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Abstract: We study semiparametric regression for a recurrent event process with

an informative terminal event, where observations are taken only at discrete time

points, rather than continuously over time. To account for the effect of a termi-

nal event on the recurrent event process, we propose a semiparametric reversed

mean model, for which we develop a two-stage sieve likelihood-based method

to estimate the baseline mean function and the covariate effects. Our approach

overcomes the computational difficulties arising from the nuisance functional pa-

rameter in the assumption that the likelihood is based on a Poisson process.

We establish the consistency, convergence rate, and asymptotic normality of the

∗Co-first author
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proposed two-stage estimator, which is robust against the assumption of an un-

derlying Poisson process. The proposed method is evaluated using extensive

simulation studies, and demonstrated using panel count data from a longitudinal

healthy longevity study and data from a bladder tumor study.

Key words and phrases: Counting process; Expected log-likelihood; Reversed

mean model; Semiparametric M-estimator; Terminal event.

1. Introduction

Panel count data often arise in biomedical research, economics, social sci-

ences, and reliability studies (Thall, 1988; Sun and Wei, 2000; Hu, Sun, and

Wei, 2003; Wellner and Zhang, 2007; Lu, Zhang, and Huang, 2009; Zhao, Li,

and Sun, 2013). During the follow-up, observations are taken at finite dis-

tinct time points, with researchers collecting the number of recurrent events

that occurred between observation times, without information on the exact

timing of the events. While both the observation and the follow-up times

may vary between subjects, observations may be terminated by a terminal

event. Examples of studies based on panel count data include the blad-

der cancer study conducted by the Veterans Administration Cooperative

Urological Research Group (Andrews and Herzberg, 1985) and the Chinese

Longitudinal Healthy Longevity Study (CLHLS) (Zeng et al., 2017). We

aim to estimate the mean function of the underlying counting process and
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make inferences about the factors that affect the event occurrence rate in

the setting of panel count data, subject to an informative terminal event.

The unique characteristics of panel count data present additional challenges

to statistical inference, requiring advanced modeling techniques.

Many methods have been developed for estimating the mean function of

a counting process with panel count data but without considering the effect

of a terminal event. These include the parametric methods by Kalbfleisch

and Lawless (1985), Hinde (1982), Breslow (1984), and Thall (1988); the

nonparametric methods of Sun and Kalbfleisch (1995), Wellner and Zhang

(2000), Hu, Lagakos, and Lockhart (2009), Zhang and Jamshidian (2003),

Huang, Wang, and Zhang (2006), and Lu, Zhang, and Huang (2007); and

the semiparametric methods of Cheng and Wei (2000), Sun and Wei (2000),

Zhang (2002), Hu, Sun, and Wei (2003), Wellner and Zhang (2007), and

Lu, Zhang, and Huang (2009). More recently, Ma and Sundaram (2018)

investigated gap times with panel count data, Zhu et al. (2018) developed a

semiparametric likelihood-based method for a regression analysis of mixed

panel count data, and Diao, Zeng, Hu, and Ibrahim (2019) studied semi-

parametric frailty models when dropouts are informative. Chiou, Huang,

Xu, and Yan (2019) provide a comprehensive overview of existing methods

for panel count data analysis and the corresponding software implementa-
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tions.

Despite the abundant research on modeling panel count data, few works

include an informative terminal event. Two common methods used for

counting process data to account for the effect of terminal events are joint

modeling approaches that use frailty variables (Huang and Wang, 2004;

Zeng and Cai, 2010; Sun, Song, Zhou and Liu, 2012; Zhou, Zhang, Sun

and Sun, 2017; Diao, Zeng, Hu, and Ibrahim, 2017, 2019) and marginal

modeling approaches that use the inverse probability weighting technique

(Zhao, Zhou and Sun, 2011; Zhao, Li and Sun, 2013). However, both meth-

ods have limitations. In particular, the joint modeling approach cannot

explicitly depict the relationship between a recurrent event process and

the terminal event, although it is implied by the shared unknown latent

variables, and the marginal modeling approach may not be feasible when

a terminal event permanently stops the recurrent event process. On the

other hand, the terminal event time usually induces direct effects on the

recurrent event through a functional relationship. For example, Chan et al.

(1995) found that the occurrence of AIDS-defending events increases prior

to the death of HIV-infected individuals. Lunney et al. (2003) discovered

that the functional decline changes significantly in the final year before the

death of HIV-infected individuals. To the best of our knowledge, there are
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no semiparametric methods that directly capture the correlation between

the terminal event and the recurrent event process in the case of panel count

data.

This study contributes to the literature in three ways. First, we develop

a semiparametric reversed mean model anchoring at a terminal event to ex-

plicitly quantify its effect on the recurrent event process, while emphasizing

the process near the anchoring event (Chan and Wang, 2010, 2017; Kong

et al., 2018). Second, conditional on censored terminal event time data,

we formulate the log-likelihood for panel count data as an objective func-

tion, and design a corresponding two-stage estimation procedure. Third,

we establish a general framework for the asymptotic distributional theory

of semiparametric M-estimators with a nuisance functional parameter that

can be applied to derive the asymptotic normality of functionals of two-

stage semiparametric M-estimators for panel count data. In particular, the

asymptotic results of the proposed estimator do not rely on the working

model following a Poisson process.

The remainder of this paper is organized as follows. In Section 2, we in-

troduce the proposed semiparametric reversed mean model, and present the

corresponding two-stage estimation procedure. In Section 3, we establish

the asymptotic properties, including the consistency, convergence rate, and

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0353



asymptotic normality of the proposed estimator. Section 4 reports the re-

sults of simulation studies to demonstrate the performance of the proposed

estimator. In Section 5, we apply the proposed method to two real datasets.

Section 6 concludes the paper. All technical proofs and a general theorem

for semiparametric M-estimators are provided in the online Supplementary

Material.

2. Methodology

2.1 Model Setting

We use N(t) to denote the total number of occurrences of the event of inter-

est up to time, t for 0 ≤ t ≤ τ0, where τ0 is the length of the study duration.

Let U be the terminal event time with the counting process N(·), and let

C be the censoring time for (U,N(·)), after which the counting process or

terminal event may still happen, but is unobserable. Let Y = U ∧ C be

the observed time for the terminal event, where a ∧ b = min(a, b), and let

∆ = 1{U≤C} be a censoring indicator. Suppose that N(·) is observed at dis-

crete time points 0 < TK,1 < · · · < TK,K , where K is the potential number

of observation times. Let TK = (TK,1, . . . , TK,K) denote panel observation

times on the counting process, and let N = (N(TK,1), . . . , N(TK,K)) be the

cumulative event counts observed at TK . Let Z be a d-dimensional vector of
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2.1 Model Setting

associated covariates at the baseline. The observed data consist of indepen-

dent and identically distributed (i.i.d.) copies of D = (Y,∆, N, TK , K, Z).

Motivated by the works of Chan and Wang (2010, 2017) and Kong et

al. (2018), to characterize the behavior of the counting process near the

informative terminal event time U , we investigate the reversed counting

process Ñ(t;U), which is the event count from time t to the terminal event

time U . Suppose that Ñ(t;U) follows a semiparametric reversed mean

model,

E(Ñ(t;U)|U = u, Z) = Λ(u− t)eβ
⊤Z , (2.1)

where Λ(·) is a nondecreasing function with Λ(0) = 0, and β is a d-

dimensional vector of unknown regression coefficients. This reversed mean

model indicates that the reversed counting process is associated with the

random terminal time U only through the length to the terminal event

U − t, and hence can be viewed as a homogeneous temporal model.

Because Ñ(t;U) may not be observed at some t, owing to U being

censored, model (2.1) is not immediately useful for estimating Λ(·) and β

based on the observed data. Noting that N(t) = Ñ(0;U) − Ñ(t;U), we

have

E(N(t)|U = u, Z) = {Λ(u)− Λ(u− t)}eβ⊤Z , (2.2)
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2.2 Estimation Procedure

which we can use to study the reversed mean function Λ(·) and the regres-

sion coefficient β using a likelihood method similar to those in Wellner and

Zhang (2007) and Lu, Zhang, and Huang (2009).

2.2 Estimation Procedure

We assume that U and C are independent given Z, and both the distri-

bution of the censoring time C and that of (K,TK) are non-informative

to Λ. Let △Nj = N(TK,j) − N(TK,j−1), △N = (△N1, . . . ,△NK), △n =

(△n1, . . . ,△nk), and tk = (tk,1, . . . , tk,k), with △nj = nj − nj−1. Suppose

that the counting process N(·) follows a conditional Poisson process, with

P (△N = △n|Z,U = u,K = k, TK = tk) =
k∏

j=1

exp(−△Λj(u)e
β⊤Z)(△Λj(u)e

β⊤Z)△nj

(△nj)!
,

(2.3)

where tk,0 ≡ 0, n0 ≡ 0, and △Λj(u) = Λ(u− tk,j−1)−Λ(u− tk,j), for j ≥ 1.

We write θ = (β,Λ), and use the notation θ0 = (β0,Λ0) and △Λ0j(u) to

denote the true values of θ and △Λj(u), respectively. The individual log-

likelihood of θ based on the working model (2.3) is given by

l(θ;U,△N, TK , K, Z) =
K∑
j=1

{
△Nj log(△Λj(U)e

β⊤Z)−△Λj(U)e
β⊤Z
}
.
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2.2 Estimation Procedure

However, we may not be able to evaluate this likelihood, because U is

subject to censoring. To deal with this case, we consider the conditional

expectation of the log-likelihood:

E{l(θ;U,△N, TK , K, Z)|Y,∆, Z}. Let F0(u|z) be the conditional cumula-

tive distribution function of U given the covariate Z = z. A direct calcula-

tion yields

E{l(θ;U,△N, TK , K, Z)|Y,∆, Z}

= ∆
K∑
j=1

{
△Nj log(△Λj(Y )eβ

⊤Z)−△Λj(Y )eβ
⊤Z
}

+
1−∆

F 0(Y |Z)

K∑
j=1

∫ τ

Y

{
△Nj log(△Λj(u)e

β⊤Z)−△Λj(u)e
β⊤Z
}
dF0(u|Z),

where F 0(u|Z) = 1−F0(u|Z), and τ is a finite time. Thus, the conditional

expectation of log-likelihood (CELL) for i.i.d. samples D = {Di : i =

1, . . . , n} is

ln(θ, F ;D) =
1

n

n∑
i=1

[
∆i

Ki∑
j=1

{
△Ni,j log(△Λi,j(Yi)e

β⊤Zi)−△Λi,j(Yi)e
β⊤Zi

}
(2.4)

+
1−∆i

F (Yi|Zi)

Ki∑
j=1

∫ τ

Yi

{
△Ni,j log(△Λi,j(u)e

β⊤Zi)−△Λi,j(u)e
β⊤Zi

}
dF (u|Zi)

]
,
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2.2 Estimation Procedure

after omitting the parts unrelated to (θ, F ), where TKi,0 ≡ 0, △Ni,j =

Ni(TKi,j) − Ni(TKi,j−1), and △Λi,j(u) = Λ(u − TKi,j−1) − Λ(u − TKi,j). To

obtain the estimators of θ0 and F0 based on (2.4), we consider a two-stage

procedure, similar in spirit to a pseudo-likelihood estimation.

Stage 1: Obtain the estimator of F0, F̂n(u|Z), based on the right-censored

data {(Yi,∆i, Z), for i = 1, . . . , n}.

Stage 2: Obtain the CELL estimator θ̂n = (β̂n, Λ̂n) by maximizing ln(θ;D) :=

ln(θ, F̂n;D).

In Stage 1, to estimate F0(t|Z), we can assume a survival model such

as the Cox proportional hazards model (Cox, 1972). Suppose the hazard

function of U given the covariate Z satisfies

λ(u|Z) = υ(u)eζ
⊤Z ,

where υ(·) is an unknown baseline hazard function, and ζ is a vector of

unknown regression parameters. Denote the true values of υ(·) and ζ in this

model as υ0 and ζ0, respectively. We can estimate the regression coefficient

ζ0 using the partial likelihood, and estimate the cumulative baseline hazard

Υ0(u) =
∫ u

0
υ0(t)dt using the Breslow estimator (Breslow, 1972), denoted
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2.2 Estimation Procedure

by ζ̂n and Υ̂n, respectively. As a result, F0(u|z) is estimated by

F̂n(u|Z) = 1− exp
(
− Υ̂n(u)e

ζ̂⊤n Z
)
. (2.5)

In Stage 2, we estimate the smooth nondecreasing monotone function

Λ0 using the spline-based sieve method (Lu, Zhang, and Huang, 2009).

Take T = {si, i = 1, . . . ,mn + 2l}, with

0 = s1 = · · · = sl < sl+1 < · · · < smn+l < smn+l+1 = · · · = smn+2l = τ

being a sequence of knots that partition [0, τ ] into mn + 1 subintervals

Ii = [sl+i, sl+i+1], for i = 0, 1, . . . ,mn. Let Φn be a class of polynomial

splines of order l ≥ 1 with the knot sequence T . Then Φn is linearly

spanned by the normalized B-spline basis functions {Bl, l = 1, . . . , qn},

with qn = mn + l (Schumaker, 1981). Let

Ψn =

{
qn∑
l=1

αlBl : 0 ≤ α1 ≤ · · · ≤ αqn ,

qn∑
l=1

αlBl(0) = 0

}

be a subclass of Φn. For any Λ(t) ∈ Ψn, Λ(t) is monotone nondecreasing

and Λ(0) = 0. In addition, let R be a compact set of Rd. The two-stage
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estimator of θ0 is given by

θ̂n = arg max
θ∈R×Ψn

ln(θ, F̂n;D),

with Λ̂n =
∑qn

l=1 α̂lBl. The proposed estimator can be computed in two

steps using the usual profile likelihood method. First, for each fixed value

of β, we take

Λ̂n(β) = arg max
Λ∈Ψn

ln(θ, F̂n;D)

and define lProfilen (β;D) = ln(β, Λ̂(β), F̂n;D), yielding β̂n = argmax
β∈R

lProfilen (β;D)

and Λ̂n = Λ̂n(β̂n). The proposed two-stage CELL estimator can be imple-

mented using the constrained optimization package constrOptim in R.

3. Asymptotic Properties

3.1 Notation and Metrics

We expand the notation and metrics originally defined in Wellner and Zhang

(2007) to study the asymptotic properties of the proposed estimator. Let

Bd and B denote the collection of Borel sets in Rd and R, respectively, and

let B[0,τ ] = {B ∩ [0, τ ] : B ∈ B}. We then define the measures ν1, ν2, νn1, µ1,
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3.1 Notation and Metrics

and µ2 as follows. For any B1, B2, B ∈ B[0,τ ], and B3 ∈ Bd,

ν1(B1 ×B2 ×B3) =

∫
B3

∫ τ

0

∞∑
k=1

P (K = k|Z = z, U = u)

×
k∑

j=1

P (u− Tk,j−1 ∈ B1, u− Tk,j ∈ B2|Z = z,K = k, U = u)dF0(u|z)dH(z),

ν2(B ×B3) =

∫
B3

∫ τ

0

∞∑
k=1

P (K = k|Z = z, U = u)

×
k∑

j=1

P (u− Tk,j ∈ B|Z = z,K = k, U = u)dF0(u|z)dH(z),

µ1(B1 ×B2) =ν1(B1 ×B2 × Rd),

µ2(B) =ν2(B × Rd),

µ3(B1 ×B2) =

∫
Rd

∫ ∞∑
k=1

P (K = k|Z = z, U = u)

× P (u− Tk,k ∈ B1, u ∈ B2|Z = z,K = k, U = u)dF0(u|z)dH(z),

where H is the distribution function of Z. When the distribution function

F0 in measure ν1 is replaced by F̂n, we use the notation νn1 instead. We

also define the L2-metrics dj(θ1, θ2), forj = 1, 20, in the parameter space Θ

as

dj(θ1, θ2) =
{
∥β1 − β2∥2 + ∥Λ1 − Λ2∥2L2(µj)

}1/2

.
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3.2 Consistency and Convergence Rate

Let Z be the support ofH. LetMj (j = 1, . . . , 7) and c denote universal

constants. Let g(r) be the rth derivative function of g. For r ≥ 1, we define

Hr = {g : |g(r−1)(s)− g(r−1)(t)| ≤ c|s− t| for all 0 ≤ s < t ≤ τ},

F = {F : F (u|z) is a conditional distribution function on [0, τ ]×Z},

Fη = {F : ∥F − F0∥∞ ≤ η, F ∈ F},

Ψ = {Λ : Λ(u) is a strictly increasing continuous function over [0, τ ] with Λ(0) = 0,Λ ∈ Hr},

Θ = R×Ψ, Θn = R×Ψn,

Θnδ = {θ : d1(θ, θ0) ≤ δ, θ ∈ Θn}, Θδ = {θ : d1(θ, θ0) ≤ δ, θ ∈ Θ},

where ∥F − F0∥∞ = sup
u,z

|F (u|z)− F0(u|z)|, for F ∈ F .

3.2 Consistency and Convergence Rate

We impose the following regularity conditions in order to derive the consis-

tency and convergence rate of the proposed estimator:

(C1) The true parameter θ0 = (β0,Λ0) ∈ R0 × Ψ, with 0 < Λ0(τ) < ∞,

where R0 is the interior of R.

(C2) Z is a bounded set in Rd and P (K ≤ M1) = 1, for some positive

constant M1.
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3.2 Consistency and Convergence Rate

(C3) The function J0(D) ≡
K∑
j=1

△Nj log(△Nj) satisfies E{J0(D)} <∞.

(C4) inf
z∈Z

P (U > Y |Z = z) =M2, for 0 < M2 < 1.

(C5) The conditional density function f0 of the terminal event time U for

given Z satisfies f0(u|z) ≥M3 on its support set, a measurable subset

of [u0, τ ]×Z with u0 > 0 and M3 > 0.

(C6) The measure µj ×H on ([0, τ ]j ×Rd,B[0, τ ]j ×Bd) is absolutely con-

tinuous with respect to νj, for j = 1, 2.

(C7) For all β ∈ Rd with β ̸= 0, P (β⊤Z ̸= c) > 0.

(C8) The maximum spacing of the knots, max
1≤i≤qn+1

|ti−ti−1| = O(n−γ), with

qn = O(nγ), for 0 < γ < 1/2, and
max

1≤i≤qn+1
|ti − ti−1|

min
1≤i≤qn+1

|ti − ti−1|
≤ M4 uniformly

for n.

Condition (C1) is a regular condition on the true parameter; (C2) and

(C3) impose bounded conditions on the number of observation times K and

the recurrent process N , respectively; (C4) implies that the censoring rate

falls between zero and one; (C5) is a condition on the distribution of the

terminal event time, and is satisfied by most continuous random variables;

(C6) and (C7) are needed to establish the identifiability of the semipara-

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0353



3.2 Consistency and Convergence Rate

metric model; and (C8) is a technical condition to ensure the approximation

for the monotone function (Lu, Zhang, and Huang, 2007, 2009).

Theorem 3.1. (Consistency) Suppose that ∥F̂n − F0∥∞ → 0 almost surely

and µ3({0} × {τ}) > 0. Under Conditions (C1)–(C8), d1(θ̂n, θ0) → 0 and

d2(θ̂n, θ0) → 0 almost surely.

To derive the rate of convergence, we need additional conditions:

(C9) The observation time points are s0-separated; that is, there exists a

constant s0 > 0 such that P (TK,j−TK,j−1 ≥ s0 for all j = 1, . . . , K) =

1. Furthermore, µ2 is absolutely continuous with respect to the Lebesgue

measure, with a derivative µ̇2(t) ≥M5 > 0, for some positive constant

M5.

(C10) The true baseline function Λ0 is differentiable and the derivative has

positive and finite lower and upper bounds in the observation interval;

that is, there exists a constant 0 < M6 <∞ such that 1/M6 ≤ Λ̇0(t) ≤

M6, for t ∈ [0, τ ].

(C11) P
(
ecN(τ)

)
≤M7, for some positive constants c and M7.

(C12) For some ϖ ∈ (0, 1), a⊤V ar(Z|U1, U2)a ≥ ϖa⊤E(ZZ⊤|U1, U2)a al-

most surely for all a ∈ Rd, where (U1, U2, Z) has distribution ν1/ν1([0, τ ]
2×

Z).
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3.2 Consistency and Convergence Rate

These conditions are similar to those required by Wellner and Zhang

(2007) and Lu, Zhang, and Huang (2009) when studying semiparametric

models for panel count data. Condition (C9) requires that adjacent obser-

vation times be at least s0 apart, and that the intensity of the measure µ2 be

strictly positive. Condition (C10) requires that the true baseline function

Λ0 be absolutely continuous, with a bounded intensity function. This as-

sumption is used mainly for technical convenience in the proofs. Condition

(C11) is satisfied easily by a uniformly bounded process N(t) or a Poisson-

type process, and (C12) is justified by the arguments for conditions (C13)

and (C14) in Wellner and Zhang (2007). These conditions, while mainly

for technical purposes, are quite mild in practice.

Theorem 3.2. (Convergence rate) Suppose that ∥F̂n−F0∥∞ = Op(n
−r/(1+2r)).

Under Conditions (C1)–(C12), we have

d1(θ̂n, θ0) = Op(n
−r/(1+2r)).

Theorem 3.2 shows that the convergence rate of the semiparametric

two-stage estimator θ̂n is of order n−r/(1+2r), even if the convergence rate of

the nonparametric estimator F̂n for the nuisance functional parameter F0

is below n
1
2 .
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3.3 Asymptotic Normality

3.3 Asymptotic Normality

Define H1 =
{
h = (h1, h2) : h1 ∈ R, h2 ∈ Hr, ∥h1∥ ≤ 1, ∥h2∥∞ ≤ 1

}
.

Writing

Aj(u) =
( △Nj

△Λj(u)eβ
⊤Z

− 1
)
eβ

⊤Z ,

S(u) =
K∑
j=1

[
△Nj log(△Λj(u)e

β⊤Z)−△Λj(u)e
β⊤Z
]
,

we define, for any h = (h1, h2) ∈ H1,

m(θ, F ;D) = ∆S(Y ) +
1−∆

F (Y |Z)

∫ ∞

Y

S(u)dF (u|Z),

m1(θ, F ;D)[h1] = ∆h⊤1 Z
K∑
j=1

Aj(Y )△Λj(Y ) +
1−∆

F (Y |Z)
h⊤1 Z

∫ ∞

Y

K∑
j=1

Aj(u)△Λj(u)dF (u|Z),

m2(θ, F ;D)[h2] = ∆
K∑
j=1

Aj(Y )△h2j(Y ) +
1−∆

F (Y |Z)

∫ ∞

Y

K∑
j=1

Aj(u)△h2j(u)dF (u|Z),

and

m(1)(θ, F ;D)[h] = m1(θ, F ;D)[h1] +m2(θ, F ;D)[h2],

with △hj(u) = h(u− TK,j−1)− h(u− TK,j). For ease of exposition, we use

{D̃i, i = 1, . . . n} to represent the i.i.d. sample for estimating F0 in Stage 1.
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3.3 Asymptotic Normality

Theorem 3.3. Suppose that Conditions (C1)–(C12) hold, and ∥F̂n−F0∥∞ =

Op(n
−r/(1+2r)). Assume that there exists a uniformly bounded process O and

a Lipschitz function g such that

√
n

∫ τ

0

ψ(u;D)d[F̂n(u|Z)− F0(u|Z)] =
1√
n

n∑
i=1

∫ τ

0

ψ̃(u;D)dO(u;D; D̃i)

is distributed asymptotically as a normal distribution with mean zero for the

integrable function ψ, where ψ̃ = g ◦ ψ, with g ◦ ψ denoting the composite

of the functions g and ψ. Then, we have

(i)

√
n(β̂n − β0)

D−→ Nd(0,Σ
−1
1 Σ2(Σ

−1
1 )⊤),

where

Σ1 = E

(
K∑
j=1

△Λ0j(U)e
β⊤
0 Z
[
Z −R(U,K, TK,j−1, TK,j)

]⊗2

)
,

Σ2 = E
(
m∗(θ0, F0;D)⊗2

)
,

with R(U,K, TK,j, TK,j′) = E(Zeβ
⊤
0 Z |U,K, TK,j, TK,j′)/E(e

β⊤
0 Z |U,K, TK,j, TK,j′);
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3.3 Asymptotic Normality

(ii) For h ∈ Hr,

√
n

∫
△Λ̂n(t, s)−△Λ0(t, s)

△Λ0(t, s)
eβ

⊤
0 z△h(t, s)dν1(s, t, z)

D−→ N(0, σ2
1[h]),

where △Λ(t, s) = Λ(t)−Λ(s), △h(t, s) = h(t)−h(s) and σ2
1[h] = E(m†(θ0, F0;D)[h])2,

withm†(θ0, F0;D)[h] = m2(θ0, F0;D)[h]−m̃∗(θ0, F0;D)[h]+m∗∗(θ0, F0;D)[h].

Here, for some complicated expression m∗(θ, F ;D), m̃∗(θ, F ;D) and

m∗∗(θ, F ;D) are given in the Supplementary Material for the proof of The-

orem 3.3. The second part of this theorem is developed to construct test

statistics for testing the null hypothesis: Λ = Λ0 and β = β0.

To derive the asymptotic normality of the two-stage estimator under

the Cox proportional hazards model for the terminal event time, we need

an additional assumption.

(C13) The information matrix of the partial likelihood for the Cox regression

model at the true parameter values is positive definite.

Corollary 3.1. Suppose Conditions (C1)–(C13) hold. If there exists some

positive constant M such that inf
z∈Z

P (C ≥ τ |Z = z) =M , then Theorem 3.3

holds for Λ0 ∈ Hr, for r ≥ 2, when F0 is estimated using F̂n(u|Z) in (2.5).

Remark 3.1. The assumption that infz∈Z P (C ≥ τ |Z = z) = M > 0 is
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a common technical condition for the weak convergence result of the base-

line hazard function estimator on an interval [0, τ ] under Cox regression

models (e.g., Condition C1(b) of Kalbfleisch and Prentice 2002, page 175;

Condition D of Andersen and Gill 1982; Condition (2.5) of Fleming and

Harrington 1991, page 290; Condition 5 in Kong et al. 2018). In ad-

dition, as pointed out by Kalbfleisch and Prentice (2002, page 178), with

right-censoring, the asymptotic result can be extended to hold for data on

the entire interval [0,∞) by placing somewhat stronger conditions on the

covariates (see, e.g., Argas and Haara, 1988).

4. Simulation Studies

We conducted extensive numerical studies to evaluate the finite-sample per-

formance of the proposed likelihood-based two-stage estimator. To simu-

late panel count data truncated by a terminal event, we first generated

the number of observation times Ki from a uniform distribution with an

equal probability of 1/6 on {1, 2, 3, 4, 5, 6}. We generated the censoring time

Ci from the exponential distribution with rate parameter 0.1e−1.5z1i+0.5z2i ,

truncated at τ0. Here, we chose τ0 to achieve censoring rates of 20% and

40%, in the two simulation settings, respectively, and assume that the ter-

minal event time Ui follows an exponential distribution with rate parameter
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ez1i−z2i , where z1i and z2i are two covariates, with z1i ∼ Uniform(0, 1) and

z2i ∼ Bernoulli(0.5). The observed data for the terminal event time Ui con-

sist of Yi = min{Ui, Ci} and ∆i = I(Ui ≤ Ci), where I(·) is the indicator

function. For subject i with observed data Yi andKi, we set the observation

times Tij, for j = 1, · · · , Ki, as ordered variates from Uniform(0, Yi).

We consider three distributions for generating panel counts: (i) Ni fol-

lows a standard Poisson process, with conditional mean function E(Ni(t)|Ui, Zi) =

{Λ0(Ui)−Λ0(Ui−t)}eβ
⊤
0 Zi ; (ii) Ni follows a mixed Poisson process, with con-

ditional mean function E(Ni(t)|Ui, Zi, γi) = γi{Λ0(Ui) − Λ0(Ui − t)}eβ⊤
0 Zi ,

in which γi ∼ Gamma(2, 1/2); and (iii) Ni follows a negative binomial pro-

cess, with conditional mean function E(Ni(t)|Ui, Zi) = {Λ0(Ui) − Λ0(Ui −

t)}eβ⊤
0 Zi . For all cases, we set Λ0(u) = 8(1− e−u) and β0 = (1, 1)⊤.

For Cases (i) and (ii), we generated △Ni,j from Poisson(λi,j), with

λi,j = {Λ0(Ui − Ti,j−1)−Λ0(Ui − Ti,j)}eβ
⊤
0 Zi and λi,j = γi{Λ0(Ui − Ti,j−1)−

Λ0(Ui − Ti,j)}eβ
⊤
0 Zi , respectively; for Case (iii), we generated △Ni,j from

Neg-Binomial(λi,j, 0.5), with λi,j = {Λ0(Ui − Ti,j−1)− Λ0(Ui − Ti,j)}eβ
⊤
0 Zi .

For each of the three counting processes, we conducted a Monte Carlo

simulation with 500 repetitions for each combination of sample sizes n =

100, 200 and censoring rates. Although we established the asymptotic nor-

mality in Theorem 3.3, the standard errors could not be obtained easily
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using an empirical estimation, owing to the complicated form of the asymp-

totic variance-covariance matrix of the estimators. Hence, we propose es-

timating the standard errors using the bootstrapping technique. The esti-

mated standard error and the coverage probability were computed based on

100 bootstrap samples. Figure 1 displays the average estimated Λ(u) based

on 500 repetitions for the three cases with a censoring rate of 20%, where

the pointwise estimates are close to the corresponding values of the true

function, on average. Table 1 shows the simulation results, including the

estimation bias, sample standard deviation (SSD), average of the bootstrap-

based standard errors (ASE), and 95% coverage probability (CP) for the

three scenarios. The results show that the proposed method yields asymp-

totically unbiased estimators, the estimated standard errors are close to

the corresponding sample standard deviations, especially when the sample

size increased to 200, and the 95% confidence intervals exhibit reasonably

accurate coverage probability. As expected, the data with a low censoring

rate of terminal events led to less biased estimations in finite samples and

smaller estimation variability. Although the counting processes in Cases

(ii) and (iii) violate the assumption of the conditional Poisson process used

in the working model to derive the likelihood, the inferences remain valid.

However, the estimation variability of the regression parameters appears
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to be larger relative to Case (i), for which the working model was indeed

a correct model. The simulation results attest that the proposed reversed

mean model under the working Poisson process is robust against the under-

lying stochastic process used to generate the observed panel count data, as

shown for the ordinary mean model for panel count data without consid-

ering an informative terminal event (Wellner and Zhang, 2007; Lu, Zhang,

and Huang, 2009).

5. Applications

5.1 Chinese Longitudinal Healthy Longevity Survey Data

We applied the proposed likelihood-based two-stage estimation procedure

under the reversed mean model to the Chinese Longitudinal Healthy Longevity

Survey (CLHLS) data. The CLHLS conducted a survey study on elderly

people aged 65 or older with health and quality of life related questionnaires

from 1998 to 2014 (Zeng et al., 2017). Follow-up interviews were carried

out every two to three years with new individuals recruited as replacement

for those lost to follow-up or deceased. We only included individuals of the

1998 enrollment because these individuals provided the longest observation

window. We noted there were some seemingly erroneous or missing data

records, likely due to administrative mistakes. After removing those erro-
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5.1 Chinese Longitudinal Healthy Longevity Survey Data

neous or missing records, data from 2904 individuals remained for analysis.

We considered the reported number of serious illnesses as the recurrent

event process of interest, which could be truncated by the terminal event

of death. The censored subjects include those lost to follow-up or alive

at the end of study period, and the sample yielded a censoring rate 27%

with the longest follow-up time of τ = 197 months. We investigated two

binary covariates including gender and residence with the goal to explore

the covariate effects on the mean function of serious illness counts under

consideration. For this purpose, we applied the proposed two-stage estima-

tion procedure to panel count data with right-censored terminal event data,

where the Cox proportional hazards model was used in Stage 1 to estimate

the conditional distribution function of survival time. The diagnostic test

for the proportional hazards assumption (Grambsch and Therneau, 1994)

for the U variable yielded p-value 0.19, not suggesting violation of the Cox

model. Table 2 shows the results from applying the two-stage estimation

procedure to the CLHLS dataset, where the standard errors of the esti-

mates were obtained by using 100 bootstrap samples. The effect size of

RESIDENCE was −0.2820, which implies that participants living in rural

regions experienced 1 − e−0.2820 = 24.6% less serious illnesses compared to

participants from urban regions, controlling for gender. In general, indi-
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5.2 Bladder Tumor Data

viduals living in urban areas may experience higher stress from social and

physical environments, which may lead to more recurrences of serious ill-

nesses. Additionally, easy access to medical facilities helps to identify more

occurrences of serious illnesses as well as providing more timely and better

quality of medical care, contributing to the fact that urban residents tend to

report serious illnesses more frequently than those residing in rural regions

but live longer. Gender did not show any significant effect on the number

of serious illnesses occurred during the observation period.

5.2 Bladder Tumor Data

We also applied the proposed method to another data set from the bladder

tumor study conducted by the Veterans Administration Co-operative Uro-

logical Research Group (Andrews and Herzberg, 1985). The study included

118 patients initially diagnosed with bladder cancer and subsequently ran-

domized to one of the three treatments: thiotepa, pyridoxine, or placebo.

During each follow-up clinical visit, the number of new tumors since the last

visit was recorded and resected. For this analysis, we considered 85 patients

in the placebo group and the thiotepa treatment group to study the efficacy

of thiorepa treatment on suppressing the tumor recurrence. The recurrent

event process was defined as the number of tumors accumulated since the
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5.2 Bladder Tumor Data

initial diagnosis excluding the prior tumors and the terminal event time

was defined as months elapsed from the date of diagnosis to death. The

longest observation time was 64 months. For patients who lost to follow-up

or were alive at the end of the study period, the terminal event times were

regarded as censored and the censoring rate was 65%. To analyze the effect

of thiotepa treatment, we also adjusted for the number of initial tumors at

diagnosis. The observed data were typical panel count data with death as

the right-censored terminal event. Table 3 shows the results from our two-

stage estimation method. In particular, the results from Stage 2 show that

the initial number of tumors at diagnosis was positively associated with

the recurrence of subsequent tumors with an effect size of 0.2326 (p-value

< 0.01), which indicates that one additional initial tumor is expected to

increase subsequent recurrence of tumors by 26.2% , controlling for treat-

ment. The thiotepa treatment was found to significantly suppress the tumor

recurrence with the effect size of −0.7045 (p-value < 0.05). In other words,

thiotepa is expected to reduce the tumor recurrences by 50.1%, controlling

for the number of initial tumors. The results are comparable with those in

previous studies (Sun and Wei, 2000; Wellner and Zhang, 2007; Lu, Zhang

and Huang, 2009).
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6. Conclusion

In joint analysis of longitudinal count and survival data, the effect of longi-

tudinal markers on the survival is often the main study of interest (Huang

and Wang, 2004; Sun et al., 2012). In the recent literature of joint analy-

sis of longitudinal and survival data, there has been an increasing interest

in studying the behavior of longitudinal data near the terminal event for

addressing more relevant scientific questions (Chan and Wang, 2010, 2017;

Kong et al., 2018). To the best of our knowledge, there is no such effort

for panel count data. We propose a semiparametric reversed conditional

mean model to characterize the behavior of a recurrent event process near

an informative terminal event and develope a novel M-estimation proce-

dure based on the conditional expectation of log-likelihood derived from a

non-homogeneous Poisson process.

The estimation procedure is implemented through a two-stage mech-

anism for numerical convenience, for which the first stage estimates the

conditional distribution function of the terminal event. We fit the Cox

model to terminal event time data due to its popularity and well-established

asymptotic properties that fulfill the required conditions for the nuisance

parameter. If the proportional hazards assumption fails, we may consider

alternative survival models such as additive hazards or accelerated failure
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time models, or even the local Kaplan–Meier estimator (Dabrowska, 1989)

to estimate the conditional distribution function of the terminal event time.

For the adequacy of model (2.1), we can similarly develop some graph-

ical and numerical procedures using cumulative sums of the residuals fol-

lowing the ideas in Lin et al. (2000) and Zhao and Tong (2011). However,

the procedure is more complicated. An easy-to-implement model-checking

procedure needs to be explored.
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Table 1: Simulation results for the recurrent event process following Poisson
process, mixed Poisson process, and negative binomial process

Poisson Process

CR n = 100 n = 200
β1 β2 β1 β2

20% Bias 0.0516 -0.0197 0.0454 -0.0180
SSE 0.1756 0.1044 0.1131 0.0708
ESE 0.1711 0.1018 0.1174 0.0709
CP 0.9280 0.9360 0.9460 0.9520

40% Bias 0.0510 -0.0076 0.0283 -0.0107
SSE 0.2272 0.1206 0.1583 0.0845
ESE 0.2302 0.1284 0.1564 0.0870
CP 0.9380 0.9640 0.9320 0.9540

Mixed Poisson Process

CR n = 100 n = 200
β1 β2 β1 β2

20% Bias 0.0440 -0.0307 0.0383 -0.0197
SSE 0.4188 0.2137 0.2876 0.1499
ESE 0.3976 0.2119 0.2809 0.1492
CP 0.9380 0.9500 0.9520 0.9580

40% Bias 0.0408 -0.0152 0.0454 -0.0067
SSE 0.5103 0.2592 0.3405 0.1759
ESE 0.4686 0.2538 0.3263 0.1759
CP 0.9340 0.9480 0.9440 0.9520

Negative Binomial Process

CR n = 100 n = 200
β1 β2 β1 β2

20% Bias 0.0367 -0.0091 0.0428 -0.0196
SSE 0.2187 0.1404 0.1612 0.0962
ESE 0.2216 0.1355 0.1532 0.0937
CP 0.9440 0.9340 0.9300 0.9420

40% Bias 0.0364 -0.0117 0.0261 -0.0180
SSE 0.2961 0.1716 0.2005 0.1162
ESE 0.2977 0.1694 0.2054 0.1153
CP 0.9440 0.9520 0.9480 0.9440

Note: CR represents the censoring rate.
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Table 2: Estimation results for CLHLS data

Stage 1: Cox proportional hazards model

Variable Estimate (95% CI) p-value
Gender (female = 1, male = 0) 0.0257 (-0.0590, 0.1104) 0.5520
Residence (rural = 1, urban = 0) 0.2000 (0.1156, 0.2844) 3.38e-06∗∗∗

Stage 2: Reversed mean model

Variable Estimate (95% CI) p-value
Gender (female = 1, male = 0) 0.0217 (-0.1013, 0.1448) 0.7294
Residence (rural = 1, urban = 0) -0.2820 (-0.4164, -0.1476) 3.9155e-05∗∗∗

Level of significance: ∗ 0.05 ∗∗ 0.01 ∗∗∗ 0.005

Table 3: Estimation results for bladder tumor data

Stage 1: Cox proportional hazards model

Variable Estimate (95% CI) p-value
Number of initial tumors 0.1717 (-0.0154, 0.3588) 0.0721
Treatment (thiotepa = 1, placebo = 0) -0.0735 (-0.8099, 0.6630) 0.8450

Stage 2: Reversed mean model

Variable Estimate (95% CI) p-value
Number of initial tumors 0.2326 (0.0788, 0.3865) 0.0030∗∗∗

Treatment (thiotepa = 1, placebo = 0) -0.7045 (-1.3188, -0.0901) 0.0246∗

Level of significance: ∗ 0.05 ∗∗ 0.01 ∗∗∗ 0.005
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(c) Mixed Poisson (n = 100)
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(d) Mixed Poisson (n = 200)
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(e) Negatve Binomial (n = 100)
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(f) Negative Binomial (n = 200)
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Figure 1: Plots of estimates for Λ(u) with censoring rate 20% under three
different counting processes. Red solid lines represent the true function and
the blue dotted lines represent the point-wise average of estimated baseline
mean functions based on 500 repetitions.
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