into a 100 × 100 matrix valued in

[0,1], where the value represents the greyscale of a given voxel. When this

value is higher, the voxel is lighter in color, which suggests that the passage

of X-rays is blocked in this voxel. Figure 12 shows that in addition to some

(physically normal) structural breaks at the edge of the scans, there is a

significant tumor in Slices 2 to 5.

We aim to use our boundary-detecting algorithm to determine the lo-

cation and scale of this tumor. First, for each of Slices 1–6, we apply σ̂2
2

to estimate the underlying long-run variance of the CT scans. The estima-

tor shows consistency between different slides with the estimated long-run

variances taking values around 0.01. We denote the left-bottom point of

each figure as sample index (1,1), then set the block length as 0.2 3
√
n1n2.

and set the significance level as 0.99 to conduct our boundary estimation.

The brown curves in Figure 11 represent the estimated change bound-

aries. The shape and boundary of the tumor is clearly visible in Slices
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2-5. From this detected structural change, we estimate that the tumor has

a diameter of ∼20 mm, and is centered at approximately (52, 43, 3.5),

which is consistent with the results obtained by Otto and Schmid (2016)

using likelihood estimation. Moreover, in addition to the tumor, other (nor-

mal) structural changes in the lung (e.g. the location of blood vessels and

esophagus) are detected by our method, demonstrating that the proposed

procedure may be a viable tool for medical diagnosis.

6. Conclusions

The extreme-valued test statistic introduced in this paper is a powerful tool

for detecting structural breaks in spatial trends, as it concentrates on the

largest fluctuations in sampling data and excludes interference from other

non-broken areas. Using extreme value theory, we derive the asymptotic

distribution for such test statistics. Moreover, we show that the spatial long-

run variance estimator based on the median of the discrepancy measure can

aid the use of this test, as it only requires half of the sampling region to be

stable for the median of the discrepancy to remain robust. Furthermore,

we develop a Monte-Carlo based algorithm and apply it to determine the

shape of change boundaries. Simulations and real data analyses illustrate

that these methods are widely applicable.
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Several important aspects: finding the optimal blocking length kn;

deriving other extreme-value type tests to deduce general conditions in

asymptotic properties; and the applicability of our method for irregularly-

distributed spatial data, need to be further explored. These challenging

problems will be dealt with in future works.

Supplementary Material

Proofs of the main theorems and figures about the power of the test

against jump sizes for the center-jump cases are presented in Supplementary

Materials.
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(a) Entire country.

(b) Structural breaks in the edge.

Figure 7: Australian rainfall.
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(a) Heatmap for Australian rainfall data. (b) Estimated change boundaries.

(c) Rainfall along 17◦S. (d) Rainfall along 145◦E.

Figure 8: Heatmaps, estimated change boundaries and some 1-d examples

of Australian rainfall. In the heatmap (a), the left-bottom point is (45◦ S,

112◦ E) and the right-upper point is (10.5◦ S, 155◦ E).
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Figure 9: Location of tumor and CT slices.

(a) Slice 1. (b) Slice 2. (c) Slice 3.

(d) Slice 4. (e) Slice 5. (f) Slice 6.

Figure 10: Lung tumor CT scans.
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(a) Slice 1 (b) Slice 2 (c) Slice 3

(d) Slice 4 (e) Slice 5 (f) Slice 6

Figure 11: Predicted lung-tumor change boundaries.
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