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Abstract: This study investigates a weighted least squares (WLS) estimation in

a nonlinear cointegrating regression. In a nonlinear regression model, where the

regressors include nearly integrated arrays and stationary processes, we show

that the WLS estimator has a mixed Gaussian limit, and the corresponding

Studentized statistic converges to a standard normal distribution. The WLS

estimator is free of the memory parameter, even when a fractional process is

included in the regressors. We also consider an ordinary least squares estimation

in a nonlinear cointegrating regression. Compared with the WLS estimator, the

limit distribution of the ordinary least squares estimator is non-Gaussian, and

depends on the nuisance parameters from the regressors when the regression

function is non-integrable.

Key words and phrases: Cointegration, Nonlinear cointegrating regression, Weighted

least squares estimation, A mixture of normal distributions, Nonstationarity.

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0426



1. Introduction

It is well known that nonstandard asymptotic behavior appears in nonlinear (linear) coin-

tegrating regressions. A fundamental issue in such a regression model with nonstationary time

series is that the limiting distribution of the least squares (LS) often depends on various nuisance

parameters, and/or such a limit result is cumbersome in the relevant asymptotic inferences. To

illustrate, we consider the following cointegrating regression model:

yk = αxk + ηk, xk = xk−1 + εk, k = 1, 2, ..., (1.1)

where vk := (εk, ηk−1) is assumed to be a sequence of independent and identically distributed

(i.i.d.) random vectors with Ev1 = 0 and Ω := cov(v1, v
′
1) =

1 ρ

ρ 1

. The standard LS

estimator α̂n of the unknown parameter α in model (1.1) has a nonstandard limit distribution,

namely,

n (α̂− α) =

∑n
k=1 ηkxk∑n
k=1 x

2
k

→D

∫ 1

0
B1tdB2t∫ 1

0
B2

1tdt
, (1.2)

where
(
B1t, B2t

)
is a two-dimensional Brownian motion with covariance matrix Ω. In practice,

ρ (or Ω) is usually an unknown parameter. Noting that ρ is hidden in the functional
∫ 1

0
B1tdB2t,

result (1.2) cannot be used directly in inference theory, in which the relevant asymptotic critical

value usually depends on the standard normal distribution.

To solve this problem, several instrumental estimators have been proposed in literature

as alternatives to the standard LS. Earlier contributions include Phillips and Hansen (1990)

and Phillips (1995), who consider the fully modified LS. In a different direction, Magdalinos

and Phillips (2009) (see also Kostakis et al. (2015) for refined statements) introduced an IVX

estimator, using linear filtering to transform the regressor xk into a mildly integrated process.

In comparison with the standard LS, this IVX estimator has a mixed Gaussian limitation,
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such that the corresponding Student t statistic converges to a standard normal distribution,

enabling many works on conventional inference theory. For other contributions in this area,

see Jansson and Moreira (2006), Phillips and Lee (2013), Ellott et al. (2015), Bae and de Jong

(2007), Yang et al. (2020), and Demetrescu et al. (2022). The latter works generalize the IVX

method to multi-regression (linear) models with nonstationary time series, and the method

has been used to test the episodic predictability in stock returns. More recently, for a simple

nonlinear in-variables cointegrating regression model, the locally trimmed LS was introduced in

Hu et al. (2021) and Kasparis and Phillips (2020) investigated the model with a single covariate

heavy-tailed regressor.

Our study has a similar goal to the aforementioned works, but focus on nonlinear para-

metric cointegrating regression. Nonlinear cointegrating regression was initially introduced in

Park and Phillips (2001). Since then, significant developments have occurred in parametric,

nonparametric, and semiparametric specifications of such models. These developments have

provided a framework for econometric estimation and inference for a wide class of nonlinear,

nonstationary relationships: see, for instance, Wang and Phillips (2009a), Wang and Phillips

(2009b), Wang and Phillips (2016), Duffy (2016), Duffy (2020), Wang et al. (2021), Chang et

al. (2001), Bae and de Jong (2007), Kim and Kim (2012), Dong et al. (2016), Dong and Linton

(2018), Lin et al. (2020), and Wang (2021), together with the references therein. It is now

well known that the conventional kernel estimator in a nonparametric cointegrating regression

has a mixed Gaussian limitation, even when the regressors are nearly integrated, but that the

behaviors of parametric regression estimators are asymptotically nonpivotal. The limit distribu-

tion of the standard LS estimator in nonlinear (parametric) cointegrating regression is not only

non-Gaussian, but also depends on the unknown degree of persistence of the regressor, posing

difficulties in inference theory. As a result, it is desirable to develop an alternative estimation
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theory to the standard LS, so that the limit distribution of the suggested estimator is pivotal

in regression models with nonstationary time series.

The aim of this study is to investigate the weighted least squares (WLS) estimation in a

nonlinear cointegrating regression. For some selected weight functions, our results show that the

WLS estimator has a mixed Gaussian limit, and that the corresponding Studentized statistic

converges to a standard normal distribution. Such a WLS estimator is free of the memory

parameter, even when a fractional process is included in the regressors, enabling us to apply

much classical inference theory directly. In comparison with the ordinary LS estimator, there is

a slightly low convergence rate for the WLS estimator (less than (log n)−1, say). This deduction

in the convergence rate is necessary for a standard normal limitation. For further explanation,

refer to Remark 2.

The remainder of this paper is organized as follows. We present the main results in Section

2. Section 2.1 introduces a nonlinear cointegrating regression model and the corresponding

WLS estimator. Our model is more general than those of previous works by allowing for both

nonstationary and stationary regressors. Our assumptions and some preliminaries are given

in Section 2.2, and the asymptotic theory of the WLE estimators is developed in Section 2.3.

In Section 3, we investigate the asymptotics of the ordinary LS estimators for a comparison.

A numerical example is given in Section 4 to illustrate our asymptotics. This simple example

is designed to illustrate the effect of different weighted functions and the performance of the

Studentized statistic given in (2.7). Section 5 concludes the paper. All technical proofs are

given in the Appendix, where we also provide a framework for the WLS estimation in a general

nonlinear regression model, and collect some general results on convergence to local time and a

mixture of normal distributions.

Throughout this paper, we denote constants as C,C1, C2, ..., although their values may
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vary between instances.

2. Main results

2.1 Model and estimation

We consider a nonlinear cointegrating regression model:

yk = f(xk, wk, θ) + uk, k = 1, . . . , n (2.1)

where yk is the dependent variable, wk is an m× 1 stationary random vector, xk is a unit-root

nonstationary regressor, uk is the residual, f(· · · ) is a given smooth regression function, and

θ = (θ1, ..., θq) is a vector of unknown parameters such that θ ∈ Θ, where Θ is a compact set of

Rq.

When the regression function f(· · · ) is linear, model (2.1) is well studied in the literature.

As a result, linear cointegrating regression has become an important framework in which to

capture long-term relationships among many macroeconomic time series. However, in spite of

their importance and convenience in implementation, the linear structure in the related theory is

often too restrictive in practice. For empirical examples, see Granger and Teräsvirta (1993) and

Teräsvirta et al. (2011). To overcome this problem, various nonlinear parametric cointegrating

regression models have been introduced. For instance, Park and Phillips (2001), Chang et al.

(2001), and Chan and Wang (2015) allow for the regression function f(· · · ) to be integrable or

a class of homogeneous functions. Recently, Hu et al. (2021) considered the power regression

function; see also Li et al. (2016) and Wang (2021).

The regression given in (2.1) is similar to the models studied previously, but allows for the

presence of stationary regressors. This generalization provides cointegrating relationships that

vary or evolve smoothly over time. In particular, our model allows for the additive regression,
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2.2 Assumptions and preliminaries

functional-coefficients nonlinear cointegrating regression, and nonlinear cointegrating regression

with finite lags of the I(1) variables xk. Thus the regression in (2.1) is particularly useful in

empirical applications in which there may be a structural evolution in a relationship over time.

We estimate the unknown parameter θ in model (2.1) using the WLS method. Specifically,

we define the WLS estimator θ̂n of an interior θ0 (real value) of Θ to minimize the sum of the

weighted squared errors:

θ̂n = arg min
θ∈Θ

n∑
k=1

[
yk − f(xk, wk, θ)

]2
λ(xk/bn), (2.2)

where 0 < bn → ∞ is a sequence of constants, and λ(.) is a bounded weight function. Here,

we show that the asymptotics of θ̂n under selected weight functions differ significantly from the

usual LSE (i.e., λ(.) = 1) considered by Park and Phillips (2001), Chan and Wang (2015),

and Wang (2021). In particular, when self-normalization is used, this WLS estimator has a

standard normal limitation, and is free of the memory parameter even when a fractional process

is included in the regressors. Note that the WLE method is widely used in stationary regression.

In related work, Li et al. (2016) consider a nonlinear regression with a Harris recurrent Markov

chain. However, no stationary regressors are involved.

2.2 Assumptions and preliminaries

Let vk := (εk, ηk−1), for k ∈ Z, be a sequence of i.i.d. random vectors, with Ev0 = 0,

Eε20 = Eη2
0 = 1, and ρ = Eε1η0. Let ξj =

∑∞
k=0 φk εj−k, for j ≥ 1, be a linear process, where

the coefficients φk, for k ≥ 0, satisfy one of the following conditions:

LM. φk ∼ k−µ a(k), where 1/2 < µ < 1, and a(k) is a function slowly varying at ∞.

SM.
∑∞
k=0 |φk| <∞ and φ ≡

∑∞
k=0 φk 6= 0.
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2.2 Assumptions and preliminaries

Suppose that lim sups→∞ s
δ|Eeisε0 | <∞ for some δ > 0 throughout this paper. This distribu-

tional smooth condition on ε0 is required to establish the convergence to local time for a partial

sum process of ξj , as shown in Appendix B. To establish the asymptotics of the WLS estimator

θ̂n, we use the following assumptions on the regressors xk and wk and the error process uk.

A1 xk = ρnxk−1 + ξk, where ρn = 1− τn−1, for some τ ≥ 0, and x0 = oP (
√
n);

A2 wk = (w1k, ..., wdk), where, for i = 1, ..., d, wik = Γi(vk, ..., vk−k0), for some k0 ≥ 0, and

Γi(.) are real measurable functions of their components;

A3 {uk,Fk}k≥1, where Fk is an σ-field generated by vk+1, vk, ..., forms a stationary martin-

gale difference, with E
(
u2
k | Fk−1

)
= σ2 > 0 and supk≥1 E

(
|uk|2+δ | Fk−1

)
≤ C < ∞,

for some δ > 0

A1 allows for the nearly integrated regressor xk derived from short memory (under SM)

and long memory (under LM) innovations, which is quite general, in practice. Define

d2
n = E|

n∑
k=1

ξk|2 ∼


cµ n

3−2µa2(n), under LM,

φ2 n, under SM,

(2.3)

where cµ is a constant. Standard functional limit theory (see Buchmann and Chan (2007) or

Theorem 2.21 of Wang (2015), with a minor modification) shows that

( 1√
n

bntc∑
i=1

εi,
1√
n

bntc∑
i=1

ε−i,
1

dn
x[nt]

)
⇒

(
Bt, B−t, Xt

)
(2.4)

on DR3 [0,∞), where {Bt}t≥0 is a standard Brownian motion, {B−t}t≥0 is an independent copy

of {Bt}t≥0, and Xt is defined by

Xt = W (t) + τ

∫ t

0

e−τ(t−s)W (s)ds,
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2.2 Assumptions and preliminaries

with Wk =


G3/2−µ(t), under LM,

G1/2(t), under SM,

where GH is a fractional Brownian motion having the

following presentation: with a+ = max{a, 0},

GH(t) = κH

∫ t

−∞
(t− u)

H−1/2
+ − (−u)

H−1/2
+ dBu,

where κH is a constant such that EG2
H(1) = 1. Note that Xt is an Ornstein−Uhlenbeck process

with a continuous local time LX(t, s) defined by

LX(t, s) = lim
ε→0

1

2ε

∫ t

0

I(|Xr − s| ≤ ε)dr.

A2 is related to stationary regressors, where k0 (fixed) can be taken as large as necessary, and

quite general settings on Γi(.) are allowed. An extension to general linear processes is possible

when certain smoothing conditions on the regression function f(.) are imposed. Details can

be found in Corollary 1. A3 enables model (2.1) to have a martingale structure, which is

widely used in the literature; see, for instance, Park and Phillips (2001) and Chan and Wang

(2015). An extension that includes varying volatility is possible, but involves quite complicated

calculations, and is therefore left to future work.

We next introduce the assumptions on the regression function f(...) and the weight function

λ(.). Write ḟ(x, y, θ) = (ḟ1, ..., ḟq)
′, where ḟi = ∂f(x,y,θ)

∂θi
, for i = 1, ..., q, and let p(x, y, θ) be one

of f and ḟi, for i = 1, ..., q.

A4 A measurable function Tp(x, y) and a continuous function T (x) exist such that

(i) for each θ, θ0 ∈ Θ, (x, y) ∈ R1+q and for some α > 0,

|p(x, y, θ)− p(x, y, θ0)| ≤ ||θ − θ0||α Tp(x, y);
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2.2 Assumptions and preliminaries

(ii) for each θ ∈ Θ and (x, y) ∈ R1+q,

p(lx, y, θ) = vp(l)hp(x, y, θ) +R(lx, y, θ),

where vp(l) is a positive real function bounded away from zero as l becomes large,

hp(x, y, θ) is a locally Riemann-integrable function (i.e., Riemann-integrable on

any compact set), and as l→∞,

sup
(x,y)∈R1+q

sup
θ∈Θ
|R(lx, y, θ) |/Tp(lx, y)→ 0;

(iii) for any l > 0 and (x, y) ∈ R1+d, and for some β > 0,

sup
θ∈Θ
|hp(x, y, θ)| ≤ T (x)(1 + ||y||β), Tp(lx, y) ≤ vp(l)T (x)(1 + ||y||β);

(iv) λ(x)
[
1 + T 2(x)

]
is a bounded and integrable function;

(v) Σ =
∫∞
−∞ λ(x)E

[
ḣ(x,w1, θ0)ḣ′(x,w1, θ0)

]
dx is a positive-definite matrix, where

ḣ(x, y, θ) =
(
hḟ1(x, y, θ), ..., hḟq (x, y, θ)

)
,

and, for any δ > 0 such that {θ : ||θ − θ0|| ≥ δ} ⊂ Θ,

min
||θ−θ0||≥δ

∫ ∞
−∞

λ(x)E
[
hf (x,w1, θ)− hf (x,w1, θ0)

]2
dx > 0. (2.5)

Assumption A4(i)−(iii) is a weak condition that is required for the regression function

f(x, y, θ). It includes many common nonlinear (linear) regression functions, and is easy to verify

in practice. To give an illustration, let f(x, y, θ) = m(x, θ)K(y). If |K(y)| ≤ 1 + ||y||β , for some

β > 0, and m(x, θ) is one of θex/(1 + ex), θ log |x|, θ|x|α(α is fixed), or θ0 + θ1|x|+ ...+ θk|x|k,

then f(x, y, θ) satisfies A4(i)−(iii). The weight function λ(x) is required to satisfy A4(iv),

which is key to the development of our asymptotics. Such a weight function, together with an

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0426



2.3 Asymptotic theory

additional condition on bn, reduces the signal of the regression function f(x, y, θ), enabling us

to use the extended martingale limit theorem given in Wang (2014) can be used; see Remark

2 for more details. Because T (x) is continuous, λ(x) = I(|x| ≤ K), for any K > 0, satisfies

A4(iv). Assumption A4(v) ensures the consistency of θ̂n, where the condition (2.5) is close to

necessary, and can therefore be understood as an identification condition in model (2.1).

2.3 Asymptotic theory

This section discusses the limit behavior of the WLS estimator θ̂n defined by (2.2). We

provide a pivotal asymptotic distribution. The limit results without an effect from a weight

function are considered in Section 3 for a comparison.

Theorem 1. Suppose A1–A4 hold and E||w1||4β+2 < ∞, where β is given as in A4 (iii).

Then, for any bn > 0 such that cn := dn/bn →∞, we have

Dn (θ̂n − θ0)→D σΣ−1 Σ
1/2
1 LX(1, 0)−1/2 N, (2.6)

where Dn =
(
n/cn

)1/2
diag

(
vḟ1(bn), ..., vḟq (bn)

)
,

Σ1 =

∫ ∞
−∞

λ2(x)E
[
ḣ(x,w1, θ0)ḣ′(x,w1, θ0)

]
dx,

and N is a standard q-dimensional normal random vector independent of Xt. We further have

Tn := ΩnΩ
−1/2
1n (θ̂n − θ0)→D σN, (2.7)

where Ωn =
∑n
k=1 λ(xk/bn)ḟ(xk, wk, θ0)ḟ(xk, wk, θ0)′ and

Ω1n =

n∑
k=1

λ2(xk/bn)ḟ(xk, wk, θ0)ḟ(xk, wk, θ0)′.
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2.3 Asymptotic theory

Remark 1. Because σ2 = Eu2
1, under given conditions, a natural consistency estimator σ̂2

n of

σ2 is σ̂2
n = 1

n

∑n
k=1

[
yk − f(xk, wk, θ̂n)

]2
. As a result, (2.7) can be rewritten as

σ̂−1
n ΩnΩ

−1/2
1n (θ̂n − θ0)→D N, (2.8)

indicating a pivotal and standard normal limitation. Recall A1. The regressor xk in model

(2.1) allows for a nearly integrated process derived from short memory (under SM) and long

memory (under LM) innovations. The result (2.8) is free of all parameters, such as τ, µ, and ψk

raised in the nearly integrated regressor xk, and is therefore extremely convenient in inference

theory.

Remark 2. In the usual LS estimation theory for nonlinear cointegrating regression (i.e., the

estimator θ̂n is given by (2.2) with λ(x) ≡ 1), the standard convergence rate for the asymptotics

is D̃n = n1/2 diag
(
vḟ1(dn), ..., vḟq (dn)

)
. See Theorem 3. In comparison, result (2.6) has a low

convergence rate, because cn = dn/bn → ∞. This reduction in the convergence rate, together

with condition A4(iv), is essentially necessary for the standard normal limitation in (2.7). A

simple example helps to explain this argument. Consider a nonlinear-in-variables cointegrating

regression:

yk = θ g(xk) + uk, (2.9)

where continuous functions v and H exist such that g(l x) = v(l)H(x), for any l ≥ 0 and x ∈ R.

Write xnk = xk/dn and recall that cn = dn/bn. For this simple model, we have

Tn =

∑n
k=1 g

2(xk)λ(xk/bn)√∑n
k=1 g

2(xk)λ2(xk/bn)

(
θ̂n − θ0

)
=

∑n
k=1 ukg(xk)λ(xk/bn)√∑n
k=1 g

2(xk)λ2(xk/bn)
=

∑n
k=1 ukH(cn xnk)λ(cnxnk)√∑n
k=1 H

2(cn xnk)λ2(cnxnk)
. (2.10)

When λ(x)(1 + H2(x)) is assumed to be bounded and integrable (an equivalent condition to

that of A4(iv)), both λ(x)H(x) and λ2(x)H2(x) are bounded and integrable. In this case, to
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2.3 Asymptotic theory

ensure Tn →D N(0, σ2) (i.e, (2.7) holds), cn → ∞ and cn/n → 0 are necessary. See Wang

(2014) or Theorem 7 in Appendix B. Indeed, if cn = 1, we have

Tn →D

σ
∫ 1

0
H(Xt)λ(Xt)dBt√∫ 1

0
H2(Xt)λ2(Xt)dt

6=D N(0, σ2),

provided that (xn,[nt],
1√
n

∑[nt]
j=1 uj)⇒ (Xt, σ Bt) on DR2 [0, 1].

Remark 3. The simple model (2.9) also helps to reveal the mechanism of our weighting scheme.

In fact, if g(x) is bounded and integrable, we have

∑n
k=1 ukg(xk)√∑n
k=1 g

2(xk)
→D N(0, σ2), (2.11)

as shown in Theorem 2. As a result, the usual Studentized statistic Tn (i.e., λ(x) = 1 applies)

has a standard normal limitation. However, result (2.11) is incorrect when g(x) is a non-

integrable function. By employing a weight function λ(x), we can enable both g(x)λ(x) and

g2(x)λ2(x) to be integrable, and thus use the ”integrable function” asymptotics, yielding a

standard normal limitation for Tn. In our weighting scheme, using λ(x/bn) instead of λ(x)

improves the convergence rate for θ̂n, as seen in (2.6).

Remark 4. Although the results in (2.7) and (2.8) have theoretical and practice advantages,

it seems to be difficult to determine optimal choices of λ(x) and bn in finite-sample simulations.

To provide an illustration, we assume in (2.10) that H(x) = |x|1/2 and λ(x) = I(|x| ≤ K),

where K > 0 is a constant. In this case, we have

Tn =

∑n
k=1 uk|xnk|

1/2I(|xnk| ≤ K/cn)√∑n
k=1 |xnk|I(|xnk| ≤ K/cn)

→D N(0, σ2),

for any fixed K > 0 and bn > 0 satisfying cn =
√
n/bn →∞ or Kc−1

n → 0. Although the limit

distribution of Tn is free of the values of K when bn is given such that cn →∞, the performance

of Tn in finite-sample simulations (with fixed n) depends on K/cn (being close to zero or not)
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2.3 Asymptotic theory

rather than on K or cn individually; see Section 4 for detailed numerical examples. This simple

example indicates the complexity of choosing optimal λ(x) and bn in a finite sample size. This

topic deserves further consideration, but the solution might require an accurate estimate for the

distribution function of the Studentized statistic Tn, such as an ideal Berry−Esseen bound or

an Edgeworth expansion can be established. This left for future work.

When it is difficult to choose the optimal λ(x) and bn, we suggest using a truncated weight

function λ(x) = I(|x| ≤ K) in practice (bn can be taken close to dn, such that dn/bn →∞). This

kind of weight function reduces the signal by removing partial data. Thus, we can apply Wang’s

extended martingale limit theorem for a standard normal limitation (e.g., Wang (2014)), which

closely matches the mechanism of our weighting scheme. Furthermore, as shown in Section 4,

a reasonable normal density approximation can be achieved with K = 1/10 for a wide class of

regressors, even for a sample size as small as n = 100.

Remark 5. If the regression function f(x, y, θ) satisfies further smoothness conditions, the

stationary regressor wk given in A2 can be extended to include general linear processes. The

following is a corollary for such an extension.

Corollary 1. If in addition to A1, A3, and A4, for all x ∈ R and y, t ∈ Rd,

||ḣ(x, y, θ0)− ḣ(x, t, θ0)|| ≤ T (x)||y − t||δ(1 + ||y||β + ||t||β), for some δ > 0, (2.12)

the results (2.6) and (2.7) still hold when we replace A2 with

A2 ∗ wk = (w1k, ..., wdk), where, for i = 1, ..., d, wik =
∑∞
j=0 ψi,j λ

′
k−j, with ψi,j = (ψi,1j , ψi,2j)

satisfying
∑∞
j=0(|ψi,1j |+ |ψi,2j |) <∞.
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3. Asymptotics for the standard LS estimator (without a weight

effect)

Theorem 1 provides a useful pivotal limit result for the WLS estimator θ̂n defined by (2.2).

For a comparison, this section considers the asymptotics of the standard LS estimator in model

(2.1), denoted by θ̂n: that is, θ̂n is defined by (2.2) with λ(.) ≡ 1. Note that the standard LS

in nonlinear cointegrating regression has been investigated by Park and Phillips (2001), Chang

et al. (2001), and Chan and Wang (2015). See also Wang (2021) for a nonlinear regression

with nonstationarity and heteroscedasticity. The results in this section generalize these previous

works by allowing for more general settings. In particular, we allow for a stationary regressor wk

in the model (2.1). Because there are essential differences between integrable and nonintegrable

functions, we present the asymptotics in two separate subsections.

3.1 Integrable function

This section considers the limit distribution of θ̂n defined by (2.2) with λ(.) ≡ 1 when

f(x, y, θ) is an integrable function, for each fixed y and θ ∈ Θ. As in Section 2.3, we define

ḟ(x, y, θ) = (ḟ1, ..., ḟq)
′, where ḟi = ∂f(x,y,θ)

∂θi
, for i = 1, ..., q, and p(x, y, θ) is one of f and ḟi, for

i = 1, ..., q.

Theorem 2. In addition to A1−A3, suppose that

(i) a bounded and integrable function T (x) exists such that for each θ, θ0 ∈ Θ, (x, y) ∈ R1+d

and for some α > 0,

|p(x, y, θ)− p(x, y, θ0)| ≤ ||θ − θ0||α T (x)(1 + ||y||β) and

sup
θ∈Θ
|p(x, y, θ)| ≤ T (x)(1 + ||y||β); (3.1)
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3.1 Integrable function

(ii) Σ2 =
∫∞
−∞E

[
ḟ(x,w1, θ0)ḟ ′(x,w1, θ0)

]
dx is a positive-definite matrix and, for any δ > 0

such that {θ : ||θ − θ0|| ≥ δ} ⊂ Θ,

min
||θ−θ0||≥δ

∫ ∞
−∞

E
[
f(x,w1, θ)− f(x,w1, θ0)

]2
dx > 0.

Then, as n→∞,

√
n/dn(θ̂n − θ0)→D σΣ

−1/2
2 NL−1/2

X (1, 0), (3.2)

where N is a standard q-dimensional normal random vector, independent of Xt. We further

have

Ω
1/2
2n (θ̂n − θ0)→D σN, (3.3)

where Ω2n =
∑n
k=1 ḟ(xk, wk, θ0)ḟ(xk, wk, θ0)′. Furthermore, if, for all x ∈ R and y, t ∈ Rd,

||ḟ(x, y, θ0)− ḟ(x, t, θ0)|| ≤ T (x)||y − t||δ(1 + ||y||β + ||t||β), for some δ > 0,

the results (3.2) and (3.3) still hold if we replace A2 with A2 ∗.

Remark 6. Condition (3.1) indicates that f(x, y, θ) is an integrable function for each fixed y

and θ ∈ Θ. This result improves and generalizes Theorem 3.2 of Chan and Wang (2015) by

using less smoothness in the condition on the regression function f(x, y, θ) and allowing for a

stationary regressor wk in model (2.1). Note that, as in Theorem 1, result (3.3) has a pivotal

limit distribution if a consistency estimator for the conditional variance σ2 is given (see Remark

1 for such a consistency estimator). Therefore it is usually unnecessary to use the WLS method

for such nonlinear cointegrating regression models with integrable regression functions.

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0426



3.2 Nonintegrable regression function

3.2 Nonintegrable regression function

This section establishes the limit distribution of θ̂n defined by (2.2) with λ(.) ≡ 1 when

f is nonintegrable, for each fixed y and θ ∈ Θ. For technical reasons, we require that the

regression function f(x, y, θ) satisfies a certain additional structure. Specifically, we assume

that f(x, y, θ) = m(x, θ)K(y), where |K(y)| ≤ 1 + ||y||β and m(x, θ) satisfies the following

condition A4∗.

Write ṁ(x, θ) = (ṁ1, ..., ṁq)
′, where ṁi = ∂m(x,θ)

∂θi
, for i = 1, ..., q, and let χ(x, θ) be one

of m and ṁi, for i = 1, ..., q.

A4∗ Real continuous functions Tχ(x) and T (x) exist such that

(i) |χ(x, θ)− χ(x, θ0)| ≤ ||θ − θ0||α Tχ(x), for each θ, θ0 ∈ Θ and some α > 0;

(ii) for any bounded x,

χ(lx, θ) = vχ(l) h̃χ(x, θ) + R(l x, θ),

where vχ(l) is a positive real function bounded away from zero as l becomes large,

h̃χ(x, θ), for each θ ∈ Θ, is a continuous function and supθ∈Θ |R(lx, θ)|/Tχ(lx) =

o(1) as l→∞.

(iii) Tχ(lx) ≤ vχ(l)T (x) as |lx| → ∞.

Theorem 3. Suppose A1−A3 and A4∗ hold. Suppose that, for each η > 0,

∫
|x|≤η

[
h̃m(x, θ)− h̃m(x, θ0)

]2
dx 6= 0, for any θ 6= θ0, and∫

|x|≤η
h̃(x, θ0) h̃′(x, θ0)dx is a positive-definite matrix, (3.4)

where h̃(a, θ) =
(
h̃ṁ1(a, θ), ..., h̃ṁq (a, θ)

)
. Then, as n→∞,

D̃n (θ̂n − θ0)→D

(
EK2(w1)

∫ 1

0

Ψ(t)Ψ(t)′dt
)−1

∫ 1

0

Ψ(t) dUt, (3.5)
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where D̃n =
√
n diag

(
vṁ1(dn), ..., vṁq (dn)

)
, Ψ(t) = h̃(Xt, θ0), Bt and Xt are defined as in

Section 2.2, and (Ut, Bt)t≥0 is a bivariate Brownian motion with covariance matrix

Ω =

σ̃2 ρ

ρ 1

 , where σ̃2 = E
[
u1K(w1)

]2
and ρ = E

[
ε1u1K(w1)

]
.

Remark 7. In a special case where K(x) = 1, Theorem 3 provides a similar result to Theorem

3.4 of Chan and Wang (2015); see also Theorem 3.2 of Wang (2021). Note that the limit result

(3.5) is not pivotal, because the unknown covariance ρ is hidden in the joint distribution (Ut, Xt)

(e.g., (Ut, Bt), see result (2.4)). Furthermore, the limit distribution in (3.5) is a functional of

(Ut, Xt), which is inconvenient in practice, particularly in inference theory where the relevant

asymptotic critical value usually depends on it being standard normal.

4. Numerical example

We provide a numerical example to illustrate our asymptotics. This example is designed

to show the effects of different weighted functions (in particular, the effects of the different

parameters in each weight function) and the performance of the Studentized statistic Tn given

in (2.7) for finite sample sizes.

Example 1. Consider the cointegrating regression model defined by

yk = θ |xk−1|1/2 + εk, θ0 = 1, k = 1, 2, ..., n, (4.1)

where xk is generated by one of the following three scenarios:

S1: xk = xk−1 + εk;

S2: xk = xk−1 + ξk, ξk = ρ ξk−1 + εk with |ρ| < 1;
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S3: xk = xk−1 + ξk, (1 − B)dξk = εk, where 0 < d < 1/2 and (1 − B)d is the fractional

difference operator.

In this design, model (4.1) has a martingale structure, as required in theory, and the

regressor xk is generated from a simple random walk by S1, and from short and long integrated

processes by S2 and S3, respectively. For the WLS estimator θ̂n defined by (2.2), we consider

the following weight functions for comparison:

NW: λ(t) = 1, that is, no weight function is used;

W1: λ(x) = I(|x| ≤ K), where K > 0 is a constant;

W2: λ(x) = (1 + a |x|4)−1, where a > 0 is a constant:

W3: λ(x) = exp(−b |x|), where b > 0 is a constant.

It is readily seen that W1 reduces the signal that may affect the asymptotics by removing partial

data. Note that I(|x| ≤ K)→ 1 as K →∞. As noted in Remark 2, in theory, the consistency

of the WLS estimator is better when K is large. For W2 and W3, we use the full data set, but

the weight functions have heavy and light tails, respectively. The power 4 is taken in W2 so that

the condition in our theorems is satisfied. This can be modified slightly, but is not important

to our discussion. By using Remark 2 again, it is expected, in theory, that the consistency of

the WLS estimator using W1 and W2 is better when a and b, respectively, are small.

In the simulations, for simplicity of implementation, we assume that x0 = 0, εk are i.i.d.

N(0, 1), bn = n1/3, ρ = 1/2 in S2, and d = 0.3 in S3. Other settings are similar, and the

results are available upon request. All simulations have 10000 repetitions. Table 1 shows that

the consistency of the WLS estimators is good for all weight functions, even when the sample

size n is as small as 100. The consistency is better when the parameter K in W1 is larger, and
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when a and b are smaller in W2 and W3, respectively, supporting our theoretical results. The

best performance is for K =∞ under W1 and a = b = 0 under W2 and W3, respectively. Note

that K = ∞ (a = b = 0 as well) corresponds to the consistency of the standard LS estimator

(i.e., no weight is used). This indicates that the standard LS estimator has a fast convergence

rate, as explained in Remark 2. In Table 2, we further consider the effect of the sample size on

the consistency (here, we take K = 2, a = 5, and b = 2). As expected, the consistency of the

WLS estimators is always better with a larger sample size, and there is essentially no difference

between the weight functions and three scenarios when the sample size is large enough (n = 500,

say).

Although the standard LS estimator provides a fast consistency rate, the corresponding

Student t-statistic T̃n has a nonstandard limit distribution. In fact, under the model (4.1) with

the regressor xk generated by S1, we have

T̃n =

∑n
k=1 |xk−1|1/2εk√∑n

k=1 |xk−1|
→D

∫ 1

0
|Bt|1/2dBt√∫ 1

0
|Bt|dt

,

where {Bt}t≥0 is a standard Brownian motion; that is, the limit distribution is a functional of

a standard Brownian motion rather than of a standard normal. This fact is confirmed by the

simulations. Indeed, the density of NW (no weight function, i.e., the density of T̃n) in Figure

1 (see also Figures 2 and 3) is clearly away from the standard normal for different sample sizes

n = 100, 500, and 1000. Figure 1 also provides the densities of the Studentized statistic Tn

given in (2.7) with different K = 1, 1/2 and 1/10 using W1 under S1. The density of Tn with

K = 1/10 is close to the standard normal, and the performance improves as the sample sizes

increase. When K = 1 and 1/2, the densities of Tn are not as good as that of K = 1/10

(particularly for K = 1), and the improvement is not so obvious when the sample size increases

from 100 to 1000.

This can be explained theoretically. In fact, under S1 (the discussion is similar under S2
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Table 1: Means and standard errors of θ̂n − θ0, n = 100

W1 K = 1 K = 3 K = 5 K =∞

S1 0.00055 (0.18554) 0.00018 (0.05546) 0.00015 (0.04039) 0.00012 (0.03935)

S2 -0.00249 (0.17897) -0.00060 (0.06265) -0.00060 (0.04010) -0.00034 (0.02831)

S3 -0.00079 (0.18395) -0.00057 (0.06443) -0.00048 (0.04192) -0.00046 (0.02857)

W2 a = 10 a = 5 a = 1 a = 0

S1 -0.00865 (0.42538) -0.00764 (0.34801) -0.00444 (0.21719) -0.00011 0.03870

S2 0.00564 (0.35219) 0.00452 (0.29266) 0.00309 (0.19724) 0.00063 (0.02857)

S3 0.00250 (0.47346) 0.00128 (0.37809) -0.00032 (0.24435) 1.874e-05 (2.404e-02)

W3 b = 10 b = 5 b = 1 b = 0

S1 -0.00024 (1.79907) 0.00491 (0.92793) 0.00135 (0.24665) -0.00037 (0.03920)

S2 0.01353 (1.66340) 0.01023 (0.75282) 0.00208 (0.24818) 3.776e-05 (2.863e-02)

S3 0.00191 (2.73886) -0.00269 (0.99212) -0.00021 (0.28759) 0.00017 (0.02403)
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Table 2: Means and standard errors of θ̂n − θ0

sample size n = 100 n = 200 n = 500

S1

NW -0.00043 (0.03918) -0.00024 (0.02230) 0.00006 (0.01087)

W1 (K = 2) -0.00233 (0.18209) -0.00029 (0.12166) -0.00053 (0.07160)

W2 (a = 5) -0.00217 (0.35129) 0.00014 (0.23513) -0.00095 (0.14389)

W3 (b = 2) -0.00361 (0.24858) -0.00058 (0.16568) -0.00061 (0.09980)

S2

NW -9.555e-05 (2.825e-02) -0.00025 0.01647 3.533e-05 7.908e-03

W1 (K = 2) -0.01260 (0.18550) 0.00309 (0.12791) 0.00061 (0.08158)

W2 (a = 5) -0.00610 (0.30113) 0.00387 (0.21615) 0.00201 (0.14196)

W3 (b = 2) -0.00151 (0.24739) 0.00435 (0.19203) 0.00122 (0.13118)

S3

NW -0.00063 0.02416 -0.00015 (0.01328) -0.00010 (0.00589)

W1 (K = 2) 0.00024 (0.22817) 0.00290 (0.17250) 0.00114 (0.12037)

W2 (a = 5) 0.00486 (0.37433) 0.00157 (0.27732) 0.00103 (0.19601)

W3 (b = 2) -0.00071 (0.29167) 0.00413 (0.22780) 0.00036 (0.16937)
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and S3), it follows from (2.7) that (recalling W1 is used)

Tn =

∑n
k=1 I(|xk−1|/bn ≤ K)|xk−1|1/2εk√∑n

k=1 I(|xk−1|/bn ≤ K)|xk−1|

=

∑n
k=1 I(|xk−1|/

√
n ≤ Kc−1

n )|xk−1|1/2εk√∑n
k=1 I(|xk−1|/

√
n ≤ Kc−1

n )|xk−1|
→D N(0, 1), (4.2)

for any fixed K > 0 and bn > 0 satisfying cn =
√
n/bn →∞ or Kc−1

n → 0. As noted in Remark

4, although the limit distribution of Tn is free of the values of K when bn is given such that

cn →∞, the performance of Tn depends on K in finite-sample simulations. Indeed, when bn is

given (bn = n1/3, say), we have

K = 1, K = 1/2, K = 1/10,

Kc−1
n = Kn−1/6 = 0.4641598, 0.2320794, 0.04641528, if n = 100,

0.3549537, 0.1774768, 0.03549537, if n = 500,

0.3162278, 0.1581139, 0.03162278, if n = 1000.

Because Kc−1
n with K = 1/10 is close to meeting the condition in establishing (4.2) (i.e.,

Kc−1
n → 0), the performance of Tn in a finite sample size, such as n = 100, 500, and 1000,

is expected to be better when K = 1/10 than when K = 1 or K = 1/2. Figure 1 confirms

this asymptotic theory. Furthermore, when K = 1, even under n = 1000, Kc−1
n = 0.3162278

is far from the required condition in establishing (4.2) (i.e., Kc−1
n → 0). Hence, it is natural

that the densities of Tn using W1 with K = 1 do not perform good, under given sample sizes

n = 100, 500 and 1000, as shown in Figure 1.

In Figures 2 and 3, the densities of Tn are simulated using W2 and W3, respectively, under

S1. As shown in Figures 2 and 3, the ideal results for finite sample sizes can be achieved by

using large a and b values, respectively. The theoretical explanation for this is similar to that

of W1, and hence the details are omitted. In summary, finite-sample simulations confirm the
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asymptotic normality of the Studentized statistic Tn given in (2.7). The difference between the

weight functions W1, W2, and W3 is not significant, but the choice of the parameter (K, a, and

b, respectively) in each weight function has a big effect on the performance of Tn in finite sample

sizes. This seems to be natural for the Studentized statistics generated from nonstationary time

series.
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Figure 1: Tn densities under W1 with different K
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Figure 2: Tn densities under W2 with different a
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Figure 3: Tn densities under W3 with different b
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5. Conclusion

Nonstandard asymptotic behavior appears in regression models with nonstationary time

series. The limiting distribution of the standard LS estimator in such regression models often

depends on various nuisance parameters, so that the limit results are cumbersome in the relevant

asymptotic inferences. In this study, we investigate the WLS estimation in a nonlinear cointe-

grating regression. Comparied with the standard LS estimator, the WLS estimator has a mixed

Gaussian limit, so that the corresponding Studentized statistic converges to a standard normal

distribution. This result has advantages in applications, because it is not only convenient in

inference theory, but is also free of the memory parameter, even when a fractional process is

included in the regressors. There is a convergence rate loss for such a WLS estimator, but it is

controllable by using a suitable weight. The ideas presented here work in other areas; such as

specification testing related to a cointgerating regression. This is left to future work.
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Appendix

A. Weighted least squares estimation – a framework

Consider a nonlinear regression model having the form:

yk = gk(θ) + uk, k = 1, 2, ..., n, (A.1)

where gk(.) can be random or deterministic functions, θ = (θ1, ..., θq) is a vector of unknown

parameters and uk are the unobservable random disturbances. We assume θ ∈ Θ, where Θ is a

compact of Rq. The weighted least squares estimator θ̂n of θ in model (A.1) is defined by

θ̂n = argminθ∈ΘQn(θ), where Qn(θ) =

n∑
k=1

[
yk − gk(θ)

]2
lk (A.2)

and lk is a weight function allowing for dependence on n and gk, but free of the unknown

parameter θ.

The asymptotics of θ̂n without weight effects (i.e., lk ≡ 1) has been widely investigated in

literature. See, for instance, Andrews and Sun (2004), Pollard and Radchenko (2006), Jacob

(2010) and Chan and Wang (2015). Recently, Wang (2021) established a new framework on

the asymptotics of θ̂n that can be easily applied to various nonlinear regression models with

heteroscedasticity. This section generalizes and modifies the framework by Wang (2021) by

allowing for weight effects and endogeneity in the model (A.1). Throughout this section, let a

real parameter value θ0 of θ be an interior of Θ.

A.1 Consistency of θ̂n

To consider the consistency of θ̂n, we introduce the following conditions on gk(θ).
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A.1 Consistency of θ̂n

A5 A sequence of constants 0 < kn →∞ and a sequence of random variables Tk exist such

that

(a) |gk(θ1) − gk(θ2)| ≤ h(||θ1 − θ2||)Tk for all θ1, θ2 ∈ Θ, where h(x) is a continuous

function satisfying limx↓0 h(x) = 0;

(b) 1
kn

∑n
k=1 lkTk

(
|uk| + Tk

)
= OP (1) and 1

kn

∑n
k=1 lk

[
gk(θ) − gk(θ0)

]
uk = oP (1)

for each θ ∈ Θ;

(c) the finite dimensional distributions of 1
kn

∑n
k=1 lk

[
gk(θ) − gk(θ0)

]2
converge to

those ofG(θ), whereG(θ), θ ∈ Θ is a stochastic process of θ satisfying P (inf ||θ−θ0||≥δ
θ∈Θ

G(θ) >

0) = 1 for each δ > 0.

Theorem 4. Suppose A5 holds. Then θ̂n is a consistent estimator of θ0, i.e., ||θ̂n−θ0|| = oP (1).

Proof. Write Ln,θ =
∑n
k=1 lkdk(θ)uk, Dn,θ =

∑n
k=1 lkd

2
k(θ) and Qn(θ) =

∑n
k=1 lk

[
yk −

gk(θ)
]2

, where dk(θ) = gk(θ)− gk(θ0). Given that θ0 is a real value of θ in the model (A.1), we

have

∑
lku

2
k = Qn(θ0) ≥ Qn(θ̂n) =

∑
lku

2
k +Dn,θ̂ − 2Ln,θ̂ .

Hence, for any ε > 0, we have

P (||θ̂n − θ0|| ≥ ε) ≤ P
(

sup
||θ−θ0||≥ε

|Ln,θ| /Dn,θ ≥ 1/2
)

≤ P
(

sup
θ∈Θ
|Ln,θ| ≥ 1/2 inf

||θ−θ0||≥ε
Dn,θ

)
,

and Theorem 4 will follow if we prove

(i) supθ∈Θ |Ln,θ| = oP (kn);

(ii) k−1
n inf ||θ−θ0||≥δ,

θ∈Θ

Dn,θ for any δ > 0, is away from 0 with probability one, as n→∞;
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A.1 Consistency of θ̂n

We only prove (i) since (ii) is the same as that of Proposition 2.1 in Wang (2021) except

some routine notation changes. Denote Nη(θ1) = {θ : ||θ − θ1|| < η}. Since Θ is compact, by

the finite covering property of compact set, (i) will follow if we prove Ln,θ1 = oP (kn) for each

θ1 ∈ Θ and

sup
θ∈Nη(θ1)

|Ln,θ − Ln,θ1 | →P 0, (A.3)

as n→∞ first and then η → 0. In fact, since

sup
θ∈Nη(θ1)

|Ln,θ − Ln,θ1 | ≤ sup
θ∈Nη(θ1)

n∑
k=1

lk|gk(θ)− gk(θ1)| |uk|

≤ sup
θ∈Nη(θ1)

h(||θ − θ1||)
n∑
k=1

lk Tk |uk|

by using A5(a), result (A.3) follows immediately from A5(b), because h(x) is continuous with

h(x)→ 0 as x→ 0. 2

Remark 8. Assumption A5 allows for endogeneity in model (A.1), enabling Theorem 4 quite

useful in nonlinear (cointegrating) regression. This result extends Theorem 5.8 of Wang (2015)

by allowing for the use of the weight function lk in (A.2). If h(x) satisfies more smoothness con-

dition and model (A.1) has a martingale structure, we have the following extension of Theorem

2.2 in Wang (2021).

Theorem 5. Suppose that {uk,Fk}t≥1 is a martingale difference with E(u2
k | Fk−1) <∞, a.s.

for each k ≥ 1. Suppose that lk and gk(θ) for each θ ∈ Θ are adapted to Fk−1. Suppose that a

sequence of constants 0 < kn → ∞ and a sequence of random variables Tk (adapted to Fk−1)

exist such that

(a)′ |gk(θ1)− gk(θ2)| ≤ ||θ1 − θ2||α Tk for all θ1, θ2 ∈ Θ and for some α > 0;

(b)′ 1
kn

∑n
k=1 lkT

2
k = OP (1) and

∑n
k=1 l

2
k T

2
k

[
1 + E(u2

k | Fk−1)
]

= OP (k2
n/ log2 n);
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A.2 Asymptotic distribution of θ̂n

(c)′ A5 (c) holds.

Then θ̂n is a consistent estimator of θ0.

Note that (b)′ in Theorem 5 is a weaker condition than that of (b) in Assumption A5.

This is a trade off among other assumptions. The proof of Theorem 5 is similar to Theorem 2.2

of Wang (2021) and hence the details are omitted.

A.2 Asymptotic distribution of θ̂n

Let ġk(θ) =
( ∂gk(θ)

∂θ1
, ..., ∂gk(θ)

∂θq

)′
be the first derivative of gk(θ), Zn(θ) = (D−1

n )′
∑n
k=1 lk ġk(θ)uk

and

Yn = (D−1
n )′

n∑
k=1

lk ġk(θ0)ġk(θ0)′D−1
n ,

where Dn = diag(D̃n, ..., dqn) is a sequence of diagonal matrices satisfying n−δ min1≤j≤q djn →

∞ for some δ > 0. For the asymptotic distribution of θ̂n, we have the following extension of

Theorem 2.1 in Wang (2021).

Theorem 6. Suppose that

(i) Yn →D M , where the smallest eigenvalue of M is almost surely positive (i.e., M > 0,

a.s.);

(ii) Zn(θ0) = OP (1), supθ∈Θ ||Zn(θ)− Zn(θ0)|| = OP (log1/2 n) and

sup
||Dn(θ−θ0)||≤logn

||Zn(θ)− Zn(θ0)|| = oP (1);

(iii) sup||θ−θ0||≤δ
∑n
k=1 lk||D

−1
n [ġk(θ)− ġk(θ0)]||2 = oP (1), as n→∞ first and then δ → 0.
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A.2 Asymptotic distribution of θ̂n

For any estimator θ̂n of θ0 satisfying (A.2) such that θ̂n →P θ0, we have

Dn(θ̂n − θ0) = Y −1
n Zn(θ0) + oP (1). (A.4)

If in addition (Yn, Zn)→D (M,Z) where M > 0, a.s., then Dn(θ̂n − θ0)→D M−1 Z.

Proof. The idea is similar to Theorem 2.1 of Wang (2021) since, except obvious notation

changes, Assumption 2.1 and Assumption 2.2 (i) in the cited paper are only used to prove the

conditions (ii) and (iii) of Theorem 6. We omit the details. 2

Remark 9. As noticed in Remark 8, Theorem 6 is useful in nonlinear cointegrating regression

as endogeneity is allowed in model (A.1). When model (A.1) has a martingale structure, we

have the following corollary, providing an extension of Theorem 2.1 of Wang (2021) to weighted

LS. Let {Fk}k≥0 be an increasing sequence of σ-fields on some probability space (Ω,F , P ) with

F0 = σ(φ,Ω).

Corollary 2. Suppose that

(i) {uk,Fk}k≥1 forms a martingale difference with E(u2
k | Fk−1) <∞, a.s. for each k ≥ 1;

(ii) gk(θ) for each θ ∈ Θ and lk are adapted to Fk−1;

(iii) ||D−1
n

[
ġk(θ1) − ġk(θ2)

]
|| ≤ ||θ1 − θ2||α Tnk for some 0 < α ≤ 1 and for any θ1, θ2 ∈ Θ,

where Tnk is adapted to Fk−1 for each n ≥ 1, satisfying

n∑
k=1

l2k T
2
nk

[
1 + E(u2

k|Fk−1)
]

+

n∑
k=1

lk T
2
nk = OP (1); (A.5)

(iv) Zn(θ0) = OP (1) and Yn →D M , where M > 0, a.s., i.e., the smallest eigenvalue of M

is almost surely positive.

Then, for any estimator θ̂n of θ0 satisfying (A.2) such that θ̂n →P θ0, result (A.4) still holds.
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Proof. It follows from the same arguments as that of Corollary 2.1 in Wang (2021), i.e.,

under conditions (i)-(iii), we may prove supθ∈Θ ||Zn(θ)− Zn(θ0)|| = OP (log1/2 n) and

sup
||Dn(θ−θ0)||≤logn

||Zn(θ)− Zn(θ0)|| = oP (1),

by using Theorem 2.3 of Wang (2021). Then result follows from Theorem 6. 2

B. Convergence to local time and a mixture of normal distribu-

tions

The proofs of Theorems 1, 2 and 3 depend on certain fundamental results on convergence

to local time and a mixture of normal distributions, which are summarized in this section.

Except mentioned explicitly, notation is the same as in Section 2.

Recall (uk,Fk)k≥1, where Fk = σ(vk+1, vk, ...), is a sequence of stationary martingale

differences with E(u2
k|Fk−1) = σ2 < ∞. Let xnk = xk/dn, where d2

n = var(
∑n
k=1 ξk). Let

g(.), g1(.), ... and other related G(.), T (.), etc be Borel measurable functions on their components.

For the convergence to a local time process, the following result comes from Theorem 2.21 of

Wang (2015).

Lemma 1. Write g̃(x) = sup0≤s≤1 |g(s, x)| and suppose that g̃(x) is a bounded and integrable

function on R. Then, for any cn →∞ satisfying cn/n→ 0, we have

( 1√
n

[nt]∑
k=1

εk,
1√
n

[nt]∑
k=1

ε−k, xn,[nt],
cn
n

n∑
k=1

g
(
k/n, cn xnk

) )
⇒
(
Bt, B−t, Xt,

∫ 1

0

G(s)dLX(s, 0)
)
, (B.1)

on DR4 [0,∞), where G(s) =
∫∞
−∞ g(s, x)dx.

By using Lemma 1, together with the extended martingale limit theorem by Wang (2014)
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(also see Chapter 3 of Wang (2015)), we may establish following Theorems 7 and 8, which are

used for the purpose of this paper.

Let Vk,m = (vk, ..., vk−m) and Vm = Vm,m, where m ≥ 0 is a fixed integer, and write

Sn =
cn
n

n∑
k=1

g1(k/n, cn xnk, Vk,m), Mn =
(cn
n

)1/2 n∑
k=1

g2(k/n, cn xnk, Vk,m)uk,

where cn is a sequence of positive constants.

Theorem 7. Suppose that, for any x ∈ R and y ∈ Rm+1 and for some β > 0,

sup
0≤s≤1

|g1(s, x, y)|+ sup
0≤s≤1

|g2(s, x, y)| ≤ T (x)(1 + ||y||β), (B.2)

where T (x) is a bounded and integrable function. Suppose that E||v0||2∧(2β) < ∞. Then, for

any cn →∞ satisfying cn/n→ 0, we have

( 1√
n

[nt]∑
k=1

εk,
1√
n

[nt]∑
k=1

ε−k, xn,[nt], Sn
)
⇒
(
Bt, B−t, Xt,

∫ 1

0

G1(s) dLX(s, 0)
)

(B.3)

on DR4 [0,∞), where G1(s) =
∫∞
−∞Eg1(s, x, Vm)dx. In in addition E||v0||4β+2 <∞, we further

have

(
Sn, Mn

)
→D

(∫ 1

0

G1(s) dLX(s, 0),
[ ∫ 1

0

G2(s) dLX(s, 0)
]1/2

N
)
, (B.4)

where G2(s) =
∫∞
−∞Eg

2
2(s, x, Vm)dx and N is a standard normal variate independent of X.

Proof. By virtue of Lemma 1, to prove (B.3), it suffices to show that, under (B.2) and

E||v0||2∧(2β) <∞,

Sn −
cn
n

n∑
k=1

ĝ1

[
k/n, cn xnk

]
=

cn
n

n∑
k=1

{
g1

[
k/n, cn xnk, Vk,l

]
− ĝ1

[
k/n, cn xnk

]}
= oP (1), (B.5)
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where ĝ1(s, x) = Eg1(s, x, Vm). This is essentially the same as in the proof of (A.20) with i = 2

in Wang et al. (2021) and hence the details are omitted.

We next prove (B.4). It follows from (B.5) and the similar arguments as in the proof of

Theorem 2.19 in Wang (2015) that

Sn =
cn
n

n∑
k=1

ĝ1

[
k/n, cn xnk

]
+ oP (1)

=
1

n

n∑
k=1

G1(k/n)φε(xnk) +Rn(ε) =

∫ 1

0

G1(s)φε(xn,[ns])ds+Rn(ε),

where φε(x) = 1

ε
√

2π
e−x

2/(2ε2) and Rn(ε) →P 0 as n → ∞ first and then ε → 0. Since∫ 1

0
G1(s)φε(Zn,[ns])ds is a continuous functional of the process {xn,[nt]}0≤t≤1, the continuous

mapping theorem indicates that (B.4) will follow if we prove

(
xn,[nt], Mn

)
⇒

(
Xt,

[ ∫ 1

0

G2(s) dLX(s, 0)
]1/2

N
)
, (B.6)

onDR2 [0, 1]. Note thatMn =
∑n
k=1 mnkuk, wheremnk =

(
cn
n

)1/2
g2(k/n, cn xnk, Vk,m) depends

only on vk, vk−1, .... We may establish (B.6) by using the extended martingale limit theorem

given in Wang (2014). Indeed, by noting that, for any −1 ≤ δ ≤ 1/β,

( 1√
n

[nt]∑
k=1

εk,
1√
n

[nt]∑
k=1

ε−k, xn,[nt],
cn
n

n∑
k=1

|g2(k/n, cn xnk, Vk,m)|2+δ
)

⇒
(
Bt, B−t, Xt,

∫ 1

0

G̃2(s)dLX(s, 0)
)
,

(using (B.3) with g1(.) = |g2(.)|2+δ) where G̃2(s) =
∫∞
−∞E|g2(s, x, Vm)|2+δdx, it is readily seen

that

max
1≤k≤1

|mnk| ≤
[(cn
n

)1+1/(2β)
n∑
k=1

|g2(k/n, cn xnk, Vk,m)|2+1/β
]2β/(1+2β)

= oP (1)

and

1√
n

n∑
k=1

|mnk| = c−1/2
n

cn
n

n∑
k=1

|g2(k/n, cn xnk, Vk,m)| = oP (1),
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due to cn →∞ and cn/n→ 0. Result (B.6) follows from Theorem 2.1 of Wang (2014). 2

We next establish a more general result than that of Theorem 7. Write

S1n =
cn
n

n∑
k=1

g3(k/n, cn xnk, wk + νnk),

M1n =
(cn
n

)1/2 n∑
k=1

g4(k/n, cn xnk, wk + νnk)uk,

where the following additional conditions are used:

C1 (i) wk = (w1k, ..., wdk), where, for i = 1, ..., d, wik =
∑∞
j=0 ψi,j v

′
k−j with ψi,j =

(ψi,1j , ψi,2j) satisfying
∑∞
j=0(|ψi,1j |+ |ψi,2j |) <∞;

(ii) νnk = (ν1,nk, ..., νd,nk), where, for i = 1, ..., d, |νi,nk| ≤ δn
∑∞
j=0

(
|ϕ1j εk−j | +

|ϕ2j ηk−j |
)

with
∑∞
j=0(|ϕ1j |+ |ϕ2j |) <∞ and δn → 0, as n→∞;

C2 there exist δ > 0, integer β ≥ 1 and a bounded and integrable function T (x) such that,

for all x ∈ R and y, t ∈ Rd and for i = 3 and 4,

(i) sups∈[0,1] |gi(s, x, y)| ≤ T (x)(1 + ||y||β);

(ii) sups∈[0,1] |gi(s, x, y)− gi(s, x, t)| ≤ T (x)||y − t||δ (1 + ||y||β + ||t||β) .

Theorem 8. Suppose that C1 and C2 hold and E||v0||2β+2 < ∞ where β is given as in C2.

For any cn →∞, cn/n→ 0 and z ∈ R, we have

( 1√
n

[nt]∑
k=1

εk,
1√
n

[nt]∑
k=1

ε−k, xn,[nt], S1n

)
⇒

(
Bt, B−t, Xt,

∫ 1

0

G3(s) dLX(s, 0)
)

(B.7)

on DR4 [0,∞), where G3(s) =
∫∞
−∞Eg3(s, x, w0)dx. If in addition E||v0||4β+2 <∞, we further

have

(
S1n, M1n

)
→D

(∫ 1

0

G3(s) dLX(s, 0),
[ ∫ 1

0

G4(s) dLX(s, 0)
]1/2

N
)
, (B.8)

where G4(s) =
∫∞
−∞Eg

2
4(s, x, w0)dx and N is a standard normal variate independent of X.
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Proof. We only prove (B.7), since the proof of (B.8) is the same as that of (B.4) by an

application of the extended martingale limit theorem given in Wang (2014). For any l ≥ 0,

write wk(l) =
(
w1k(l), ..., wdk(l)

)
, where, for i = 1, ..., d, wik(l) =

∑l
j=0 ψi,j v

′
k−j . It follows

from Theorem 7 that, for each l ≥ 1,

cn
n

n∑
k=1

g3

[
k/n, cn(xnk + c′nz), wk(l)

]
→D

∫ 1

0

G3,l(s)d L̃X(s, z), (B.9)

where G3,l(s) =
∫∞
−∞Eg3(s, x, w0(l))dx. Using C2 (ii), we have

sup
s∈[0,1]

|G3,l(s)−G3(s)| ≤ C E
(
||w0(l)− w0||δ(1 + ||w0||β + ||w0(l)||β)

)
≤ C

( d∑
i=0

∞∑
j=l

|ψi,j |2
)1/2 (

E||w0||2β+2)1/2 → 0,

as l→∞, i.e.,

∫ 1

0

G3,l(s)d L̃X(s, z) =

∫ 1

0

G3(s)d L̃X(s, z) + oP (1), (B.10)

as l→∞. In terms of (B.9) and (B.10), (B.7) will follow if we prove

S1n −
cn
n

n∑
k=1

g3

[
k/n, cn(xnk + c′nz), wk(l)

]
= oP (1),

as n→∞ first and then l →∞. Under C2(ii), this is similar to that of (A.20) of Wang et al.

(2021) with i = 1 and hence the details are omitted. 2

C. Proofs of the main results

We prove Theorems 1, 2, 3 and Corollary 1 by checking the conditions of Theorem 6, where

we require Theorems 7 and 8 for the results on the convergence to local time and a mixture of

normal distributions.
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Proof of Theorem 1. We start with a outline. LetDn =
(
n/cn

)1/2
diag

(
vḟ1(bn), ..., vḟq (bn)

)
,

cn = dn/bn, xnk = xk/dn and

Zn(θ) = D−1
n

n∑
k=1

λ(xk/bn) ḟ(xk, wk, θ)uk,

Yn(θ) =
(
D−1
n

)′ n∑
k=1

λ(xk/bn)ḟ(xk, wk, θ)ḟ(xk, wk, θ)
′D−1

n .

Note that, owing to A4 (i) and (iii),

||D−1
n

[
ḟ(xk, wk, θ1)− ḟ(xk, wk, θ2)

]
||

≤ ||θ1 − θ2||α (n/cn)−1/2
q∑
i=1

v−1

ḟi
(bn)Tḟi(xk, wk)

≤ q ||θ1 − θ2||α (n/cn)−1/2 T (cnxnk)(1 + |wk|β),

for any θ1, θ2 ∈ Θ. It follows from Corollary 2 with gk(θ) = f(xk, wk, θ) that, to prove Theorem

1, it suffices to show that

(i) θ̂n is a consistent estimator of θ0;

(ii) for any bounded and integrable function g(x),

cn
n

n∑
k=1

E
[
g(cn xnk)(1 + |wk|2β)

]
= O(1); (C.1)

(iii) for a q-dimensional standard normal vector N that is independent of X,

{
Zn(θ0), Yn(θ0)

}
→D

{
σΣ

1/2
1 LX(1, 0)1/2N , ΣLX(1, 0)

}
. (C.2)

Result (C.1) is well-known in literature. See, for instance, (7.22) of Wang et al. (2021).

We next prove (C.2). We may write

Zn(θ0) = D−1
n

n∑
k=1

λ(xk/bn) ḟ(xk, wk, θ0)uk,

=
(cn
n

)1/2 n∑
k=1

λ(cn xnk) ḣ(cnxnk, wk, θ0)uk +Rn

:= Zn1(θ0) +Rn, (C.3)
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where Rn =
∑n
k=1 ankuk with

ank = λ(xk/bn)
[
D−1
n ḟ(xk, wk, θ0)−

(cn
n

)1/2
ḣ(xk/bn, wk, θ0)

]
.

It follows from A4(ii) and (iii) with l = bn that, for any ε > 0, there exists a n0 so that when

n ≥ n0,

||ank|| ≤ ε q
(cn
n

)1/2
λ(xk/bn)T (xk/bn)(1 + ||wk||β).

This, together with (C.1) with g(x) = λ2(x)T 2(x), yields that, for any ε > 0, there exists a n0

so that when n ≥ n0,

ER2
n ≤ C

n∑
k=1

E||ank||2 ≤ Cε
cn
n

n∑
k=1

E
[
λ2(xk/bn)T 2(xk/bn)(1 + ||wk||2β)

]
≤ Cε,

i.e., ||Rn|| = oP (1). Similarly, we have

Yn(θ0) =
(
D−1
n

)′ n∑
k=1

λ(xk/bn)ḟ(xk, wk, θ0)ḟ(xk, wk, θ0)′D−1
n

=
cn
n

n∑
k=1

λ(cn xnk)ḣ(cn xnk, wk, θ0)ḣ(cn xnk, wk, θ0)′ +R1n

= Yn1(θ0) +R1n, (C.4)

where ||R1n|| = oP (1).

By virtue of (C.3) and (C.4), result (C.2) follows from the fact: for any α′i = (αi1, ..., αiq) ∈

R, i = 1, 2, 3,

(
α′1 Yn1(θ0)α2, α′3Zn1(θ0)

)
→D

(
α′1 Σα2 LX(1, 0),

[
α′3 Σ1 α3 LX(1, 0)

]1/2
N
)
, (C.5)

where we have used Theorem 7.

We finally prove θ̂n is a consistent estimator of θ0. Note that cn
nv2
f

(bn)

∑n
k=1 T

2(xk/bn)(1 +

|wk|β)2 = OP (1) and, owing to A4 (i) and (iii) with p(.) = f(.),

|f(xk, wk, θ1)− f(xk, wk, θ2)| ≤ ||θ1 − θ2||α vf (bn)T (xk/bn)(1 + |wk|β),
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for any θ1, θ2 ∈ Θ. Using Theorem 4 with gk(θ) = f(xk, wk, θ) and kn = cn
nv2
f

(bn)
, it suffices to

show that, for any θj ∈ Θ and αj ∈ R, j = 1, 2, ..., q,

q∑
j=1

αj Gn(θj) →D

q∑
j=1

αjG(θj), (C.6)

where

Gn(θ) =
cn

nv2
f (bn)

n∑
k=1

λ(xk/bn)
[
f(xk, wk, θ)− f(xk, wk, θ0)

]2
,

G(θ) =

∫ ∞
−∞

λ(x)E
[
hf (x,w1, θ)− hf (x,w1, θ0)

]2
dxLX(1, 0),

since P
(

min||θ−θ0||≥δ G(θ) > 0
)

= 1 for each δ > 0, owing to A4 (iv) and the fact that

P (LX(1, 0) > 0) = 1.

In order to establish (C.6), we write

Rn(θ) =
cn

nv2
f (bn)

n∑
k=1

λ(xk/bn)
[
f(xk, wk, θ)− vf (bn)hf (xk/bn, wk, θ)

]2
,

G1n(θ) :=
cn
n

n∑
k=1

λ(xk/bn)
[
hf (xk/bn, wk, θ)− hf (xk/bn, wk, θ0)

]2
.

As that of Rn = oP (1), it follows from A4 (ii) and (iii) with l = bn that

sup
θ∈Θ
|Rn(θ)| ≤ o(1) cn

nv2
f (bn)

n∑
k=1

λ(xk/bn)T 2
f (xk, wk)

= o(1)
cn
n

n∑
k=1

λ(xk/bn)T 2(xk/bn)(1 + |wk|β)

= oP (1) , (C.7)

as n→∞. On the other hand, as in the proof of (C.5),

q∑
j=1

αj G1n(θj) →D

q∑
j=1

αj G(θj). (C.8)

Now, by noting Gn(θ) can be decomposed into Gn(θ) = G1n(θ) + ∆n(θ), where

∆n(θ) ≤ 2 sup
θ∈Θ
|Rn(θ)|+ 4G

1/2
1n (θ) sup

θ∈Θ
|Rn(θ)|1/2 ,
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we have
∑q
j=1 αj∆n(θj) = oP (1) and (C.6).

The proof of Theorem 1 is now complete. 2

Proof of Corollary 1. It is similar to that of Theorem 1 except using Theorem 8 instead

of Theorem 7. We omit the details. 2

Proof of Theorem 2. For the first part, i.e., the proofs of (3.2) and (3.3), the idea is

essentially the same as that of Theorem 1. Indeed, by recalling that T (x) is bounded and

integrable and

||ḟ(xk, wk, θ1)− ḟ(xk, wk, θ2)|| ≤ ||θ1 − θ2||αT (xk)(1 + ||wk||β),

as in Theorem 1 by using Corollary 2 with lk ≡ 1 and gk(θ) = f(xk, wk, θ), it suffices to show:

(a) θ̂n is a consistent estimator of θ0; (b)

dn
n

n∑
k=1

E
[
g(xk)(1 + |wk|2β)

]
= O(1)

for any bounded and integrable function g(x); and (c)

{
Ŷn(θ0), Ẑn(θ0)

}
→D

{
Σ2 LX(1, 0), σN

[
Σ2LX(1, 0)

]1/2}
,

where

Ẑn(θ) =
(dn
n

)1/2 n∑
k=1

ḟ(xk, wk, θ)uk,

Ŷn(θ) =
dn
n

n∑
k=1

ḟ(xk, wk, θ)ḟ(xk, wk, θ)
′ .

and N is a standard q-dimensional normal random vector independent of Xt. In fact, by recalling

xnk = xk/dn, result (c) comes from a direct application of Theorem 7; (b) is the same as (C.1)

with cn = dn and (a) is similar to that of (i) in the proof of Theorem 1 with some routine

notation changes.
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If A2 is replaced by A2 ∗, to show (3.2) and (3.3) still hold, we only need to replace

Theorem 7 by Theorem 8 and hence the details are omitted. 2

Proof of Theorem 3. As in Theorem 1, we establish Theorem 3 by using Corollary 2 with

gk(θ) = m(xk, θ)K(wk), but with different details. Indeed, owing to A4∗ (i) and (iii), we have

||D̃−1
n

[
ġk(θ1)− ġk(θ2)

]
|| ≤ ||θ1 − θ2||α n−1/2

q∑
i=1

v−1
ṁi

(dn)Tṁi(xk)(1 + ||wk||β)

≤ q ||θ1 − θ2||α n−1/2 T (xnk)(1 + ||wk||β),

for any θ1, θ2 ∈ Θ, where xnk = xk/dn and D̃n = n1/2 diag
(
vṁ1(dn), ..., vṁq (dn)

)
. It follows

from Corollary 2 with lk ≡ 1 and gk(θ) = m(xk, θ)K(wk) that, to prove Theorem 3, it suffices

to show that

(i) for any function K̃(x) satisfying E|K̃(w1)|1+δ <∞ for some δ > 0 and for any continuous

function g(x),

1

n

n∑
k=1

g(xnk)K̃(wk) =
EK̃(w1)

n

n∑
k=1

g(xnk) + oP (1)

→D EK̃(w1)

∫ 1

0

g(Xt)dt. (C.9)

(ii) θ̂n is a consistent estimator of θ0, or equivalently [using Theorem 5 with lk = 1 and

gk(θ) = m(xk, θ)K(wk)] for any θj ∈ Θ and αj ∈ R, j = 1, 2, ..., l,

l∑
j=1

αj
1

nv2
m(dn)

n∑
k=1

[
m(xk, θj)−m(xk, θ0)

]2
K2(wk)

→D EK2(w1)

l∑
j=1

αj G(θj), (C.10)

where G(θ) :=
∫ 1

0

[
h̃m(Xt, θ)− h̃m(Xt, θ0)

]2
dt.

(iii)

{
Z̃n(θ0), Ỹn(θ0)

}
→D

{∫ 1

0

Φ(t)dUt, EK
2(w1)

∫ 1

0

Φ(t)Φ(t)′dt
}
, (C.11)
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where

Z̃n(θ) = D̃−1
n

n∑
k=1

ṁ(xk, θ)K(wk)uk,

Ỹn(θ) =

n∑
k=1

(
D̃−1
n

)′
ṁ(xk, θ)ṁ(xk, θ)

′ D̃−1
n K2(wk).

Note that wk, k ≥ 0, is a stationary k0-dependent random sequence. It is routine to show

that, for any m→∞ satisfying m/n→ 0,

max
m≤j≤n−m

E
∣∣∣ 1

m

j+m∑
k=j+1

K̃(wk)− EK̃(w1)
∣∣∣→ 0.

Result (C.9) now follows from Lemma 5.1 of Hu et al. (2021) and standard result on the

convergence to stochastic integrals.

The proof of (C.10) is similar to that of (B.3) of Wang (2021), by showing that, for any

θ ∈ Θ,

1

nv2
m(dn)

n∑
k=1

[
m(xk, θ)−m(xk, θ0)

]2
K2(wk)

=
1

n

n∑
k=1

[
h̃m(xnk, θ)− h̃m(xnk, θ0)

]2
K2(wk) + ∆̃n, (C.12)

where ∆̃n →P 0. Indeed, by recalling h̃m(., θ) is continuous for each θ, (C.10) follows from (C.9),

(C.12) and the Cramér–Wold theorem. We provide an outline proof of (C.12) for convenience

of the reading. Write x∗k = xkI(|xk|/dn ≤ A),

R̃n(θ) =

n∑
k=1

[
m(xk, θ)− vm(dn)h̃m(xk/dn, θ)

]2
K2(wk),

R̃∗n(θ) =

n∑
k=1

[
m(x∗k, θ)− vm(dn)hm(x∗k/dn, θ)

]2
K2(wk).

For any fixed A > 0, it follows from A4∗(ii) and (iii) and (C.9) that

sup
θ∈Θ
|R∗n(θ)| ≤ o(1) v2

m(dn)

n∑
k=1

T 2(x∗k/dn)K2(wk) = o(1)nv2
m(dn)EK2(w1),
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as n→∞. This implies that, for any ε > 0,

P
( 1

nv2
m(dn)

sup
θ∈Θ
|R̃n(θ)| ≥ ε

)
≤ P

(
xk 6= x∗k, for some k=1,...,n

)
+ P

( 1

nv2
m(dn)

sup
θ∈Θ
|R̃∗n(θ)| ≥ ε

)
≤ P

(
max

1≤k≤n
|xk|/dn ≥ A

)
+ P

( 1

nv2
m(dn)

sup
θ∈Θ
|R̃∗n(θ)| ≥ ε

)
→ 0,

as n→∞ first and then A→∞, namely, we have

sup
θ∈Θ
|R̃n(θ)| = oP

[
nv2

m(dn)
]
. (C.13)

Now (C.12) follows (C.9) and (C.13) since

∆̃n ≤ 4 sup
θ∈Θ
|R̃n(θ)|

+4 sup
θ∈Θ
|R̃n(θ)|1/2

( 1

n

n∑
k=1

[
h̃m(xnk, θ)− h̃m(xnk, θ0)

]2
K2(wk)

)1/2

.

We finally prove (C.11). We may write

Z̃n(θ0) =
1√
n

n∑
k=1

h̃(xnk, θ0)K(wk)uk + R̃n

:= Z̃n1(θ0) + R̃n, (C.14)

where R̃n =
∑n
k=1 ãnkK(wk)uk with

ãnk = D̃−1
n ṁ(xk, θ0)− 1√

n
h̃(xnk, θ0)

=
[ ṁ1(.)− vṁ1(dn)hṁ1(.)√

nvṁ1(dn)
, · · · ,

ṁq(.)− vṁq (dn)hṁq (.)
√
nvṁq (dn)

]′
.

As in the proof of (C.13), we have

n∑
k=1

||ãnk||2K2(wk) = oP (1) and max
1≤k≤n

[
||ãnk||2K2(wk)

]
= oP (1)
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by (C.9). This yields ||R̃n|| = oP (1) since {ãnkuk,Fk} forms a martingale difference array with

supk≥1 E
(
|uk|2+δ | Fk−1

)
≤ C < ∞ for some δ > 0 under the conditions A1 - A3. Similarly,

the same arguments used in the proofs of (C.9) and (C.13) yield that

Ỹn(θ0) =

n∑
k=1

(
D̃−1
n

)′
ṁ(xk, θ)ṁ(xk, θ)

′ D̃−1
n K2(wk)

=
1

n

n∑
k=1

h̃(xnk, θ0)h̃(xnk, θ0)′K2(wk) + R̃1n

=
EK2(w1)

n

n∑
k=1

h̃(xnk, θ0)h̃(xnk, θ0)′ + oP (1)

= Ỹn1(θ0) + oP (1). (C.15)

By virtue of (C.14) and (C.15), result (C.11) will follow if we prove: for any α′i = (αi1, ..., αiq) ∈

R, i = 1, 2, 3,

{
α′1 Yn1(θ0)α2, α

′
3Zn1(θ0)

}
→D

{
α′1

∫ 1

0

Φ(t)Φ(t)′dtα2EK
2(w1), α′3

∫ 1

0

Φ(t)dUt
}
. (C.16)

Recall Ψ(t) = h̃(Xt, θ0). The proof of (C.16) is standard, which follows from the classical result

on the convergence to stochastic integrals [e.g., Kurtz and Protter (1991)] and the fact: instead

of (2.4), we have

( 1√
n

bntc∑
i=1

K(wi)ui,
1√
n

bntc∑
i=1

εi,
1√
n

bntc∑
i=1

ε−i,
1

dn
x[nt]

)
⇒

(
Ut, Bt, B−t, Xt

)
,

on DR4 [0,∞), where Bt, B−t and Xt are given as in Section 2.2 and (Ut, Bt)t≥0 is a bivariate

Brownian motion with covariance matrix:

Ω =

σ̃2 ρ

ρ 1

 , where σ̃2 = E
[
u1K(w1)

]2
and ρ = E

[
ε1u1K(w1)

]
.

The proof of Theorem 3 is complete. 2
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