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Abstract: We propose an efficient two-step estimation procedure for a parametric

modal regression with autoregressive errors. The procedure relies on estimating

a parametric transformation of the dependent variable from data using a (pe-

nalized) kernel-based objective function. We establish asymptotic normality for

the resulting estimator and demonstrate that it possesses oracle properties, as if

the true order of autoregressive error structure were known in advance. To nu-

merically estimate modal parameter and determine the order of error structure,

two modified (penalized) modal expectation-maximization (MEM) algorithms are

developed. Furthermore, we present a modal residual-based autocorrelation test

and show that the statistic is asymptotically distributed as a X 2 distribution.

Monte Carlo simulations and an empirical analysis are conducted to illustrate

the finite sample performance of the resultant estimator. We also discuss the

extension of the results to a nonparametric modal regression model.

Key words and phrases: Autoregressive error, MEM algorithm, Modal regression,

Oracle property, Order selection, Residual-based test.
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1. Introduction

Modal regression has recently attracted much attention due to its robustness

for skewed and heavy-tailed data, which can be treated as a complement to

mean or median (quantile) regression; see Ullah et al. (2021, 2022, 2023).

The main objective of modal regression is to capture how covariates X

affect the “most likely” (mode) value of a response variable Y , as denoted

by

Mode(Y | X) = argmax
Y

fY |X(Y | X), (1.1)

where fY |X(Y | X) represents the conditional density of Y given X. The

modal regression line can then be obtained by nonparametrically estimating

the aforementioned conditional density function (Chen et al., 2016). How-

ever, because of the “curse of dimensionty”, such a density-based estimation

is difficult to implement. Similar to mean or median (quantile) regression,

we can avoid nonparametrically estimating conditional density and achieve

different types of modal regression models by directly imposing structural

assumptions on Mode(Y | X); see Yao and Li (2014), Chen (2018), Ullah

et al. (2021, 2022, 2023), and references therein for details.

For illustration, suppose that random samples {Yt, Xt}nt=1 are collected
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in order to establish a conditional modal regression model

Yt = Mode(Yt | Xt) + εt, t = 1, · · · , n, (1.2)

where Yt ∈ R, Xt ∈ Rp (which may include lagged values of Yt), and {εt}nt=1

are random errors with Mode(εt | Xt) = 0 almost surely. This construction

of a modal regression line allows for nonuniqueness, but all of the models

considered in this paper are assumed to have a global unique mode for con-

venience purposes. According to Ullah et al. (2023), we can impose a linear

regression structure XT θ on Mode(Yt | Xt) to explain the mode relation-

ship between response and explanatory variables, where θ is an unknown

parameter vector in the parameter space Θθ ⊂ Rp and T represents the

transpose of a matrix or a vector. Following that, the parameter θ can

be estimated using a kernel-based objective function constructed from the

density of error term εt (Kemp and Santos Silva, 2012; Yao and Li, 2014)

Qn(θ) =
1

nhn

n∑
t=1

K

(
Yt −XT

t θ

hn

)
, (1.3)

whereK(·) is a kernel function with
∫
R K(t)dt = 1 and hn is a non-stochastic

strictly positive bandwidth dependent on n. To acquire the reliable esti-

mator from (1.3), we need to assume that the error term εt, denoted as
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Yt −Mode(Yt | Xt), is independent and identically distributed (i.i.d.).

The i.i.d. assumption, on the other hand, may be violated when data

are collected sequentially in time, such as the financial return, individual

income, or interest rate, which naturally imposes a correlated structure

for error terms. As a result, the error terms in (1.2) will possess serial

correlation and the conditional mode of εt on Xt is no longer zero due to

the absence of mode additive property. If such correlation is not taken into

account, the modal estimator of θ from (1.3)—the “most likely” effect—

may be inefficient or biased (when εt and Xt have dependence relationship),

rendering any inference based on it invalid. Ullah et al. (2021) mentioned

that incorporating the information from error autocorrelation structure can

lead to a more efficient modal estimator, but they did not address the

critical issues related to practical implementation. The question of how to

best incorporate error correlation information to recover modal coefficient θ

remains unanswered. To fill the literature gap, we in this paper assume that

{Yt, Xt}nt=1 is a sequence of strictly stationary random vectors and aim at

estimating the conditional modal regression with autoregressive (AR) error

εt by directly modeling the error process. We show that the autocorrelation

function of the error process contains useful information for inferring and

can be properly used to improve the performance of modal estimators.
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Serial correlation in the error terms of mean or median (quantile) regres-

sion has been investigated intensively as a main class of dynamic regression

models; see Opsomer et al. (2001), Xiao et al. (2003), Su and Ullah (2007),

Wang et al. (2007), Martins-Filho and Yao (2009), Chen et al. (2015),

among others. All of these studies can be viewed as extensions of the mean

or median (quantile) regression literature from the typical case where error

terms are i.i.d. to instances where specific parametric or nonparametric

structures for error terms are allowed. In light of these research, we study

parametric linear modal regression with errors represented by a stationary

AR process with finite order d, where we recover modal parameters by di-

rectly incorporating the autocorrelated error process; see (2.3). However,

the true AR order in the errors is rarely available in advance and is simply

assumed to be an upper bound in practice. The misspecification of the

lagged order will result in the reduction of estimation precision and effi-

ciency. Although information criterion-based methods can usually identify

the order, these methods are sensitive to small changes in the data and

ignore stochastic errors inherited in the process of determining order (Qiu

et al., 2015). Furthermore, the existing information criterion in mean or

median (quantile) regression cannot be utilized for modal regression with a

kernel-based objective function. These motivate us to propose a modal vari-
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able selection procedure through a penalty function based on the estimated

residuals to determine the AR order.

Specifically, we propose an efficient two-step estimation procedure for

estimating the modal regression parameters while accounting for the AR

error structure. In the first step, we select an arbitrary large value for d

(upper bound) to obtain the initial estimate of θ, and in the second step, we

update the estimate with order selection using penalized modal regression.

Consequently, the final modal estimator of θ is based on a parametric trans-

formation of the dependent variable, which must be estimated from data

using a (penalized) kernel-based objective function. We establish asymp-

totic normality for the resulting estimator and demonstrate that it has the

oracle properties as if the true error structure were known in advance. Fol-

lowing Li et al. (2007) and Yao (2013), we suggest two modified (penalized)

MEM algorithms to numerically estimate modal parameters. Monte Carlo

simulations and an empirical analysis are conducted to illustrate the finite

sample performance of the resulting estimators, where we show that ac-

counting for autocorrelation in the errors can result in substantially more

accurate and efficient modal estimates. In spite of the extensive literature

on mode, there is little research on variable selection in modal regression.

The developed order selection procedure can also be considered as a con-
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tribution to modal variable selection literature.

The proposed estimation methodology relies on the presence of autocor-

relation in the error terms. If the modal regression model does not contain

an autocorrelated error process, the developed method may lose efficiency.

As a result, it is particularly important to check for any signs of auto-

correlation in modal regression. To accomplish this objective, we suggest

a residual-based test for autocorrelation in modal regression models. In

general, the Breusch-Godfrey LM test can be applied to the residuals of a

baseline modal regression. Furno (2000), for example, recommended a LM

test based on the least absolute deviation residuals. Nevertheless, Huo et

al. (2017) argued that such a LM test could result in potentially large size

distortions for median (quantile) regression. Particularly, the LM statistic

either diverges to infinity or weakly converges to a distribution that is differ-

ent from the X 2 distribution. Given that modal regression can be regarded

as a special case of quantile regression, which is obtained by maximizing the

density function, such size distortions may also appear in modal regression

if the LM test is used. We thus extend the results in Huo et al. (2017)

to parametric modal regression to propose a modal residual-based test and

show that the statistic is asymptotically distributed as a X 2 distribution.

The layout of the remainder of this paper is as follows. In Section 2, we
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propose an efficient two-step estimation procedure to estimate the modal

regression coefficients. In Section 3, we present the asymptotic properties of

the resulting modal estimators. In Section 4, we develop a modal residual-

based test for autocorrelation in parametric modal regression. We report

an empirical analysis in section 5 and conclude the paper in Section 6. All

technical proofs and Monte Carlo simulations are presented in the supple-

mentary file, as well as the extension to nonparametric modal regression.

2. Modal Regression with AR Errors

We begin this section by introducing the error structure of (1.2). Since

most Gaussian stationary processes can be approximated by an AR process

of sufficiently high order, we assume that εt is a stationary AR(d) series

εt = β1εt−1 + · · ·+ βdεt−d + ηt, t = d+ 1, · · · , n, (2.1)

where 1−
∑d

j=1 βjz
j ̸= 0 for all z such that |z| ≤ 1 on the complex plane,

β = (β1, · · · , βd)
T is a d×1 vector of unknown AR coefficients, and {ηt}nt=d+1

are i.i.d. random errors with zero mode. Because the conditional modal

estimators and their asymptotic properties are irrelevant to the moments of

error terms, compared to mean regression, we do not impose any moment
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conditions on ηt, i..e, allow AR(d) with E(ε2t ) = ∞ and the distribution of ηt

to be heavy-tailed or asymmetric. Note that the distribution of the errors in

practice can potentially be heteroskedastic and asymmetric simultaneously,

motivating the need of the suggested modal estimation.

Remark 1. As pointed out by the editor, with i.i.d. random errors, the dif-

ference between the mode and the mean is a constant. Since all AR models

can be written as a MA(∞) model, the modal regression and a zero-mean

noise regression only differ by a constant term. We can then combine modal

and mean regressions to achieve coefficient estimators, which has been uti-

lized in Ullah et al. (2021). However, compared to this combined estimation

procedure, the proposed modal estimation can increase efficiency and has

better prediction performance if the distribution of the error term or de-

pendent variable is skewed; see the simulation results in the supplementary

file.

The model in (1.2) can then be written as

Yt = XT
t θ + β1εt−1 + · · ·+ βdεt−d + ηt (2.2)

by incorporating the error structure information. If the values of {ε}nt=d+1

were available, (2.2) would be a valid linear modal regression equation, and
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the coefficients could be estimated directly using the kernel-based objective

function (1.3). In practice, however, they are not available (neither directly

nor indirectly), and need to be substituted with appropriate estimates.

To obtain the consistent estimate of θ, we replace εt−j with Yt−j−θXt−j

for j = 1, 2, · · · , d and get

Mode (Yt | Ft−1) = XT
t θ +

d∑
j=1

βj

(
Yt−j −XT

t−jθ
)

(2.3)

provided that ηt is independent of Ft−1, where Ft−1 = σ({Ys, Xs} : s ≤ t)

is the σ-field generated by ({Ys, Xs} : s ≤ t). If the value of order d

were known, the parameters can be identified and estimated by using (2.3)

straightforwardly. However, we do not know the exact value of d practi-

cally. To improve estimation performance and propose a modal residual-

based autocorrelation test, we instead use the estimate of θ from (2.3) with

an arbitrary chosen d (e.g., upper bound chosen by ACF and PACF) to

construct a preliminary consistent estimate of εt. We then plug it back

into the AR model in (2.3) and simultaneously estimate β and select d by

maximizing a penalized kernel-based objective function. Finally, we plug

the consistent penalized estimate of β into (2.2) to define a new pseudo

response variable, converting the AR regression problem to a parametric
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2.1 Feasible Estimation Procedure

modal regression framework. The entire estimation procedure is built on

Mode
(
Yt −

s∑
j=1

βjεt−j | Ft−1

)
= XT

t θ, (2.4)

where s ≤ d is the selected order. Under some mild conditions, the final

estimator of θ is shown to have similar asymptotic bias and variance as the

estimator of linear modal regression with i.i.d. observations, except for the

explicit value of the density function for error terms (see Theorem 7).

2.1 Feasible Estimation Procedure

To efficiently account for the AR error structure, we in the first step esti-

mate θ in (2.3) by maximize the following kernel-based objective function

Qn0(θ, β) =
1

n0h1

n∑
t=d+1

K

(
Yt −XT

t θ −
∑d

j=1 βjYt−j +
∑d

j=1 βjX
T
t−jθ

h1

)
,

(2.5)

where n0 = n−d is the effective sample size and h1 = h1(n0) > 0 is a scalar

bandwidth sequence satisfying h1 → 0 as n0 → ∞. According to Yao and

Li (2014) and Ullah et al. (2021, 2022, 2023), the choice of kernel function

is less important in modal estimation than the choice of bandwidth. We

thus choose the Gaussian kernel in this paper for simple calculations; see

the role of the Gaussian kernel in the following MEM algorithms. We use
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2.1 Feasible Estimation Procedure

θ̃ and β̃ to represent the first-step modal estimators from (2.5).

After obtaining the estimate θ̃, we in the second step use it to con-

struct the estimate ε̂t with ε̂t = Yt − XT
t θ̃. We then conduct a modal

variable selection procedure to determine the AR order from the data by

adding a penalty term into the kernel-based objective function

QP
n0
(β) =

1

n0h2

n∑
t=d+1

K

(
ε̂t −

∑d
j=1 βj ε̂t−j

h2

)
+

d∑
j=1

pλj
(|βj|) , (2.6)

where h2 = h2(n0) > 0 is a sequence of bandwidths that depends on n0

satisfying h2 → 0 as n0 → ∞, and pλj
(·) is a penalty function with the

tuning parameter λj controlling the model complexity. In general, the larger

λj, the simpler the modal regression model with fewer variables selected.

The penalty function pλj
(·) and the tuning parameter λj are not required

to be identical for all j. We denote the estimator from (2.6) as β̂P . The

selected AR order s ≤ d is the highest order whose corresponding coefficient

is not zero. In Section 3, we show that the penalized modal estimator is

consistent and enjoys selection consistency as well as asymptotic normality.

Remark 2. To reduce model complexity, we concentrate on penalized

methodology for selecting AR order. Aside from that, we can also uti-

lize a modified Bayesian information criterion (BIC) for finding the order,
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2.1 Feasible Estimation Procedure

where

dopt = argmin
d

BIC(d) = −Qn0(θ, β) + (n0h
3
1)

−1 log(n0h
3
1)dfd

and dfd denotes the number of coefficients. This approach, however, dis-

regards stochastic errors inherited in the stages of determining the AR

process. It is also computationally intensive because BIC(d) depends on

the estimates of θ and β, and it is challenging to compare all candidate

subprocesses to choose the optimal model when the maximal order is very

large.

To obtain the final modal estimator of θ, we maximize the following

kernel-based objective function derived from (2.4)

Qn0(θ) =
1

n0h3

n∑
t=d+1

K

(
Yt −

∑d
j=1 β̂

P
j ε̂t−j −XT

t θ

h3

)
(2.7)

by submitting εt−j and βj with the corresponding estimates, where h3 =

h3(n0) > 0 is a sequence of bandwidths that depends on n satisfying h3 → 0

as n0 → ∞. The final estimator from (2.7) is denoted as θ̂. In Section 3,

we show that under appropriate assumptions, the final modal estimator θ̂

is asymptotically equivalent to the infeasible estimator from (2.4).

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0405



2.2 Practical Algorithms

Remark 3. (Variable and Order Selection) In the absence of prior

knowledge, a large number of variables may be included in model (2.2) to

reduce potential model bias, but could result in less predictive power and

greater interpretation difficulty. In this case, we can apply the penalized

objective function Qn0(θ, β) +
∑p

k=1 pλk
(|θk|) +

∑d
j=1 pµj

(|βj|) to simulta-

neously select the significant explanatory variables and determine the order

of autocorrelation with the properly chosen penalty functions. A nature

approach to obtain estimates is to utilize an iterate procedure by maximiz-

ing the above objective function with respect to θ and β, separately. We

leave the specifics of such an investigation to another research.

2.2 Practical Algorithms

2.2.1 MEM Algorithm

There exist both θ and β in (2.5), implying that we need to maximize the

objective function with respect to (θ, β) iteratively. To be more specific, for

a given value β̃j, j = 1, 2, · · · , d, we maximize the following kernel-based

objective function to obtain the estimate of θ

1

n0h1

n∑
t=d+1

K

(
Yt −XT

t θ −
∑d

j=1 β̃jYt−j +
∑d

j=1 β̃jX
T
t−jθ

h1

)
. (2.8)
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2.2 Practical Algorithms

Then, we maximize the kernel-based objective function as outlined below

to achieve a new estimate of β given the estimate θ̃

1

n0h1

n∑
t=d+1

K

(
Yt −XT

t θ̃ −
∑d

j=1 βjYt−j +
∑d

j=1 βjX
T
t−j θ̃

h1

)
. (2.9)

The above two functions are maximized iteratively until convergence. The

choice of bandwidths will be introduced later, whereas the initial values can

be obtained by running a mean or median (quantile) regression.

Algorithm 1 MEM Algorithm

E-Step. Calculate the weight π(t | θ(g)) with the preliminary estimate of
the modal parameter as

π
(
t | θ(g)

)
=

K

(
Ỹt−XT

t θ(g)+
∑d

j=1 β̃jX
T
t−jθ

(g)

h1

)
∑n

t=d+1K

(
Ỹt−XT

t θ(g)+
∑d

j=1 β̃jXT
t−jθ

(g)

h1

) .

M-Step. Update θ(g+1) with the weight calculated in E-Step

θ(g+1) = argmax
θ

n∑
t=d+1

{
π
(
t | θ(g)

)
log

1

h1

K

(
Ỹt −XT

t θ +
∑d

j=1 β̃jX
T
t−jθ

h1

)}
= (X∗TWXX

∗)−1X∗TWXY
∗,

where g is the iteration indicator, Ỹt = Yt −
∑d

j=1 β̃jYt−j, X∗
t = XT

t −∑d
j=1 β̃jX

T
t−j, X∗ = (X∗

d+1, · · · , X∗
n)

T , Y ∗ = (Ỹd+1, · · · , Ỹn)
T , and WX

is an (n − d) × (n − d) diagonal matrix consisting of diagonal elements
{π
(
t | θ(g)

)
}nt=d+1.

Nevertheless, because there is no explicit expression for the estimator
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2.2 Practical Algorithms

in modal regression, obtaining a modal estimator by maximizing the kernel-

based objective function is difficult. To numerically estimate the proposed

models, we develop a modified MEM Algorithm 1 by virtue of Gaussian ker-

nel based on Li et al. (2007) and Yao (2013), which can provide an explicit

expression for the modal estimator in M-Step (log-maximization). Due

to space constraints, we only present the algorithm for (2.8), while other

kernel-based objective functions can be solved using the same procedures.

We iterate E-Step and M-Step until the total error of the estimate ap-

proaches the preassigned constraint. In practice, a tolerance ϵ is set as 10−5

and the algorithm is iterated until ∥θ̃(g+1)− θ̃(g)∥ < ϵ = 10−5, where ∥ ·∥ de-

notes the Euclidean norm, defined as ∥A∥ = [tr(AAT )]1/2. Consistent with

the result in Yao and Li (2014), the proposed MEM algorithm has the as-

cending property, which means that at each iteration Qn0(θ
(g+1), β̃) ≥ Qn0

(θ(g), β̃) and the equality holds if and only if θ(g+1) = θ(g), ensuring the

convergence of MEM algorithm. In general, the MEM algorithm leads to

optimization problems suffering from the local maximum with small band-

widths. To address this issue, we can try different starting points of param-

eters (i.e., mean, median, or quantile estimates) on each occasion to obtain

a stable estimate. If the Qn0(·) function is assumed to be unimodal, the

initial values for the algorithm will not produce much effect on the results

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0405



2.2 Practical Algorithms

of estimation. Accordingly, the algorithm will not be trapped at a local

maximum.

2.2.2 Penalized MEM Algorithm

There are numerous penalty functions available in the literature, including

LASSO, adaptive LASSO, ridge, elastic net, among others (Fan and Lv,

2010). In this paper, we choose the smoothly clipped absolute deviation

(SCAD) penalty because of its unbiasedness for a true coefficient, sparsity

to reduce model complexity, and continuity to avoid unnecessary variation.

The first derivative of pλ(|βj|) for the SCAD penalty is defined as

p
(1)
λ (|β|) = λ{I(|β| ≤ λ) +

(aλ− |β|)+
(a− 1)λ

I(|β| > λ)} (2.10)

for β > 0, where (t)+ = tI(t > 0) with I(·) being the indicator function

and a = 3.7 suggested by Fan and Li (2001) from a Bayesian point of

view. Notice that the SCAD penalty is a quadratic spline with knots at ±λ

and ±aλ. With the proper choice of tuning parameter, we can shrinkage

some coefficients to zero with probability converging to one, providing the

theoretical support for AR order choice.

The maximization of the SCAD penalized objective function is not easy
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2.2 Practical Algorithms

because it is irregular at the origin and lacks a second derivative at some

points. To circumvent this difficulty, we take the local quadratic approx-

imation for the SCAD penalty function suggested by Fan and Li (2001).

Suppose we can obtain an estimate β
(g)
j in the gth step that is close to the

true parameter βj. If |β(g)
j | is close to 0, then set β̂P

j = 0. Otherwise, the

SCAD penalty can be locally approximated by a quadratic function as

[
pλj

(|βj|)
](1)

= p
(1)
λj

(|βj|) · sgn (βj) ≈ p
(1)
λj

(
|β(g)

j |
)
/|β(g)

j |βj, (2.11)

which is equivalent to

pλj
(|βj|) ≈ pλj

(|βj0|) +
1

2

{
p
(1)
λj

(
|β(g)

j |
)
/|β(g)

j |
}(

β2
j − β

(g)2
j

)
. (2.12)

We then propose a penalized MEM algorithm for (2.6). Starting from

an initial estimate, we iterate the E-Step and M-Step until some conver-

gence criterion is met (we explain more about convergence property in the

supplementary file). In contrast to Algorithm 1, we now need to select the

tuning parameter λj. Since the magnitude of λj is proportional to the stan-

dard error of the estimate of βj, we follow Fan and Li (2004) to set λj =

λSE(β̂j), where λ is a scalar variable and SE(β̂j) is the standard error from

(2.6) that can be acquired by a modal Bootstrap procedure; see Ullah et al.
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(2021). After that, the original d-dimensional optimization is reduced to a

one dimensional problem. We select λ based on the BIC-type criterion re-

lying on the kernel-based objective function. The simulation results in the

supplementary file suggest that the correct order of AR error terms could

be identified by setting some of coefficients to zero if d is chosen large.

3. Asymptotic Properties

Since the AR order does not necessarily increase with sample size (Wang

et al., 2007), we do not assume an increasing d (i.e., being independent of

n) when investigating the theoretical properties of the proposed estimators.

To facilitate the asymptotic analysis, we make the following assumptions.

C1 (Parameter Space) The true values of parameters θ0 and β0 are in the

interior of the known compact parameter space Θθ × Θβ, which is a

subset of Euclidean space Rp × Rd.

C2 (Stationary) The strictly stationary process {
(
XT

t , εt
)T} is strong

mixing with mixing coefficients α(j) that satisfy
∑∞

j=1 j
2α(j)δ/(1+δ) <

∞ for some δ > 0, where α(n) = supA∈F0
−∞,B∈F∞

n
|P (A∩B)−P (A)P (B)|

with F0
−∞ being a σ-field generated by {(XT

t , εt) : t ≤ 0} and F∞
n be-

ing a σ-filed generated by {(XT
t , εt) : t ≥ n}.
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Algorithm 2 Penalized MEM for Order Selection

Selection of λj. Set λj = λSE(β̃j). Utilize a modified BIC to select λ

min
λ

BIC(λ) = − 1

n0h2

n∑
t=d+1

K

(
ε̂t −

∑d
j=1 β̂

P
j ε̂t−j

h2

)
+

log(n0h
3
2)

n0h3
2

edfλ,

where edfλ represents the effective degrees of freedom (as measured by the

number of nonzero coefficients of β̂P and n0h
3
2 indicates the effective sample

size (consistent with the modal convergence rate).

E-Step. Calculate the weight π(t | β(g)) with the preliminary estimate of
the modal parameter as

π
(
t | βP (g)

)
=

K

(
ε̂t−

∑d
j=1 ε̂t−jβ

P (g)
j

h2

)
∑n

t=d+1K

(
ε̂t−

∑d
j=1 ε̂t−jβ

P (g)
j

h2

) .

M-Step. Update βP (g+1) with the weight calculated in E-Step

βP (g+1) = argmax
β

n∑
t=d+1

{
π
(
t | βP (g)

)
log

(
1

h2

K

(
ε̂t −

∑d
j=1 ε̂t−jβj

h2

))

− n0

2

d∑
j=1

p
(1)
λj

(
|βP (g)

j |
)

|βP (g)
j |

 β2
j

}
= (êTWeê+ n0Σλ(β

P (g)))−1êTWeε̂),

where ê = (ε̂−1, · · · , ε̂−d), ε̂−j = (ε̂d+1−j, · · · , ε̂n−j), ε̂ = (ε̂d+1, · · · , ε̂n)T ,
We is an (n − d) × (n − d) diagonal matrix with diagonal elements

{π
(
t | βP (g)

)
}nt=d+1, and Σλ(β

(g)) = diag

{
p
(1)
λ1

(
|βP (g)

1 |
)

|βP (g)
1 |

, · · · ,
p
(1)
λd

(
|βP (g)

d |
)

|βP (g)
d |

}
for

nonvanished βP (g).

C3 (Kernel Function) The kernel function K(·) : R → R is a nonnega-

tively symmetric density function. In addition, it is Lipschitz contin-

uous on R and
∫
R t

2K2(t)dt < ∞.

C4 (Density Function) The density function of η, denoted by gη(·) : R →
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R, is bounded away from zero and infinity and continuous at η for all

η. Also, gη(·) is assumed to have the fourth continuous derivative and

the global unique mode zero, i.e., gη(·) < gη(0) for all η ̸= 0.

C5 (Moment) The covariates Xt are strictly stationary and ergodic with

E∥X∥2s < ∞ for some s > 2. The matrices Jβ0 , Jβ, and Jθ defined in

the following theorems are positive definite.

Although a little bit lengthy, these assumptions are actually quite mild;

see Kemp and Santos Silva (2012), Yao and Li (2014), and Ullah et al. (2021,

2022, 2023). C1 is common and can be easily satisfied in practice. When the

estimators take values in the parameter space that is bounded and closed,

calculating modal estimators is more useful since all mean estimators are

biased at extreme boundary points. Under the mixing condition imposed

in C2, the dependence among {
(
XT

t , εt
)T} will diminish as the distance

between indices increases and is thus asymptotically ignorable. Similar

to Ullah et al. (2021), we can show that the α-mixing condition will make

estimator behave in the same way as the independence case, which is typical

in nonparametric problems. We do not impose a bounded support condition

for the kernel function K(·) in C3. As argued by a large number of research

(Ullah et al., 2023), it is not indispensable for the kernel function to have

a bounded support as long as its tails are thin. For example, the Gaussian
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kernel, which is the default kernel utilized in this paper, is allowed. C4

is employed to ensure the existence of the global unique mode, which is

the same as that in Kemp and Santos Silva (2012) and Ullah et al. (2021,

2022, 2023). Such a condition can be released to capture the multimodal

estimators by using different initial estimates in the MEM algorithm. C5

is necessary when deriving asymptotic distributions for estimators. All

conditions related to bandwidths are illustrated in the following theorems.

We primarily show the asymptotic properties of the initial estimator

θ̃, while the results for β̃ can be obtained accordingly (i.e., ∥β̃ − β0∥ =

Op((n0h
3
1)

−1/2+h2
1)). In what follows, we let g

(c)
η (·) denote the cth derivative

of gη(·) with ∥g(c)η (·)∥∞ bounded from above.

Theorem 1. Under the regularity conditions C1-C5 and the restriction

∥β̃ − β0∥/h2
1 → 0, with probability approaching one, as n0 → ∞, h1 → 0,

and n0h
5
1 → ∞, there exists a consistent maximizer θ̃ of (2.5) such that

∥θ̃ − θ0∥ = Op((n0h
3
1)

−1/2
+ h2

1).

Theorem 2. With n0h
7
1 = O(1), under the same conditions as Theorem 1,

the estimator satisfying the consistency result in Theorem 1 has the follow-

ing asymptotic result

√
n0h3

1

(
θ̃ − θ0 −

h2
1

2

g
(3)
η (0)

g
(2)
η (0)

J−1
β0

Mβ0

)
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

β

)
.
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Furthermore, under the assumption that n0h
7
1 → 0, we have

√
nh3

2

(
θ̃ − θ0

)
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

β

)
,

where
d→ denotes convergence in distribution, Jβ0 = E(Xβ0X

T
β0
), Mβ0 =

E(Xβ0), X
T
β0

= (Xβ0,d+1, · · · , Xβ0,n)
T , and Xβ0,t = XT

t −
∑d

j=1 β0jX
T
t−j.

Theorem 2 shows that the asymptotic properties of the first-step esti-

mators are the same as those of the Yule-Walker estimators based on modal

estimation for the AR model, implying that θ̃ is as efficient as if the true

regression parameter β were known in advance. In contrast to mean esti-

mation, the modal estimator has an asymptotic bias term associated with

bandwidth h1 as a result of mode estimation and the use of local data. To

control the bias in estimation and satisfy the condition ∥β̃ − β0∥/h2
1 → 0,

the norm of the estimator of β should be of a smaller order than h2
1, which

can be achieved through undersmoothing.

Remark 4. (Optimal Bandwidth) The asymptotic bias of θ̃, accord-

ing to Theorem 2, is 2−1h2
1g

(3)
η (0)[g

(2)
η (0)]−1J−1

β0
Mβ0 , whereas the asymp-

totic variance is gη(0)g
(2)
η (0)−2

∫
t2K2(t)dtJ−1

β . The asymptotically optimal

bandwidth h1 can be obtained by minimizing the asymptotic weighted mean

squared errors, i.e., E{(θ̃−θ0)
TWβ0(θ̃−θ0)} ≈ g

(3)
η (0)2[g

(2)
η (0)]−2MT

β0
J−1
β0

Wβ0
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J−1
β0

MT
β0
h4
1/4+(n0h

3
1)

−1tr(J−1
β )gη(0)g

(2)
η (0)−2

∫
t2K2(t)dt, where tr(·) denotes

the trace and Wβ represents a weight matrix. Accordingly, the asymptoti-

cally optimal bandwidth is

ĥ1 =

[
3tr(J−1

β )gη(0)g
(2)
η (0)−2

∫
t2K2(t)dt

g
(3)
η (0)2[g

(2)
η (0)]−2MT

β0
J−1
β0

Wβ0J
−1
β0

MT
β0

]1/7
n
−1/7
0 .

If we let Wβ0 = Jβ0 , which is proportional to the inverse of the asymptotic

variance of θ̃, we can have

ĥ1 =

[
3dgη(0)g

(2)
η (0)−2

∫
t2K2(t)dt

g
(3)
η (0)2[g

(2)
η (0)]−2MT

β0
J−1
β0

MT
β0

]1/7
n
−1/7
0 .

As a result, the asymptotically optimal bandwidth value in modal regression

is larger than that in nonparametric mean regression with order n
−1/5
0 .

To investigate the asymptotic properties of the shrinkage modal esti-

mator, we decompose the AR regression coefficient vector β0 into β0 =

(βT
0′ , β

T
0′′)

T ∈ Rd without loss of generality, where β0′ = (β01, · · · , β0s)
T ∈ Rs

consists of all nonzero components of β0 and β0′′ = (β0s+1, · · · , β0d)
T ∈ Rd−s
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includes all zero components of β0. Define

an = max
1≤j≤d

{
|p(1)λj

(|β0j|)| : β0j ̸= 0
}
, bn = max

1≤j≤d

{
|p(2)λj

(|β0j|)| : β0j ̸= 0
}
,

Ψλ =
(
p
(1)
λ1

(|β01|) , · · · , p(1)λs
(|β0s|)

)T
, Φλ = diag

{
p
(2)
λ1

(|β01|) , · · · , p(2)λs
(|β0s|)

}
,

where p
(2)
λj
(.) indicates the second derivative of penalty. We can establish

the following theoretical properties about the consistency and sparsity of

the penalized modal estimator of the AR model.

Theorem 3. (Consistency) Under the conditions in Theorem 2, with prob-

ability approaching one, as bn → 0 with n0 → ∞, there exists a consistent

maximizer β̂P of (2.6) such that ∥β̂P − β0∥ = Op((n0h
3
2)

−1/2
+ h2

2 + an).

Theorem 4. (Sparsity) Under the same conditions in Theorem 3, let δn =

h2
2+(n0h

3
2)

−1/2
and λmin = minj{λj}, if λmax = maxj{λj} → 0, δ−1

n λmin →

∞ when n → ∞, and lim infn→0 lim infβj→0+ p
(1)
λj
(|βj|)/λj > 0 for all j, then

the penalized modal estimator can correctly identify all zero elements; that

is P (β̂P
0′′ = 0) → 1.

Theorem 3 demonstrates the existence of the penalized modal estimator

β̂P that converges to the true parameter at the rate Op((n0h
3
2)

−1/2
+h2

2+an).

In other words, by choosing an approximate regularization parameter λj,

there exists a
√

n0h3
2-consistent penalized modal estimator. It also indi-
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cates that the difference between the SCAD penalty estimate and the true

parameter is asymptotically negligible when λj is small enough such that

an = Op(h
2
2). Theorem 4 states that the proposed penalized modal regres-

sion is consistent in order selection; that is, by selecting an appropriate

regularization parameter λj, the penalized modal estimation procedure es-

timates a zero coefficient exactly as zero with probability tending to one.

We establish the asymptotic distribution of the modal estimator for

nonzero coefficients under suitable conditions in Theorem 5, which demon-

strates that β̂P
0′ has oracle properties, i.e., performs as well as if we knew

the submodel. In what follows, we define e = (ε−1, · · · , ε−d)
T and ε−j =

(εd+1−j, · · · , εn−j) for j = 1, 2, · · · , d.

Theorem 5. (Asymptotic Normality) With n0h
7
2 = O(1) and n0h

3
2Ψ

2
λ =

O(1), under the same conditions in Theorem 4, the estimator satisfying the

consistency result in Theorem 3 has the following asymptotic result

√
n0h3

2(J(1) + Φλ)

(
β̂P
0′ − β0′ + (J(1) + Φλ)

−1

(
Ψλ −

h2
2

2

g
(3)
η (0)

g
(2)
η (0)

M(1)

))
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

(1)

)
.
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In addition, if
√

n0h3
2Ψλ = op(1) and Φλ = op(1), we can obtain

√
n0h3

2J(1)

(
β̂P
0′ − β0′ −

h2
2

2

g
(3)
η (0)

g
(2)
η (0)

J−1
(1)M(1)

)
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

(1)

)
.

Furthermore, if n0h
7
2 → 0, we have

√
n0h3

2J(1)

(
β̂P
0′ − β0′

)
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

(1)

)
,

where J(1) and M(1) are the s×s submatrices of Jβ = E(eeT ) and Mβ = E(e)

corresponding to the nonzero components β0′.

If the lags considered are not equally significant, the preceding asymp-

totic result instantly alleviates the constraint on the magnitude of the order

d, because increasing d will no longer impose proportionally greater burden

on the estimating efficiency. Consequently, the developed SCAD penalty

procedure can be utilized to determine the complexity of the AR process.

This result provides underlying support for choosing an arbitrary upper

bound in the first step estimation.

The following asymptotic theorems are for the final modal estimator of

θ based on the transformation of the dependent variable.

Theorem 6. Under the conditions in Theorem 5 and the restriction h2/h3 →
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0, with probability approaching one, as n0 → ∞, h3 → 0, and n0h
5
3 →

∞, there exists a consistent maximizer θ̂ of (2.7) such that ∥θ̂ − θ0∥ =

Op((n0h
3
3)

−1/2
+ h2

3).

Theorem 7. With n0h
7
3 = O(1), under the same conditions as Theorem 6,

the estimator satisfying the consistency result in Theorem 6 has the follow-

ing asymptotic result

√
n0h3

3

(
θ̂ − θ0 −

h2
3

2

g
(3)
η (0)

g
(2)
η (0)

J−1
θ Mθ

)
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

θ

)
.

Furthermore, under the assumption that n0h
7
3 → 0, we have

√
n0h3

3

(
θ̂ − θ0

)
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

θ

)
,

where Jθ = E(XXT ), Mθ = E(X), and XT = (XT
d+1, · · · , XT

n )
T .

By undersmoothing the previous estimator (h2/h3 → 0), the bias term

from preliminary estimation will be smaller than the leading bias term.

As a consequence, we have a sort of oracle property, in which the modal

estimator θ̂ is asymptotically equivalent to the estimator where the true

values of {εt−j}dj=1 were known. Note that the asymptotic bias and vari-

ance are comparable to those from parametric modal regression with i.i.d.
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observations. The main difference is that under i.i.d. errors, g(·) is the

density function of εt evaluated at 0, whereas in the current work, g(·) is

the density of ηt. Compared to the initial estimator θ̃, we do not need to

account for uncertainty in lag terms, resulting in a potential increase in

efficiency. Following the same procedure as in Remark 4, we can show the

asymptotically optimal bandwidth h3 = O(n
−1/7
0 ). With undersmoothing

limn0→∞ n0h
7
3 = 0, the estimator can be asymptotically centered at the true

value.

Remark 5. The limiting distributions given in the preceding theorems

cannot be used directly for inference or constructing confidence intervals

because of the presence of many unknown terms. Although we can apply

nonparametric estimation to achieve the corresponding density estimates,

we have to introduce additional tuning parameters. The alternative method

we can utilize is bootstrap resampling on the basis of mode, facilitating

statistical inference about the parameter of interest; see Ullah et al. (2021).

Remark 6. (Bandwidth Selection) The bandwidth in modal regression

not only plays an essential role in the trade-off between reducing bias and

variance, but also affects the target objective (either modal or mean esti-

mate). In addition, when undersmoothing is used, choosing bandwidths is

difficult because it does not allow for data-driven selection, and the tra-
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ditional cross-validation method based on mean squared errors cannot be

applied directly to modal regression. In such a case, we can work with the

undersmoothing assumption on bandwidths following Ullah et al. (2023)

to apply the grid search method to select a number of potential band-

widths for h1, h2, and h3. Specifically, we compute the mean regression

residual first and then select 50 values of bandwidth between 50MAD and

0.5MADn
−λhj

0 (λh1 = 0.16, λh2 = 0.15, λh3 = 0.143), where MAD is the me-

dian value of the absolute deviation of the mean regression residual from

the corresponding median value. Based on simulation experience, the se-

lected bandwidths are appropriate for the model developed in this paper.

For empirical analysis, we simply set the bandwidth to 1.6MADn
−λhj

0 .

4. Modal Autocorrelation Test

When applying modal regression on data with serial correlation, it is partic-

ularly important to check for any signs of autocorrelation in order to make

valid inferences and estimate more efficiently. However, no formal investi-

gation into this important issue has been conducted thus far. By extending

the results in Huo et al. (2017), we propose a residual-based test for auto-

correlation in modal regression models. Notice that the error terms {εt}nt=1

are allowed to exhibit autocorrelation unless βj = 0 for all j = 1, · · · , d.
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Therefore, the primary null hypothesis that we wish to test for is given by

H0 : β1 = β2 = · · · βd = 0, (4.1)

whereas the alternative hypothesis is H1 : βj ̸= 0 for some 1 ≤ j ≤ d. The

developed autocorrelation test is based on the modal error εt = Yt −Mode

(Yt | Xt) in (1.2) and the assumption that the mode version of the orthog-

onality condition E(Qn(Yt, Xt) | Xt) = 0 almost surely for every t, where

Qn(Yt, Xt) is the corresponding kernel-based objective function. With the

available modal residuals {ε̂t}nt=1 from (1.3), the auxiliary regression of ε̂t

on Xt and {εt−l}dl=1 by linear mean regression can be carried out

ε̂t = XT
t γ + β1ε̂t−1 + · · ·+ βdε̂t−d + vt, (4.2)

in which γ ∈ Rp is the parameter and vt is the error term in the auxiliary

regression. We then have the following test statistic

ModeT =

∑n
t=d+1 ṽ

2
t −

∑n
t=d+1 v̂

2
t∑n

t=d+1 v̂
2
t /(n− d− p)

, (4.3)

where v̂t is the residual from the unrestricted auxiliary regression and ṽt is

the residual from the restricted auxiliary regression with the null hypothesis
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imposed. The suggested test can be treated as the usual F test for the null

hypothesis. When H0 is true, we can show that the proposed statistic is

asymptotically distributed as the X 2 distribution with d degrees of freedom

(X 2
d ). The order d is unimportant when testing the null hypothesis since

the suggested test does not have size distortions (see simulation results in

the supplementary file). Once the null hypothesis is rejected, we can utilize

the developed penalty methodology to select an appropriate model

Theorem 8. Under the conditions in Theorem 2, with the restriction that εt

is homoskedastic with a constant variance, we have ModeT
d−→ X 2

d as n →

∞, provided that the null hypothesis is correct.

If the errors are heteroskedastic, we can use the typical robust variance-

covariance estimator and achieve the same result. To prove the preceding

theorem, we rewrite the ModeT statistic in a form of the Wald statistic

ModeT =
(
√
n− d(0d,p, Id)γ̂m)((0d,p, Id)M

−1(0d,p, Id))
−1(

√
n− d(0d,p, Id)γ̂m)

s2
,

(4.4)

where Id is the d × d identity matrix, M = (n − d)−1
∑n

t=d+1 ZtZ
T
t , Zt =

(XT
t , ε̂t−1, · · · , ε̂t−d)

T , γm = (γT , β1, · · · , βd)
T , and s2 =

∑n
t=d+1 v̂

2
t /(n −

d− p). Combined with the result that the estimator γ̂m is asymptotically

normally distributed, we can straightforwardly show that ModeT follows
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a X 2 distribution. If ModeT > X 2
d,α, the null hypothesis H0 is rejected

at significance level α, where X 2
d,α is the 100(1 − α)% quantile of the X 2

d

distribution.

Remark 7. (Bootstrap Implementation)Although the asymptotic level

of ModeT is available, it may not perform well in practice if the sam-

ple size is insufficient. The parametric wild bootstrap approach built on

mean can then be used to evaluate the p-value. First, we generate the

wild bootstrap residuals {ṽ∗t }n−d
t=1 from the mean-centered parametric resid-

uals {v̂∗t }n−d
t=1 , where v̂∗t = v̂t −Mean(v̂t), and define the bootstrap sample

ε̂∗t = XT
t γ̂ +

∑d
j=1 β̂m,j ε̂t−j + ṽ∗t , in which γ̂ and β̂m,j are the corresponding

mean estimates from (4.2). Based on the bootstrap sample {ε̂∗t , Xt}, we can

calculate the bootstrap test statistic Mode∗T and reject the null hypothe-

sis H0 when ModeT is greater than the upper α point of the conditional

distribution of Mode∗T given {ε̂t, Xt}. The p-value of the test is then eval-

uated using the relative frequency of the event {Mode∗T ≥ ModeT} in the

replications of the bootstrap sampling.

5. Real Data Application

We now illustrate the proposed method through an application to analyze

spirit consumption data in the United Kingdom from 1870 to 1938, which
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can be found in Fuller (1996). The dataset contains 69 daily observations of

the annual per capita consumption of spirits (Yt), per capital income (X1,t),

and the price of spirits (X2,t). In this illustration, we fit the data with the

following parametric modal regression model

Yt = constant + θ1X1,t + θ2X2,t + θ3X3,t + θ4X4,t + εt, (5.1)

where variables X3,t = t/100 and X4,t = (t− 35)2/10000 for t = 1, · · · , 69,

and the error terms {εt}69t=1 are assumed to be a stationary process.

We first use the mean regression to obtain the initial estimate of θ by

ignoring the AR structure, yielding the following equation

E(Yt | Xt) = 2.1209
(0.2707)

+0.6975
(0.1323)

X1,t − 0.6322
(0.0529)

X2,t − 0.9555
(0.0837)

X3,t − 1.1525
(0.1539)

X4,t,

(5.2)

where the numbers in brackets represent standard errors. We can then

calculate the estimated mean residuals. The autocorrelation plot of the

residuals in Figure 1 clearly shows that the independence assumption for

residuals is questionable and there exists a periodic structure in residuals.

The partial-autocorrelation plot suggests that an AR(d) with d ≤ 10 may fit

the errors well. The blue lines in Figure 1 indicate the confidence intervals.
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The autocorrelation check presented above is based on the mean. To

further demonstrate the existence of autocorrelation, we run the parametric

modal regression and plot the corresponding autocorrelation and partial-

autocorrelation functions in Figure 1. The results follow a pattern similar

to mean regression. Nevertheless, the modal estimates are different from

the mean estimates (although not much), which is expected given that the

distribution of Y is not symmetric. The standard errors for modal coeffi-

cients are calculated through the bootstrap procedure, which are generally

smaller than those in mean regression (Figure 2).

Mode(Yt | Xt) = 2.4735
(0.2094)

+0.5873
(0.0898)

X1,t−0.7177
(0.0671)

X2,t−0.7939
(0.0804)

X3,t−1.3232
(0.1235)

X4,t.

(5.3)

Since the order d is unimportant when testing the null hypothesis (see

Section 4 and simulation results in the supplementary file), we apply the

proposed test to validate the autocorrelation structure with the AR(1) er-

ror process. The relative frequency of the event {Mode∗T ≥ ModeT} we

obtain is 0.025, which strongly suggests that the null hypothesis of no au-

tocorrelation should be rejected. According to the partial-autocorrelation

plot in Figure 1, we then assume an AR(10) model on errors and apply the

penalized modal regression with SCAD penalty to select order and estimate
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Figure 1: Correlogram of Residuals

modal coefficients. The estimation results are shown as follows (Figure 2)

Mode(Yt | Ft−1) = 1.9592
(0.0384)

+0.8302
(0.0182)

X1,t − 0.6792
(0.0096)

X2,t − 0.9409
(0.0127)

X3,t

− 1.2215
(0.0350)

X4,t + 0.6558
(0.0243)

εt−1 − 0.2379
(0.0257)

εt−10,

(5.4)

where standard errors are calculated using bootstrap procedure.
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Figure 2: Bootstrap Results and Empirical Density

After inspection, we confirm that the estimates satisfy the stationar-

ity condition. In comparison to the traditional modal regression results in

(5.3), the “most likely” effect of per capital income on annual per capital

consumption of spirits is larger, while the effect of price of spirits is smaller,

demonstrating that ignoring the AR error structure may result in not only

inefficient but also inconsistent estimators (heteroskedasticity). Further-

more, after taking the information in the error structure into consideration,

the modal estimators become more efficient. We plot the autocorrelation

and partial autocorrelation functions in Figure 1 for (5.4). The new resid-

uals do not have any significant pattern and appear to be a white process.

For comparison, we further report the results of mean estimation when

autocorrelation information is taken into account. By applying the penal-
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ized mean regression with SCAD penalty, we obtain the following result

E(Yt | Ft−1) = 2.0546
(0.2551)

+0.6378
(0.1224)

X1,t − 0.6880
(0.0516)

X2,t − 0.9523
(0.0753)

X3,t

− 0.9826
(0.1449)

X4,t + 0.4795
(0.1218)

εt−1 − 0.2568
(0.1177)

εt−8.

(5.5)

It is interesting to observe that the mean estimation results differ from

the modal estimation results. Especially, mean regression selects the AR

model with lags 1 and 8, and produces estimates with larger standard er-

rors. In addition, the magnitudes of mean coefficients of X1,t and X4,t are

smaller than those obtained from modal estimation. All of these suggest

that modal estimation can provide some additional data information that

mean estimation may ignore. Moreover, to compare the prediction ability,

we utilize both mean and modal regressions with AR errors to predict the

last five data points (out-of-sample prediction). The mean absolute predic-

tion errors we obtain are 0.2853 (mean) and 0.1926 (mode), respectively.

Therefore, modal regression also has better prediction performance, which

is consistent with the simulation results in the supplementary file.
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6. Concluding Remarks

As one of the center measures, the mode preserves some important features

of the underlying distribution function and provides a reliable estimate of

location. Built on mode value, we in this paper propose an efficient esti-

mation procedure for parametric linear modal regression with AR errors

by applying the kernel-based objective functions. We utilize a penalized

objective function to select the order of the AR process and construct a

computationally simple residual-based test for detecting autocorrelation in

modal regression models. We investigate the asymptotic properties of the

resultant modal estimators under some mild conditions. Two modal algo-

rithms are introduced to arithmetically estimate models. The numerical

results show that the developed method is superior to parametric modal re-

gression without considering AR error structure and can effectively improve

estimation and prediction accuracy in moderate-sized samples compared to

mean regression. We also discuss the extension of the estimation procedure

to nonparametrically established modal regression models.

We in this paper concentrate on the strictly stationary case. In practice,

this assumption may be difficult to justify since time series are frequently

observed with trends. We can combine the proposed estimation procedure

with the technique that removes the deterministic trend, or we can consider
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a locally stationary time series model. In addition, the dimension of covari-

ates in this paper is fixed. It would be appealing to extend the results to

high dimensional case, where the dimension of covariates depends on sam-

ple size, i.e., d = O(nα), α > 1. Nevertheless, with growing d, sparseness

generally refers to the proportion of zero parameters, and the initial modal

estimator is not consistent. Also, with the d > n setting, it is necessary to

choose λ > log(n0h
3) to obtain model selection consistency with BIC-type

criterion. We leave all of these interesting research for the future.

Supplementary Material

The online supplementary file contains all simulation results and technical

proofs, the extension to nonparametric modal regression with autocorre-

lated error process, and the convergence of the penalized MEM algorithm.
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