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Abstract: We examine the normal approximation to the distribution of the mod-

ified likelihood root, an inferential tool of higher-order asymptotic theory, for

the linear exponential and location-scale families. We show that the modified

likelihood root, r⋆, can be expressed as a location and scale adjustment to the

likelihood root, r, to Op(n
−3/2), and more generally can be expressed as a poly-

nomial in r. We discuss some extensions of these results to the high-dimensional

regime.

Key words and phrases: Statistical Inference, Higher-Order Asymptotics, High-

Dimensional Statistics, Location-Scale Families, Linear Exponential Families.

1. Introduction

The use of p-values, although sometimes controversial, has become a key

part of modern statistical science, for example as a building block in various

multiple testing procedures used in statistical genetics, where large num-

bers of hypotheses are simultaneously considered. In most circumstances
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p-values are not exact but are calculated from the limiting distribution of a

test statistic. The usual test statistics provided in statistical software, such

as the likelihood ratio test, Wald test and score test, all have a common

known limiting distribution and are accurate to the first order, meaning

that the approximation error is O(n−1/2). However, in the small sample

setting or when the number of nuisance parameters is high relative to the

number of observations, this trio of tests may perform poorly. An improved

test statistic, r⋆, a modified version of the likelihood root, can be used

for likelihood-based inference for scalar parameters of interest. It produces

more accurate p-values than the first order approximations of the test statis-

tics. The accuracy of the p-values generated by r⋆ can be quite remarkable

as demonstrated in Brazzale et al. (2007, §3.2) and the references within,

see also Pierce and Peters (1992) for a discussion focused on the linear

exponential family.

Given the importance that p-values play in statistical inference, the

exact mechanism through which r⋆ generates more accurate p-values war-

rants a careful examination. We provide insight into the behaviour of r⋆ by

expressing it as a formal asymptotic expansion, showing that it is asymp-

totically linear in the likelihood root, which we introduce below.

We assume the data y = (y1, · · · , yn)⊤ are generated independently
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from a model parametrized by θ = (ψ, λ) where ψ is a scalar parameter

of interest, and λ is the nuisance parameter. We denote the log-likelihood

function by l(ψ, λ; y), and the data generating parameter by θ0 = (ψ0, λ0).

Let λ̂ψ denotes the constrained maximum likelihood estimate; i.e. the value

of λ that maximises the log-likelihood function for fixed ψ. The profile log-

likelihood function,

lp(ψ; y) := sup
λ
l(ψ, λ; y) = l(ψ, λ̂ψ; y),

accounts for the presence of nuisance parameters through constrained maxi-

mization. Under suitable regularity conditions (Barndorff-Nielsen and Cox,

1994, §3.4),

w(ψ0; y) := 2{lp(ψ̂)− lp(ψ0)}
d−→ χ2

1,

where χ2
1 is a random variable distributed as chi-squared with one degree

of freedom. Equivalently, the log-likelihood root

r(ψ0; y) := sign(ψ̂ − ψ0)[2{lp(ψ̂; y)− lp(ψ0; y)}]
1
2

d−→ Z, (1.1)

where the random variable Z has the standard normal distribution (Barndorff-

Nielsen and Cox, 1994, §2.3).

By adding a correction term to r, we obtain the modified likelihood

root

r⋆(ψ0; y) = r(ψ0; y) +
1

r(ψ0; y)
log

{
q(ψ0; y)

r(ψ0; y)

}
; (1.2)
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the specific form of q depends on the model. It has been shown under

regularity conditions that the normal approximation to the distribution of

r⋆ is accurate to O(n−3/2) (Barndorff-Nielsen and Cox, 1994), whereas the

normal approximation to the distribution of r is only accurate to O(n−1/2).

For a vector parameter of interest, the Bartlett correction is used instead

of r⋆. It is defined by dividing the likelihood ratio:

wcorr := w(ψ0; y)/{1 +Bcorr(ψ0)}

such that E[wcorr(ψ0; y)] = dim(ψ0){1+O(n−2)}. When the model contains

no nuisance parameters and ψ is one-dimensional, the Bartlett correction

simultaneously adjusts for the bias in location and scale of r by correcting

for the non-centrality parameter of the limiting chi-squared distribution and

can be related to r⋆, specifically if the location bias of r is Ã/n1/2 and the

scale bias is {1 + B̃/n}, then the Bartlett correction will be (1 + B̃/n)2 +

Ã2/n.

The mechanism through which r⋆ achieves this accuracy is not entirely

transparent. Cakmak et al. (1998) show that in models with no nuisance

parameters, r⋆ corrects for the location and scale bias present in r up to the

third order. We generalize this result to models with nuisance parameters,

showing that even for such models the modified likelihood root is equivalent

to a location and scale correction to r up to the third order, see Remark
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2. We then further show that the adjustment factor can be expressed as a

polynomial in r up to arbitrary order. We discuss the asymptotic behaviour

of r⋆ when the number of parameters increases with the number of obser-

vations. We show that the adjustment factor (1/r) log(q/r) is potentially

of the same asymptotic order as r in the high-dimensional regime, agreeing

with results in Tang and Reid (2020), where results for the modified like-

lihood root was obtained for general models. The expansions obtained in

this paper provides a more precise characterization of the asymptotic be-

haviour of the adjustments than what is available in Tang and Reid (2020),

as we derive a polynomial asymptotic series for the adjustments up to an

arbitrary order. These expansions also allow us to extend the results of

Cakmak et al. (1998) to models with nuisance parameters whereas the re-

sults in Tang and Reid (2020) do not allow for this extension. We also show

that r = q + q2A/n1/2 + q3B/n + Op(n
−3/2), in the linear exponential and

location scale families, where A and B are Op(1), and may depend on y and

θ0. This result provides a simple proof that the normal approximation to

the distribution of r⋆ has relative error O(n−3/2) in the presence of nuisance

parameters (Brazzale et al., 2007; Davison and Reid, 2021, §8.5), which to

our knowledge has not yet been established.

We focus our analysis on the location-scale and linear exponential fam-
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ily, as the expression for q in (1.2) is explicitly available. We begin with

background details on r⋆, the linear exponential family and the location-

scale family in §2. We present our main theorem in §3 showing that the

adjustment factor can be expressed as a polynomial in r up to arbitrary or-

der, and following that a corollary that r can be expressed as a third order

polynomial in q in §3.1. Most of the discussions involved will be in the fixed

dimensional case, where p is held constant and n→ ∞. The discussion for

the high-dimensional case is contained in §4, while certain technical details

are deferred to §6.4 and §6.5. We present some simulations in §5 which

illustrate the accuracy of the approximations to r⋆ and conclude with some

additional proof details in §6.

2. Background and Assumptions

We begin by introducing some notation. Derivatives of the log-likelihood

function l are denoted by subscripts, for example lψλλ(θ) represents the

matrix whose components are [lψλλ(θ)]rs = ∂3l(θ)/∂ψ∂λr∂λs. We use j to

denote the observed information matrix, j(θ) = −lθθ(θ); subscripts placed

on j denote sub-matrices of j and we let jp = −d2lp(ψ)/dψ2. A tilde on

any quantity denotes evaluation at the constrained maximum likelihood

estimate, (ψ, λ̂ψ), for example ȷ̃λλ = jλλ(ψ, λ̂ψ), and a hat denotes that it is
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evaluated at the global maximum likelihood estimate, θ̂, thus ȷ̂ = j(ψ̂, λ̂) =

j(θ̂).

We use d/dψ to denote the total derivative with respect to ψ and ∂/∂ψ

to denote the partial derivative with respect to ψ. The k-th derivative of

the profile log-likelihood is ζk(ψ) = dklp(ψ)/dψ
k and k-th total derivative

of the log determinant of the information matrix is

γk(ψ) = dk log{|jλλ(ψ, λ̂ψ)|}/dψk.

We define the k-th quasi-cumulant of the profile log-likelihood function as:

κk(ψ) =
ζk(ψ)

{−ζ2(ψ)}k/2
. (2.1)

In the sequel we suppress the dependence of functions on the data y in the

notation, for example r(ψ0; y) will simply be written as r(ψ0). We write

σmax(A) for the maximum singular value of a matrix A. The following

inequalities will prove useful, for a square matrices A, and a positive definite

square matrix B of compatible dimensions:

| tr(AB)| ≤ ∥A∥F ∥B∥F , | tr(AB)| ≤ σmax(A) tr(B),

where ∥A∥F = (
∑

i,j A
2
ij)

1/2 is the Frobenius norm and the latter inequality

is a consequence of the von Neumann trace inequality (Mirsky, 1975). For

a vector v, we let ∥v∥p denote the Lp norm.

We assume the following conditions on the model:
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2.1 Linear Exponential Family

Assumption 1. The k-th order partial derivatives of l(θ; y) with respect

to the elements of θ are Op(n) for all integers k > 1 when evaluated at θ̂.

Assumption 2. θ̂ − θ0 = Op(n
−1/2)

Assumption 3. The eigenvalues of ȷ̂/n, j(θ̂ψ0)/n, nȷ̂
−1 and nj−1(θ̂ψ0) are

positive and Op(1).

Assumption 1 ensures that the likelihood derivatives grow at the usual

rate when evaluated at the maximum likelihood estimate. Assumption 2

states that the maximum likelihood estimate is n1/2-consistent for the true

parameter value: this rate of consistency is typically achieved for most well

behaved parametric models (van der Vaart, 1998, §5). Finally Assumption

3 ensures that the asymptotic covariance matrix for the maximum likelihood

estimate is well defined. For the regression problems that we consider, As-

sumption 3 is equivalent to a restriction on the eigenvalues on the Gramian

matrix, X⊤X, as well as a lower bound on the variance of the fitted values.

2.1 Linear Exponential Family

Let X be a n × p matrix of covariates with (i, j) entry, xi,j, and i-th row

x⊤i . We assume the density of yi is a member of the full exponential family
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2.1 Linear Exponential Family

with log-likelihood function

l(ψ, λ; yi, xi) = ψu(xi,p, yi) + λ⊤v(xi, yi)− ci(ψ, λ) + h(xi, yi),

where u(xi,p, yi) is a scalar sufficient statistic associated with ψ and

v(xi, yi) = {v1(xi,1, yi), · · · , vp−1(xi,p−1, yi)}⊤,

is the vector of sufficient statistics associated with the nuisance parameters.

In this model, q in (1.2) takes the form

q(ψ0) = t(ψ0)ρ(ψ0), where

t(ψ0) = (ψ̂ − ψ0)j
1/2
p (ψ̂), (2.2)

is the Wald statistic for testing ψ = ψ0 and

ρ(ψ0) = {|jλλ(θ̂)|/|jλλ(θ̂ψ0)|}1/2,

where jλλ(θ) is the (p− 1)× (p− 1) sub-matrix of j(θ) associated with the

nuisance parameters (Brazzale et al., 2007, §8.6.1). We follow Pierce and

Peters (1992) and write

r⋆ = r + rnp + rinf ,

where rnp is a nuisance parameter adjustment and rinf is an information

adjustment. This partitioning of the adjustments will be helpful to the

analysis of the asymptotic behaviour of r⋆. For this model,

rnp =
1

r
log(ρ), rinf =

1

r
log

(
t

r

)
. (2.3)
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2.2 Location-Scale Family

2.2 Location-Scale Family

For a linear regression model based on the location scale-family, the model

is

yi = x⊤i β + σϵi,

where the errors ϵi are assumed independent and identically distributed

from a known distribution with continuous density f(ϵ). The model is

parametrized by θ = (β, σ), we assume that the parameter of interest, ψ, is

a component of β. For this model

q(ψ0) = s(ψ0)/ρ(ψ0), where

s(ψ0) = ζ1(ψ0)/j
1/2
p (ψ̂), (2.4)

s is the standard score test statistic and ρ is defined above. For this model

rnp = −1

r
log(ρ), rinf =

1

r
log
(s
r

)
.

2.3 General Models

For general models the expression for q in (1.2) (see Reid (2003)) does not

simplify to the Wald or score test, but depends on the derivatives of the

log-likelihood in the sample space as well as in the parameter space.
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3. Formal expansions of rinf and rnp

In this section we obtain formal asymptotic expansions of rinf and rnp,

which detail the relationship between r and r⋆ in the linear exponential

and location scale families, respectively. Analogous results to Theorem 1

and 2 were obtained by Cakmak et al. (1998) in the case of no nuisance

parameters. The expansions for rinf and rnp show that r⋆ is asymptotically

equivalent to a location and scale adjustment to the likelihood root r.

We begin by establishing relationships between r, t and s.

Lemma 1. Under Assumptions 1–3, for r, t and s defined in (1.1), (2.2)

and (2.4):

t = r

{
1 +

A1

n1/2
r +

B1

n
r2 +Op(n

−3/2)

}
,

s = t

{
1 +

A2

n1/2
t+

B2

n
t2 +Op(n

−3/2)

}
,

where

A1 = −n
1/2

6
κ3(ψ̂), B1 =

n

24
κ4(ψ̂) +

5n

72
κ23(ψ̂),

A2 =
n1/2κ3(ψ̂)

2
, B2 = −nκ4(ψ̂)

6
. (3.1)

Proof. We begin by deriving the relationship between r and t, defined in

(1.1) and (2.2) :

r2 = 2
{
lp(ψ̂)− lp(ψ0)

}
,
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= 2
{
(ψ̂ − ψ0)ζ1(ψ̂)−

(ψ̂ − ψ0)
2

2
ζ2(ψ̂)

+
(ψ̂ − ψ0)

3

6
ζ3(ψ̂) +

(ψ̂ − ψ0)
4

24
ζ4(ψ̂) + +Op(n

−3/2)
}

= t2
{
1 +

κ3(ψ̂)

3
t− κ4(ψ̂)

12
t2 +Op(n

−3/2)
}
.

The Taylor-series expansion for (1 + x)1/2 gives

r = t
{
1 +

κ3(ψ̂)

6
t− κ4(ψ̂)

24
t2 − κ23(ψ̂)

72
t2 +Op(n

−3/2)
}
,

which implies

t = r
{
1 +

κ3(ψ̂)

6
t− κ4(ψ̂)

24
t2 − κ23(ψ̂)

72
t2 +Op(n

−3/2)
}−1

= r
{
1− κ3(ψ̂)

6
t+

κ4(ψ̂)

24
t2 +

κ23(ψ̂)

72
t2 +

κ23(ψ̂)

36
t2 +Op(n

−3/2)
}

= r
{
1− κ3(ψ̂)

6
t+

κ4(ψ̂)

24
t2 +

κ23(ψ̂)

24
t2 +Op(n

−3/2)
}
. (3.2)

As t appears on both sides of the equation, we iteratively solve by substi-

tution

t = r
[
1− κ3(ψ̂)

6

{(
1− κ3(ψ̂)

6
t
)
r
}
+

1

24

{
κ23(ψ̂) + κ4(ψ̂)

}
r2 +Op(n

−3/2)
]

(3.3)

= r
[
1− κ3(ψ̂)

6
r +

{κ23(ψ̂)
36

r
}
t+

1

24

{
κ23(ψ̂) + κ4(ψ̂)

}
r2 +Op(n

−3/2)
]

= r
{
1− κ3(ψ̂)

6
r +

5

72
κ23(ψ̂)r

2 +
1

24
κ4(ψ̂)r

2 +Op(n
−3/2)

}
(3.4)

For the expansion of s, we have

s =
ζ1(ψ0)

j
1/2
p (ψ̂)

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0016



=
1

j
1/2
p (ψ̂)

{
ζ1(ψ̂)− ζ2(ψ̂)(ψ̂ − ψ0) +

ζ3(ψ̂)

2
(ψ̂ − ψ0)

2 − ζ4(ψ̂)

6
(ψ̂ − ψ0)

3 +Op(n
−3/2)

}
= t+

κ3(ψ̂)

2
t2 − κ4(ψ̂)

6
t3 +Op(n

−3/2).

Remark 1. It is known that the Wald, score and the likelihood root statis-

tics are first order equivalent; they converge to the same limit as n → ∞

(Cox and Hinkley, 1974). The above expansions provide more precise state-

ments.

Theorem 1. Under Assumptions 1–3, for the linear exponential family,

rinf = −1

6
κ3(ψ̂) +

{ 1

24
κ4(ψ̂) +

4

72
κ23(ψ̂)

}
r +Op(n

−3/2), (3.5)

and for the location-scale family

rinf =
1

3
κ3(ψ̂)−

{ 3

24
κ4(ψ̂) +

11

72
κ23(ψ̂)

}
r +Op(n

−3/2). (3.6)

Theorem 2. Under Assumptions 1–3, for the linear exponential family

rnp =
1

2

γ1(ψ̂)

jp(ψ̂)1/2
−
{ 1

12

κ3(ψ̂)γ1(ψ̂)

jp(ψ̂)1/2
− 1

4

γ2(ψ̂)

jp(ψ̂)

}
r +Op(n

−3/2), (3.7)

and for the location-scale family

rnp = −1

2

γ1(ψ̂)

jp(ψ̂)1/2
+
{ 1

12

κ3(ψ̂)γ1(ψ̂)

jp(ψ̂)1/2
− 1

4

γ2(ψ̂)

jp(ψ̂)

}
r +Op(n

−3/2). (3.8)
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Proof of Theorems 1 and 2. Linear Exponential Family: Using (2.3)

and Lemma 1 for the linear exponential family we have

rinf =
1

r
log
( t
r

)
=

A1

n1/2
+

(
B1

n
− A2

1

2n

)
r +Op(n

−3/2)

where substitution by 3.1 give 3.5 A similar expansion can be developed for

rnp:

rnp =
1

2r
log
{ |jλλ(ψ̂, λ̂)|
|jλλ(ψ0, λ̂ψ0)|

}
=

1

2r

[
γ1(ψ̂)

{−ζ2(ψ̂)}1/2
t+

γ2(ψ̂)

2ζ2(ψ̂)
t2 +Op

(
n−3/2

)]

=
1

2

[(
1 +

A1

n1/2
r
) γ1(ψ̂)

{−ζ2(ψ̂)}1/2
+

γ2(ψ̂)

2ζ2(ψ̂)
r +Op

(
n−3/2

)]
(3.9)

using Lemma 1; substitution (3.7) gives the result.

Location-Scale Family: The expansion for the nuisance parameter

adjustment rnp is the same as in the exponential family, except for a change

in sign. From Lemma 1,

rinf =
1

r
log
[1
r

{
t+

κ3(ψ̂)

2
t2 − κ4(ψ̂)

6
t3 +Op(n

−3/2)
}]

=
1

r
log
[
1 +

A2

n1/2
r +

B2

n
r2 +

κ3(ψ̂)

2

{
1 +

A2

n1/2
r
}2

r − κ4(ψ̂)

6
r2 +Op(n

−3/2)
]

=
1

3
κ3(ψ̂)−

{ 3

24
κ4(ψ̂) +

11

72
κ23(ψ̂)

}
r +Op(n

−3/2),

substitution (3.7) gives the result.
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Remark 2. From Theorems 2 and 1, for the linear exponential family,

r⋆ = −1

6
κ3(ψ̂) +

1

2

γ1(ψ̂)

{−ζ2(ψ̂)}1/2

+

[
1 +

1

24
κ4(ψ̂) +

4

72
κ23(ψ̂)−

1

12

κ3(ψ̂)γ1(ψ̂)

{−ζ2(ψ̂)}1/2
− 1

4

γ2(ψ̂)

ζ2(ψ̂)

]
r +Op(n

−3/2),

and for the location-scale family,

r⋆ =
1

3
κ3(ψ̂)−

1

2

γ1(ψ̂)

{−ζ2(ψ̂)}1/2

+

[
1− 3

24
κ4(ψ̂)−

11

72
κ23(ψ̂) +

1

12

κ3(ψ̂)γ1(ψ̂)

{−ζ2(ψ̂)}1/2
+

1

4

γ2(ψ̂)

ζ2(ψ̂)

]
r +Op(n

−3/2).

From these, we obtain for both families:

r⋆ =
r − Ã/n1/2

{1 + B̃/n}
+Op(n

−3/2),

which shows that r⋆ is a location and scaling correction of r up to the third

order, where Ã and B̃ are Op(1).

Corollary 1. Under Assumptions 1–3, the expansions of rinf and rnp can

be extended to arbitrary order:

rinf =
m∑
k=1

Ak
nk/2

rk−1 +Op(n
−(m+1)/2), rnp =

m∑
k=1

Bk

nk/2
rk−1 +Op(n

−(m+1)/2),

for arbitrary m ∈ N where the coefficients Ak = Op(1) and Bk = Op(1).

From the substitution argument employed in (3.3) to (3.4), we can

deduce that for the expansion of rinf the coefficient of rk−1 is Op(1) and

Ak = nk/2
k∑
j=1

∑
{i1,··· ,ij}∈Sj

Zj({i1, · · · , ij})
j∏
l=1

κ̂il ,
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k Ak Bk Ck

1 n1/2κ3(ψ̂)
n1/2γ1(ψ̂)

{−ζ2(ψ̂)}1/2
A1

2 nκ23(ψ̂), nκ4(ψ̂)
n1/2C1γ1(ψ̂)

{−ζ2(ψ̂)}1/2
, nγ2(ψ̂)

−ζ2(ψ̂)
A2, A

2
1

3 n3/2κ33(ψ̂),

n3/2κ3(ψ̂)κ4(ψ̂),

n3/2κ5(ψ̂)

C2n1/2γ1(ψ̂)

{−ζ2(ψ̂)}1/2
, C1nγ2(ψ̂)

−ζ2(ψ̂)
,

n3/2γ3(ψ̂)

{−ζ2(ψ̂)}3/2

A3,A1A2, A
3
1

4 n2κ43(ψ̂), n
2κ23(ψ̂)κ4(ψ̂),

n2κ24(ψ̂), n
2κ5(ψ̂)κ3(ψ̂),

n2κ6(ψ̂)

C3n1/2γ1(ψ̂)

{−ζ2(ψ̂)}1/2
, C2nγ2(ψ̂)

{−ζ2(ψ̂)}
,

C1n3/2γ3(ψ̂)

{−ζ2(ψ̂)}3/2
, n2γ4(ψ̂)

{−ζ2(ψ̂)}2

A4, A3A1, A
2
2, A

2
1, A2, A

4
1

Table 1: The first four terms of Ak, Bk and Ck. The order of the κj terms

are given in Lemma 2 in §6.1.

where indices {i1, · · · , ij} take values in {3, · · · , k + 2}, Sj is the set of all

indices such that
∑j

l=1(il − 2) = k, and Zj(·) is a combinatorial constant.

From equation (3.9), when grouping terms in powers of r, we obtain

the following expressions for the coefficients in the expansion of rnp:

Bk =
k−1∑
j=0

n(k−j)/2Cj
γk−j(ψ̂)

{−ζ2(ψ̂)}(k−j)/2
and Ck =

k∑
m=1

∑
{i1,··· ,im}∈Dm,k

m∏
l=1

Ail ,

where C0 = 1, the indices {i1, · · · , im} range from 1 to k and the set Dm,k

is the set of all indices {i1, · · · , im} such that
∑m

l=1 il = k. Some examples
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3.1 r as a series in q

of terms which appear in Ak, Bk and Ck are given in Table 1.

3.1 r as a series in q

In this section, we obtain an expansion of r as a polynomial in q, which

is key to the proof of the accuracy of the normal approximation to the

distribution of r⋆, see Brazzale et al. (2007, §8) and Davison and Reid

(2021, §4.4). To our knowledge this has not been established for models

with nuisance parameters, and is a direct consequence of Lemma 1. We do

not give the exact forms of the coefficients which appear in the polynomial

expansion, as they are not as simple as those in §3.

Theorem 3. Under Assumptions 1–3, for the linear exponential and location-

scale families,

r = q +
A

n1/2
q2 +

B

n
q3 +Op

(
n−3/2

)
,

where A and B are Op(1).

We defer the proof to §6.1.

4. r⋆ in high dimensions

We discuss the behaviour of r⋆ in the setting where p increases with n.

This asymptotic paradigm is increasingly relevant as datasets observed in-

crease in size not only in the number of samples but also in the number of
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covariates. It is known that first-order inferential procedures, such as the

likelihood ratio test, have poor finite sample performance in this setting

(Sur and Candès, 2019). We quantify the order of the adjustment factors

rinf and rnp in this asymptotic regime, and show that the order is poten-

tially much larger than in the p-fixed asymptotic regime. In fact, in the

p-fixed asymptotic regime, the order of both adjustments are Op(n
−1/2),

this is no longer the case if p is allowed to increase. The results agree with

those in Tang and Reid (2020), which uses a different approach that relies

on a direct expansion of the adjustment factor.

For this regime we assume a weaker set of assumptions, Assumptions

4 – 8, these new Assumptions are given and discussed in §6.4 and are

easier to satisfy in the high-dimensional setting. In addition we assume

that jψλ(θ) = Op(n
1/2) for all θ ∈ {θ : ∥θ − θ0∥2 < δ} for some δ > 0.

This follows if the parametrization (ψ, λ) is orthogonal in the Cox and Reid

(1987) sense, and an even stronger version of this is possible in the linear

exponential family. We restrict the size of the eigenvalues of the third

likelihood derivative matrices and we require that p = o(n1/2/ log(n)). A

discussion of the technical aspects of these results is provided in §6.4 and

§6.5.
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4.1 Linear Exponential Family

4.1 Linear Exponential Family

In the linear exponential family, there exists an orthogonal parametrization

(ψ, λ) for which λ̂ψ = λ̂, so that dkλ̂ψ/dψ
k = 0 for all integer-valued k.

For this sub-section assume that the maximum singular value of jψλλ(θ̂)

is Op(n). We consider the leading terms which appear in rnp and rinf in

(3.7) and (3.5), as the subsequent terms are of smaller order as shown in

Theorems 4 and 5 in §6.4. We find that κ3(ψ̂) and κ4(ψ̂), defined in (2.1),

satisfy

κ3(ψ̂) = Op(n
−1/2), κ4(ψ̂) = Op(n

−1),

which implies that

rinf = Op(n
−1/2);

the order is independent of the dimension of the parameter, as long as

p = o(n1/2/ log(n)).

For rnp, we have

∣∣∣γ1(ψ̂)∣∣∣ = ∣∣∣tr [j−1
λλ (θ̂)jψλλ(θ̂)

]∣∣∣ ≤ σmax{jψλλ(θ̂)} tr[j−1
λλ (θ̂)] = Op(p),

using von Neumann’s trace inequality and

∣∣∣γ2(ψ̂)∣∣∣ = ∣∣∣tr [j−1
λλ (θ̂)jψλλ(θ̂)j

−1
λλ (θ̂)jψλλ(θ̂)

]
+ tr

[
j−1
λλ (θ̂)jψψλλ(θ̂)

]∣∣∣
≤ σ2

max{jψλλ(θ̂)} tr[{j−1
λλ (θ̂)}

2] +
∥∥∥j−1

λλ (θ̂)
∥∥∥
F

∥∥∥jψψλλ(θ̂)∥∥∥
F
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4.2 Location-Scale Family

≤ σ2
max{jψλλ(θ̂)}pσmax[{j−1

λλ (θ̂)}
2] + p1/2σmax{j−1

λλ (θ̂)}
∥∥∥jψψλλ(θ̂)∥∥∥

F

= Op(p) +Op(p
3/2).

The largest singular value σmax is bounded by the Frobenius norm. This

with Theorem 2 implies that

rnp = Op

(
pn−1/2

)
.

These results imply that r coincides with r⋆ asymptotically in distribu-

tion if p = o(n1/2/ log(n)), and agree with results in Tang and Reid (2020).

4.2 Location-Scale Family

We again consider the leading terms which appear in rinf and rnp in (3.6)

and (3.8), as the subsequent terms are of smaller order as shown in The-

orems 4 and 5 in §6.4. Under the orthogonal parametrization (Tang and

Reid, 2020, Lemma 1):∥∥∥∥∥dλ̂ψdψ |ψ=ψ̂

∥∥∥∥∥
2

= Op(p
1/2n−1/2),

showing that κ3(ψ̂) = Op(p/n
1/2), and κ4(ψ̂) = Op(p

2/n), which further

implies that

rinf = Op{(max(p/n1/2, p2/n)},

showing a dependence in p not present in the linear exponential family.

Next we examine the size of rnp. As the derivatives of the constrained
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4.2 Location-Scale Family

maximum likelihood estimate are not 0, we make the assumption that

maxi=1,··· ,p σmax{jθiλλ(θ̂)} = Op(n). Then

|γ1(ψ̂)| =
∣∣∣∣tr [j−1

λλ (θ̂)
d

dψ
jλλ(θ̂ψ)|ψ=ψ̂

]∣∣∣∣ ≤ σmax

{
d

dψ
jλλ(θ̂ψ)|ψ=ψ̂

}
tr[j−1

λλ (θ̂)]

= σmax

{
jψλλ(θ̂) +

p−1∑
i=1

∂λ̂ψ,i
∂ψ

|ψ=ψ̂ jλiλλ(θ̂)

}
tr[j−1

λλ (θ̂)]

≤

[
σmax

{
jψλλ(θ̂)

}
+

∥∥∥∥∥∂λ̂ψ,i∂ψ
|ψ=ψ̂

∥∥∥∥∥
1

σmax

{
jλiλλ(θ̂)

}]
tr[j−1

λλ (θ̂)]

≤

[
σmax

{
jψλλ(θ̂)

}
+ p1/2

∥∥∥∥∥∂λ̂ψ,i∂ψ
|ψ=ψ̂

∥∥∥∥∥
2

σmax

{
jλiλλ(θ̂)

}]
tr[j−1

λλ (θ̂)]

= {Op(n) +Op(pn
1/2)}Op(p/n) = Op

{
max(p, p2/n1/2)

}
.

Also,

∣∣∣γ2(ψ̂)∣∣∣ = ∣∣∣∣tr [j−1
λλ (θ̂)

d

dψ
jλλ(θ̂ψ)|ψ=ψ̂ j

−1
λλ (θ̂)

d

dψ
jλλ(θ̂ψ)|ψ=ψ̂

]
+ tr

[
j−1
λλ (θ̂)

d2

dψ2
jλλ(θ̂ψ)|ψ=ψ̂

]∣∣∣∣
≤ σ2

max

{
d

dψ
jλλ(θ̂ψ)|ψ=ψ̂

}
tr[{j−1

λλ (θ̂)}
2] + tr[j−1

λλ (θ̂)]σmax

{
d2

dψ2
jλλ(θ̂ψ)|ψ=ψ̂

}
= Op{max(p2, p4/n)}+Op{max(pn, p2n1/2, p3)}.

Detailed calculation of the maximum singular value of d2jλλ(θ̂ψ)/dψ
2|ψ=ψ̂

is deferred to §6.3. If p = o(n1/2/ log(n)), then

rnp = Op(p/n
1/2),

which agrees with the result in Tang and Reid (2020, §5.2).
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5. Simulations

We present simulations to illustrate the results in §3; for the linear expo-

nential and location scale family

r⋆ = A⋆/n1/2 + (1 +B⋆/n)r +Op(n
−3/2), (5.1)

by Remark 2. To provide numerical evidence that (5.1) holds, note that,

r⋆ − A⋆/n1/2 − (1 +B⋆/n)r = Op(n
−3/2), (5.2)

and a sufficient condition for a random variable to be Op(n
−3/2) is for both

its mean and standard deviation to be O(n−3/2). We illustrate the relation-

ship in (5.2) graphically by plotting the value of simulation the mean and

standard deviation of

r̃⋆ = r⋆ − A⋆ − (1 +B⋆)r (5.3)

as a function of n; we expect this to roughly follow a linear trend when

plotted against log(n), with slope at most −3/2.

5.1 Logistic Regression

We first consider an example based on logistic regression in which there

are 25 covariates associated with each yi, taken to be independent and

identically distributed standard normals. The true regression coefficients
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5.2 Linear regression with student t Errors

are β = (1, 0, 1, 1, 1, 0, . . . , 0), and the intercept is β0 = 1, and we test

H0 : β1 = 0. We obtain estimates of A⋆ and B⋆ in (5.2) by numerical

differentiation of the profile log-likelihood and the log-determinant of the

information matrix. For each n = 150, 300, 600, 1200, 2400, we simulate

2000 values of r⋆ − A⋆ − (1 + B⋆)r and plot the 95% bootstrap confidence

intervals of the empirical mean and standard deviation from 1000 bootstrap

simulations. In Figure 1, these are compared to a line with slope −3/2.

5.2 Linear regression with student t Errors

We consider an example based on a location-scale regression model where

the error follows a student t distribution with 5 degrees of freedom. The

values of the regression coefficients and the distribution of the covariates

are the same as §5.1. The results of the simulations are given in Figure 2.

6. Additional Proof Details

6.1 Proof of Theorem 3

Proof. Note that ρ−1 = Op(1) by Assumption 3. We prove the result in

the case for the linear exponential family; the proof for the location-scale

family is similar. We use capital letters to denote terms of order Op(1).
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6.1 Proof of Theorem 3

(a) Empirical mean of r̃⋆. (b) Empirical standard deviation

of r̃⋆

Figure 1: Plots for logistic regression illustrating order of r̃⋆ (5.3). The

mean, and the standard deviation functions of n, are plotted against log(n)

along with bootstrap 95% confidence intervals. The solid line has slope

−3/2 and the intercept is fitted using the least squares estimate.
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6.1 Proof of Theorem 3

(a) Empirical mean of r̃⋆ . (b) Empirical standard deviation

of r̃⋆

Figure 2: Plots for t5 based regression illustrating the order of r̃⋆ (5.3).

The mean, and the standard deviation functions of n, are plotted against

log(n) along with bootstrap 95% confidence intervals. The solid line has

slope −3/2 and the intercept is fitted using the least squares estimate.
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6.1 Proof of Theorem 3

From (3.2),

t = r
{
1− κ3(ψ̂)

6
t+

κ4(ψ̂)

24
t2 +

κ23(ψ̂)

24
t2 +Op(n

−3/2)
}

= r

[
1− κ3(ψ̂)

6ρ
q +

{
1

24ρ2
κ4(ψ̂) +

1

24ρ2
κ23(ψ̂)

}
q2 +Op(n

−3/2)

]

= r

{
1 +

C

n1/2
q +

D

n
q2 +Op(n

−3/2)

}
. (6.1)

We expand |jλλ(θ̂ψ0)|,

|jλλ(θ̂ψ0)| = |jλλ(θ̂)|+ (ψ0 − ψ̂)
d|jλλ(θ̂ψ0)|

dψ
|ψ=ψ̂ +

1

2
(ψ0 − ψ̂)2

d|jλλ(θ̂ψ0)|
dψ2

|ψ=ψ̂ + · · ·

= |jλλ(θ̂)|
{
1 + (ψ̂ − ψ0)γ1(ψ̂) + (ψ̂ − ψ0)

2γ2(ψ̂) +Op(n
−3/2)

}
= |jλλ(θ̂)|

[
1 +

γ1(ψ̂)

{ρj1/2p (ψ̂)}
q +

γ2(ψ̂)

ρ2jp(ψ̂)
q2 +Op(n

−3/2)

]

= |jλλ(θ̂)|
{
1 +

E

n1/2
q +

F

n
q2 +Op(n

−3/2)

}
.

Therefore,

ρ =

{
|jλλ(θ̂)|
|jλλ(θ̂ψ0)|

}1/2

=

[
1

1 + Cq/n1/2 +Dq2/n+Op(n−3/2)

]1/2
= 1 +

G

n1/2
q +

H

n
q2 +Op(n

−3/2). (6.2)

Note that γ1(ψ) = Op(1) and γ2(ψ) = Op(1) by Lemma 2 in §6.2. Combin-

ing (6.1) and (6.2),

q = tρ = r

{
1 +

C

n1/2
q +

D

n
q2 +Op(n

−3/2)

}{
1 +

G

n1/2
q +

H

n
q2 +Op(n

−3/2)

}
.

r = q

{
1 +

qC

n1/2
+
q2D

n
+Op(n

−3/2)

}−1{
1 +

G

n1/2
q +

H

n
q2 +Op(n

−3/2)

}−1
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6.2 Order of γk and κk

= q

{
1 +

A

n1/2
q +

B

n
q2 +Op(n

−3/2)

}
= q +

A

n1/2
q2 +

B

n
q3 +Op(n

−3/2),

which shows the desired result. For the location scale family, we use the

same arguments and apply them to s instead of t.

6.2 Order of γk and κk

We first establish the order of γk(ψ̂) and ζk(ψ̂) for arbitrary integer k. All

results are proved for ψ and λ scalar parameters; generalization to vector

λ is straightforward but notationally tedious.

Lemma 2. For all integers k,

∂kλ̂ψ
∂ψk

|ψ=ψ̂ = Op(1),
dk

dψk
ȷ̃λψ|ψ=ψ̂ = Op(n),

dk

dψk
ȷ̃λλ|ψ=ψ̂ = Op(n),

κk(ψ̂) = Op{n−(k−2)/2}, γk(ψ̂) = Op(1).

Proof. Differentiating the expression

0 = l̃λ,

we obtain,

ȷ̃λλ
∂λ̂ψ
∂ψ

= −ȷ̃ψλ,

thus,

∂λ̂ψ
∂ψ

|ψ=ψ̂ = −ȷ̂−1
λλ ȷ̂ψλ = Op(1), (6.3)
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6.2 Order of γk and κk

by Assumptions 1 and 3, we use the above to show

d

dψ
ȷ̃λλ|ψ=ψ̂ = ȷ̂ψψ +

∂λ̂

∂ψ
|ψ=ψ̂ ȷ̂ψλ = Op(n),

and by the same argument show that dȷ̃λψ/dψ|ψ=ψ̂ = Op(n). This proves

the first three claims hold for k = 1.

Induction Step: We assume that for all k1 ≤ k the result holds, we

need to show that for k + 1

∂k+1λ̂ψ
∂ψk+1

|ψ=ψ̂ = Op(1),
dk+1

dψk+1
ȷ̃λλ|ψ=ψ̂ = Op(n),

dk+1

dψk+1
ȷ̃λψ|ψ=ψ̂ = Op(n).

First, we differentiate (6.3) k times to obtain

∂k+1λ̂ψ
∂ψk+1

= −
k∑
i=1

(
k

i

)
di(ȷ̃λλ)

−1

dψi
dk−iȷ̃ψλ
dψk−i

.

Using Faa di Bruno’s formula for the differentiation of a composition of

functions we obtain

di

dψi
(ȷ̃λλ)

−1 =
i∑

k=1

(−1)kk!{ȷ̃λλ}(−k−1)Bi,k

(
d

dψ
ȷ̃λλ, · · · ,

d

dψi−k+1
ȷ̃λλ

)
, (6.4)

where

Bi,k(x1, · · · , xi−k+1) =
∑ i!

j1!j2! · · · ji−k+1!

(x1
1!

)j1 (x2
2!

)j2
· · ·
(

xi−k+1

(i− k + 1)!

)ji−k+1

,

and the summation in the above expression is taken over all sets of j1, . . . , ji−k+1

such that,

j1 + j2 + ·+ ji−k+1 = k, j1 + 2j2 + · · ·+ (i− k + 1)ji−k+1 = i.
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6.2 Order of γk and κk

The polynomialsBi,k are the partial Bell polynomials. From (6.4) we deduce

that d(ȷ̃λλ)
−1/dψ|ψ=ψ̂ = Op(n

−1), since the constraint j1+j2+ ·+jn−l+1 = k

implies that

Bi,k(dȷ̃λλ/dψ|ψ=ψ̂, · · · , d
i−k+1ȷ̃λλ/dψ

i−k+1|ψ=ψ̂) = Op(n
k),

and (ȷ̂λλ)
−k−1 = Op(n

−k−1), which implies that every term in the summation

is Op(n
−1).

Thus, by the induction assumption, we have dk−iȷ̃ψλ/dψ
k−i|ψ=ψ̂ = Op(n)

for i = 1, · · · , k−1. Therefore we have the desired result for the constrained

derivative of the maximum likelihood estimate. Next we show that

dk+1

dψk+1
ȷ̃λλ|ψ=ψ̂ = Op(n),

dk+1

dψk+1
ȷ̃λψ|ψ=ψ̂ = Op(n).

For this,

dk+1

dψk+1
ȷ̃λψ =

k+1∑
i,j,l,m=1

ai,j,l,m
∂i+j ȷ̃ψλ(ψ, λ̂ψ)

∂ψi∂λj

(
∂lλ̂ψ
∂ψl

)m

= Op(n), (6.5)

which can be obtained through successive applications of the chain rule,

some of the coefficients ai,j,l,m may be 0. The result follows from the fact

that all derivatives of the constrained maximum likelihood estimate are

Op(1) up to the (k+1) order when evaluated at ψ̂ and log-likelihood deriva-

tives are assumed to be Op(n) when evaluated at θ̂. A similar argument

can be made for the derivatives of ȷ̃λλ.
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6.3 Order of Maximum Singular Value in §4

Order of κk(ψ)

The total derivative of the profile log-likelihood function is a summation

of partial derivatives multiplied by the derivative of the constrained maxi-

mum likelihood estimate, so the result is obtained from arguments used in

(6.5).

Order of γk(ψ)

We have

γk(ψ) =
∑

i+j=k, j≥1

tr

[
di

dψi
(ȷ̃λλ)

−1 d
j

dψj
ȷ̃λλ

]
.

Using di(ȷ̃λλ)
−1/dψi|ψ=ψ̂ = Op(n

−i) from (6.4) and dj ȷ̃λλ/dψi|ψ=ψ̂ = Op(n)

from (6.5) we conclude γk(ψ̂) = Op(1).

6.3 Order of Maximum Singular Value in §4

We obtain the order of the maximum singular value of the second deriva-

tive of the information matrix for the location-scale model in the high-

dimensional setting. We have

d2

dψ2
ȷ̃λλ|ψ=ψ̂ = ȷ̂ψψλλ + 2

p−1∑
i=1

∂λ̂ψ,i
∂ψ

|ψ=ψ̂ ȷ̂ψλiλλ +
p−1∑
i=1

∂2λ̂ψ,i
∂ψ2

|ψ=ψ̂ ȷ̂λiλλ

+

p−1∑
i=1

p−1∑
j=1

∂λ̂ψ,i
∂ψ

|ψ=ψ̂
∂λ̂ψ,j
∂ψ

|ψ=ψ̂ ȷ̂λiλjλλ.

Now the maximal singular values of the matrices of interest are:

σmax{ȷ̂ψψλλ} ≤ ∥ȷ̂ψψλλ∥F = Op(pn).
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6.3 Order of Maximum Singular Value in §4

σmax

{
p−1∑
i=1

∂λ̂ψ,i
∂ψ

|ψ=ψ̂ ȷ̂ψλiλλ

}

≤
p−1∑
i=1

∣∣∣∣∣∂λ̂ψ,i∂ψ
|ψ=ψ̂

∣∣∣∣∣σmax {ȷ̂ψλiλλ}

≤
p−1∑
i=1

∣∣∣∣∣∂λ̂ψ,i∂ψ
|ψ=ψ̂

∣∣∣∣∣ ∥ȷ̂ψλiλλ∥F
≤ p1/2

∥∥∥∥∥∂λ̂ψ∂ψ
|ψ=ψ̂

∥∥∥∥∥
2

max
i=1,...,p

∥ȷ̂ψλiλλ∥F = Op(p
2n1/2).

σmax

{
p−1∑
i=1

∂2λ̂ψ,i
∂ψ2

|ψ=ψ̂ ȷ̂λ1λλ

}

≤
p−1∑
i=1

∣∣∣∣∣∂2λ̂ψ,i∂ψ2
|ψ=ψ̂

∣∣∣∣∣ σmax {ȷ̂λiλλ} = Op(pn)

σmax

{
p−1∑
i=1

p−1∑
j=1

∂λ̂ψ,i
∂ψ

|ψ=ψ̂
∂λ̂ψ,j
∂ψ

|ψ=ψ̂ ȷ̂λiλjλλ

}

≤
p−1∑
i=1

p−1∑
j=1

∣∣∣∣∣∂λ̂ψ,i∂ψ
|ψ=ψ̂

∣∣∣∣∣
∣∣∣∣∣∂λ̂ψ,j∂ψ

|ψ=ψ̂

∣∣∣∣∣ σmax

{
ȷ̂λiλjλλ

}
≤

p−1∑
i=1

p−1∑
j=1

∣∣∣∣∣∂λ̂ψ,i∂ψ
|ψ=ψ̂

∣∣∣∣∣
∣∣∣∣∣∂λ̂ψ,j∂ψ

|ψ=ψ̂

∣∣∣∣∣ ∥∥ȷ̂λiλjλλ∥∥F
= p

∥∥∥∥∥∂λ̂ψ∂ψ
|ψ=ψ̂

∥∥∥∥∥
2

2

max
i,j=1,...,p

∥∥ȷ̂λiλjλλ∥∥F = Op(p
3).

Using the triangle inequality results in the rates obtained for γ1(ψ̂) and

γ2(ψ̂) given in §5.2.
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6.4 Assumptions in high dimensions

6.4 Assumptions in high dimensions

To derive the relationships between r, s and t in high dimensions, we require

a different set of Assumptions:

Assumption 4. |ψ̂−ψ0| = Op(n
−δ) for some δ > 0 as p and n tend to ∞.

Assumption 5. κ3(ψ̂), κ4(ψ̂) and κ5(ψ̃) areOp(n
−ϵ), Op(n

−2ϵ) andOp(n
−3ϵ)

respectively, for ψ̃ in a O(n−δ′) neighborhood of ψ0 for some δ′ < δ and some

ϵ > 0.

Assumption 6. γ1(ψ̂), γ2(ψ̂) and γ3(ψ̃) are Op(1) for ψ̃ in a O(n−δ′) neigh-

borhood of ψ0 for some δ′ < δ.

Assumption 7. Either r, s or t is Op(1) as p and n increase to ∞.

Assumption 8. The log-likelihood is six times differentiable in a L2 ball

of radius δ around θ0.

Lemma 3. Under Assumptions 4–8, for r, t and s defined in (1.1), (2.2)

and (2.4):

t = r
{
1 + A1r +B1r

2 +Op(n
−3ϵ)

}
,

s = t
{
1 + A2t+B2t

2 +Op(n
−3ϵ)

}
,

where,

A1 = −1

6
κ3(ψ̂), B1 =

1

24
κ4(ψ̂) +

5

72
κ23(ψ̂),
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A2 =
κ3(ψ̂)

2
, B2 = −κ4(ψ̂)

6
.

Proof. The proof structure is similar to the proof of Lemma 1, therefore

some details are omitted. We derive the relationship between r and t:

r2 = 2
{
lp(ψ̂)− lp(ψ0)

}
,

= 2
{
(ψ̂ − ψ0)ζ1(ψ̂)−

(ψ̂ − ψ0)
2

2
ζ2(ψ̂)

+
(ψ̂ − ψ0)

3

6
ζ3(ψ̂) +

(ψ̂ − ψ0)
4

24
ζ4(ψ̂) +

(ψ̂ − ψ0)
5

120
ζ5(ψ̃)

}
= t2

{
1 +

κ3(ψ̂)

3
t− κ4(ψ̂)

12
t2 +Op(n

−3ϵ)
}
,

for some ψ̃ between ψ0 and ψ̂, by Assumptions 4, and 5 and Taylor’s theorem

(justified by Assumption 8). The other steps are the same as in the proof

of Lemma 1. Keeping track of the remainder term, we obtain:

t = r
{
1− κ3(ψ̂)

6
r +

5

72
κ23(ψ̂)r

2 +
1

24
κ4(ψ̂)r

2 +Op(n
−3ϵ)

}
.

The Taylor series expansion of (1 + x)−1 is valid as the argument is op(1),

thus will eventually be smaller than 1 with probability 1. For the expansion

of s:

s =
ζ1(ψ0)

j
1/2
p (ψ̂)

=
1

j
1/2
p (ψ̂)

{
ζ1(ψ̂)− ζ2(ψ̂)(ψ̂ − ψ0) +

ζ3(ψ̂)

2
(ψ̂ − ψ0)

2 − ζ4(ψ̂)

6
(ψ̂ − ψ0)

3 +
ζ5(ψ̃)

24
(ψ̂ − ψ0)

4
}

= t+
κ3(ψ̂)

2
t2 − κ4(ψ̂)

6
t3 +Op(n

−3ϵ),
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for some ψ̃ between ψ0 and ψ̂, the final line follows by the same arguments

as above.

There are also high-dimensional versions of Theorems 1 and 2 which

can be established using the same assumptions as above.

Theorem 4. Under Assumptions 4–8, for the linear exponential family,

rinf = −1

6
κ3(ψ̂) +

{ 1

24
κ4(ψ̂) +

4

72
κ23(ψ̂)

}
r +Op(n

−3ϵ),

and for the location-scale family

rinf =
1

3
κ3(ψ̂)−

{ 3

24
κ4(ψ̂) +

11

72
κ23(ψ̂)

}
r +Op(n

−3ϵ).

Theorem 5. Under Assumptions 4–8, for the linear exponential family

rnp =
1

2

γ1(ψ̂)

jp(ψ̂)1/2
−
{ 1

12

κ3(ψ̂)γ1(ψ̂)

jp(ψ̂)1/2
− 1

4

γ2(ψ̂)

jp(ψ̂)

}
r +Op(n

−3ϵ),

and for the location-scale family

rnp = −1

2

γ1(ψ̂)

jp(ψ̂)1/2
+
{ 1

12

κ3(ψ̂)γ1(ψ̂)

jp(ψ̂)1/2
− 1

4

γ2(ψ̂)

jp(ψ̂)

}
r +Op(n

−3ϵ).

Proof. Linear Exponential Family: Using (2.3) and Lemma 1 for a linear

exponential family we have

rinf =
1

r
log
( t
r

)
= A1 +

(
B1 − A2

1

)
r +Op(n

−3ϵ)
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= −1

6
κ3(ψ̂) +

{ 1

24
κ4(ψ̂) +

4

72
κ23(ψ̂)

}
r +Op(n

−3ϵ).

A similar expansion can be developed for rnp:

rnp =
1

2r
log
{ |jλλ(ψ̂, λ̂)|
|jλλ(ψ0, λ̂ψ0)|

}
=

1

2r

[
γ1(ψ̂)

{−ζ2(ψ̂)}1/2
t+

γ2(ψ̂)

2ζ2(ψ̂)
t2 +

γ3(ψ̃)

6(−ζ2(ψ̂))3/2
t3

]

=
1

2

[(
1 +

A1

n1/2
r
) γ1(ψ̂)

{−ζ2(ψ̂)}1/2
+

γ2(ψ̂)

2ζ2(ψ̂)
r +Op

(
n−3ϵ

)]

=
1

2

γ1(ψ̂)

{−ζ2(ψ̂)}1/2
+

[
1

2

A1γ1(ψ̂)

{−ζ2(ψ̂)n}1/2
+

γ2(ψ̂)

4ζ2(ψ̂)

]
r +Op

(
n−3ϵ

)
,

where the third equality uses Lemma 3.

The proof for rinf in the location-scale family is the same as in the proof

of the exponential family but with differing coefficients.

6.5 Checking the Assumptions for GLMs

We show Assumptions 4–8 are satisfied for a non-trivial model in high

dimensions. We consider generalized linear models with p = o(n1/2/ log(n))

and smooth likelihoods for example logistic regression, gamma regression

or Poisson regression, and show that these models satisfy our Assumptions.

In what follows we use β to denote the regression coefficients, β0 the data

generating regression coefficients, and X the design matrix.

Under conditions 1 and 2 of Fan et al. (2019), Assumption 4 holds
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6.5 Checking the Assumptions for GLMs

with a rate of O(n−1/2 log(n)) (by their Equation (7) and with γ = 1/2).

Assumption 7 for t holds by Theorem 1 in Fan et al. (2019). Assumption 8

holds for the class of smooth likelihoods we are considering.

For Assumptions 5 – 6, these are more readily checked under an orthog-

onal parameterization under which λ̂ψ = λ̂, as in Tang and Reid (2020),

as the derivatives of the profile likelihood simplifies dramatically. This is

justified as rinf and rnp are invariant to re-parametrization. To check these

assumptions we may take δ = 1/2 + 2 log log(n). Before we show this, we

require:

Lemma 4. Under Conditions 1 and 2 of Fan et al. (2019), the likelihood

derivatives evaluated in an O(log(n)/n1/2) L2 neighborhood of the MLE and

the constrained MLE are Op(n) uniformly if |Xβ0| is a uniformly bounded

vector with probability 1 as both n and p tend to ∞.

The requirement that |Xβ0| is bounded uniformly makes sure that the

true generative model for each observation remains bounded in probability.

Proof. It is shown in Fan et al. (2019) that with probability tending to

1, maxi=1,...,n |Xi(β̂ − β0)| = O((p/n)1/2) → 0, under the null and if p =

o(n), showing that maxi=1,...,n |Xiβ̂| is bounded as well. Using the fact that

the observations are assumed to be independent and the likelihoods are
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analytic functions, this then implies that all likelihood derivatives are of

order Op(n) when evaluated at the MLE or the constrained MLE under the

null hypothesis.

Similarly, in a O(log(n)/n1/2) neighborhood of the MLE or constrained

MLE, Xi(β̂+en), for ∥en∥2 = O(log(n)/n1/2), also tend to the value of Xiβ0

uniformly, by Condition 1 in Fan et al. (2019) on the norm of Xi, we have

that maxi=1,...,n |Xien| tends to 0 with probability 1.

This, with Condition 2 in Fan et al. (2019) (which guarantees that

j−1
p (ψ̃) = O(n−1) for ψ̃ − ψ0 = Op(n

−δ)) along with our condition on

σmax{jψλλ(θ̂)} = O(n), we see that γk and κk are decreasing in asymp-

totic order. As the derivatives of the likelihood are all of order Op(n), and

under the orthogonal parameterization λ̂ψ = λ̂, then by the same calcu-

lations as in §4.1 it can be seen that κk = O(nk−2) for i = 3, 4, 5 and

γk = Op((p/n
1/2)k) k = 1, 2, 3, showing that Assumptions 5 and 6 hold thus

verifying all the Assumptions.
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