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Summary 

When the causal relationship between 𝑋 and 𝑌 is specified by a structural equation, the 

average causal effect of 𝑋 on 𝑌 is the population average rate of change of 𝑌 with respect to 

changes in 𝑋, when all other variables are kept fixed. This parameter is not identifiable from the 

distribution of (𝑋, 𝑌). We give conditions under which the average causal effect is identified as 

the solution of an integral equation based on the distributions of (𝑋, 𝑍) and (𝑌, 𝑍), where 𝑍 is 

an instrumental variable. 
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Introduction 

Suppose the causal relation between two real-valued random variables 𝑋 and 𝑌 is specified by 

a structural equation 𝑌 = 𝑓(𝑋, 𝑈), where 𝑈 represents all other variables that may also affect 

𝑌. We assume 𝑓(𝑥, 𝑈) is smooth in 𝑥, and write 𝑌(𝑥) = 𝑓(𝑥, 𝑈), 𝑌(𝑖)(𝑥) =
𝜕𝑖

𝜕𝑥𝑖 𝑓(𝑥, 𝑈), i=1,2. 

Then 𝑌(1)(𝑥), which tell us how 𝑌 will change when 𝑋 varies around the value 𝑥, can be 

regarded as the causal effect of 𝑋 on 𝑌 when 𝑋 = 𝑥. This effect can be different for different 

subject (or sampling unit) in the population. In this paper it is assumed that we can observe 𝑋, 𝑌 

but not 𝑈,  the form of 𝑓( ) is unknown, and we are interested in the estimation of the average 

causal effect (𝐴𝐶𝐸) which is defined as the function  𝜃(𝑥) = 𝐸(𝑌(1)(𝑥)). 𝐴𝐶𝐸 is a natural 

generalization of 𝐴𝑇𝐸 = 𝐸(𝑌(1) − 𝑌(0)) when 𝑋 is a binary variable indicating which of two 

treatments were received. 𝐴𝑇𝐸 stands for average treatment effect, which is a parameter of 

central interest in the potential outcome framework for causal inference (Rubin 1974). Since 

𝑌(𝑥) and 𝑌(𝑖)(𝑥) are counterfactual variables (i.e. potential outcomes) that are needed in the 

formulation of causal relations but are not directly observable, 𝜃(𝑥) is not identifiable from the 

distribution (𝑋, 𝑌) alone. The method of instrumental variable attempts to identify 𝜃(𝑥) from 

the two distributions (𝑋, 𝑍) and (𝑌, 𝑍) where the instrumental variable 𝑍 can affect 𝑋 through 

another equation 𝑋 = 𝑔(𝑍, 𝑉). However, identifiability results for causal parameters typically 

requires monotonicity assumptions on certain arguments of the structural equations (Imbens 

and Angrist 1994, Angrist, Imbens and Rubin 1996, Chernozhukov, Imbens and Newey 2007, 

Imbens and Newey 2009, Chen, Chernozhukov, Lee and Newey 2014, Torgovitsky 2015, 
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Kennedy, Lorch and Small 2018, see Wong 2021 for further review).  Importantly, the causal 

parameters identified under those conditions were defined as averages of counterfactuals over 

certain subpopulations rather than as the unrestricted average over the whole population. 

Since  the unrestricted population average is often also of interest (e.g. when we want to know 

the effect of an intervention for society at large), it is useful to supplement the existing results 

by developing methods to identify the unrestricted average causal effect. 

We consider the following nonlinear, nonparametric causal model 

• 𝑌 = 𝑓(𝑋, 𝑈),    𝑌 ∈ 𝑅,  𝑋 ∈ 𝑅, 𝑈 ∈ 𝑅𝑝,   𝑓 is bounded and smooth in 𝑥 (1) 

• 𝑋 = 𝑔(𝑍, 𝑉),   𝑍 ∈ 𝑅𝑞, 𝑉 ∈ 𝑅𝑟 (2) 

• sup
𝑥,𝑧

𝑝𝑧(𝑥)<∞  where 𝑝𝑧( ) denotes the density function of 𝑋(𝑧) (3) 

• 𝑍 is independent of (𝑈, 𝑉) (4) 

In (1), the condition that 𝑓 is bounded and smooth in 𝑥 means that sup
𝑢

|𝑓(𝑥, 𝑢)| < ∞  and 

sup
𝑢

|
𝜕𝑖

𝜕𝑥𝑖 𝑓(𝑥, 𝑢)| < 𝑚(𝑥) for  i=1, 2,  where 𝑚( ) is a bounded and integrable function. Then, 

when 𝑥 → ∞,  we have 𝑌(∞) = lim 𝑌(𝑥) exists and  𝐸(𝑌(𝑥)) → 𝐸(𝑌(∞)). Similarly for 

𝑌(−∞). Also, 𝜃(𝑥) = 𝐸(𝑌(1)(𝑥)) is a differentiable function and lim 𝜃(𝑥)=0 as 𝑥 → ±∞. 

For nonlinear 𝑓 and 𝑔, the independence condition (4) is not sufficient  for the identification of 

𝜃(𝑥) from the distribution of (𝑋, 𝑌, 𝑍). Under the condition that changes in 𝑌 caused by varying 

𝑋 is uncorrelated to changes in 𝑋 caused by varying Z, conditional on 𝑍 = 𝑧, Wong (2021) 

showed that the distributions (𝑋, 𝑍) and (𝑌, 𝑍) identify a related function 𝜓(𝑧) =

𝐸(𝑌(1)(𝑋)|𝑍 = 𝑧). That paper also demonstrated by examples that sometimes the function 
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𝜃(𝑥) can be recovered from the function 𝜓 (z), but did not provide results on the direct 

identification of 𝜃(𝑥). To fill this gap, in this paper we derive an integral equation that can be 

used to identify 𝜃(𝑥) from the distributions of (𝑋, 𝑍) and (𝑌, 𝑍). 

Result 

To formulate our main result, consider the following conditions 

• 𝐼(𝑋(𝑧) ≤ 𝑥) is uncorrelated with 𝑌(1)(𝑥), for all 𝑥, 𝑧 (5) 

• The set of distributions of 𝑋|𝑍 = 𝑧, induced by varying z, is a complete set (6) 

Theorem: If (1)-(6) hold and 𝑧0 is a fixed value, then 𝜃 is identifiable via the integral equation  

   ∫ 𝐾(𝑧, 𝑥)𝜃(𝑥)𝑑𝑥 = 𝜇(𝑧) − 𝜇(𝑧0)  (7) 

           where 𝐾(𝑧, 𝑥) = 𝑃(𝑋 ≤ 𝑥|𝑍 = 𝑧0) − 𝑃(𝑋 ≤ 𝑥|𝑍 = 𝑧) 

𝜇(𝑧) = 𝐸(𝑌|𝑍 = 𝑧) 

Proof: 

  𝜇(𝑧) = 𝐸(𝑌|𝑍 = 𝑧) = 𝐸(𝑓(𝑋, 𝑈)|𝑍 = 𝑧) = 𝐸(𝑓(𝑔(𝑧, 𝑉), 𝑈)|𝑍 = 𝑧) = 𝐸(𝑌(𝑋(𝑧))) 

 = 𝐸 ∫ 𝛿(𝑥 − 𝑋(𝑧))𝑌(𝑥)𝑑𝑥 (8) 

Before the formal proof we first provide a heuristic derivation. Suppose It is valid to apply 

integration by part to (8) where the delta function 𝛿(𝑡) is regarded as the derivative of the step 

function 𝐷(𝑡) = 𝐼(𝑡 ≥ 0), then (7) follows because 

 𝜇(𝑧) = 𝐸(𝑌(∞) − ∫ 𝐼(𝑋(𝑧) ≤ 𝑥)𝑌(1)(𝑥) 𝑑𝑥) = 𝐸𝑌(∞) − ∫ 𝑃(𝑋(𝑧) ≤ 𝑥)𝜃(𝑥)𝑑𝑥. 

To make this rigorous, replace 𝛿( ) in (8) by the 𝑁(0, 𝜎2) density 𝜙𝜎( ), and define
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  𝜇𝜎(𝑧) = 𝐸 ∫ 𝜙𝜎 (𝑥 − 𝑋(𝑧))𝑌(𝑥)𝑑𝑥 (9) 

Since 𝑌(𝑥) = 𝑌(𝑋(𝑧)) + 𝑌(1)(𝑋(𝑧))(𝑥 − 𝑋(𝑧)) +
1

2
𝑌(2)(𝑋(𝑊))(𝑥 − 𝑋(𝑧))

2
 where 𝑊 is an

intermediate variable lying between 𝑥 and 𝑋(𝑧), we have 

𝜇𝜎(𝑧) = 𝐸𝑌(𝑋(𝑧)) + 𝐸[
1

2
𝑌(2)(𝑋(𝑊)) ∫ 𝜙𝜎 (𝑥 − 𝑋(𝑧))(𝑥 − 𝑋(𝑧))

2
𝑑𝑥.

Thus,  |𝜇𝜎(𝑧) − 𝜇(𝑧)| ≤
𝜎2

2
sup

𝑥
𝑚(𝑥) ≤ 𝑐𝜎2 for some constant c (10) 

Next, we claim that there exist a constant 𝑐 > 0, so that 

|𝐸 (Φ (
𝑥−𝑋(𝑧)

𝜎
) 𝑌(1)(𝑥)) − 𝑃(𝑋(𝑧) ≤ 𝑥)𝜃(𝑥)| ≤ 𝑐𝑚(𝑥)√𝜎 for all small σ (11) 

Assuming (11) is true, we now analyze the integral in (9). Using integration by part, we have 

𝜇𝜎(𝑧) = 𝐸[𝑌(∞) − ∫ (Φ (
𝑥−𝑋(𝑧)

𝜎
) 𝑌(1)(𝑥)) 𝑑𝑥] 

 = 𝐸(𝑌(∞)) − ∫ 𝑃(𝑋(𝑧) ≤ 𝑥)𝜃(𝑥)𝑑𝑥 + 𝑟(𝑧, 𝜎) 

where for some constant c,  |𝑟(𝑧, 𝜎)| ≤ 𝑐√𝜎  for all small 𝜎. 

Thus     |(𝜇𝜎(𝑧) − 𝜇𝜎(𝑧0)) − ∫[𝑃(𝑋(𝑧0) ≤ 𝑥) − 𝑃(𝑋(𝑧) ≤ 𝑥)]𝜃(𝑥)𝑑𝑥|≤ 2𝑐√𝜎 (12) 

Taking the limit of (10) and (12) as σ→ 0, we have 

 𝜇(𝑧) − 𝜇(𝑧0) = lim
𝜎→0

(𝜇𝜎(𝑧) − 𝜇𝜎(𝑧0)) = ∫[𝑃(𝑋(𝑧0) ≤ 𝑥) − 𝑃(𝑋(𝑧) ≤ 𝑥)]𝜃(𝑥)𝑑𝑥. 

The desired equation (7) follows because 𝑃(𝑋(𝑧) ≤ 𝑥) = 𝑃(𝑔(𝑧, 𝑉) ≤ 𝑥) = 𝑃(𝑔(𝑧, 𝑉) ≤

𝑥|𝑍 = 𝑧) = 𝑃(𝑔(𝑍, 𝑉) ≤ 𝑥|𝑍 = 𝑧) = 𝑃(𝑋 ≤ 𝑥|𝑍 = 𝑧). 

To prove the claim (11), 

Page 5 of 22

https://mc04.manuscriptcentral.com/statisticasinica

Statistica Sinica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0191



|𝐸 (Φ (
𝑥−𝑋(𝑧)

𝜎
) 𝑌(1)(𝑥)) − 𝑃(𝑋(𝑧) ≤ 𝑥)𝜃(𝑥)| 

= |𝐸 (Φ (
𝑥−𝑋(𝑧)

𝜎
) 𝑌(1)(𝑥)) − 𝐸(𝐼(𝑋(𝑧) ≤ 𝑥))𝐸(𝑌(1)(𝑥))| 

= |𝐸 (Φ (
𝑥−𝑋(𝑧)

𝜎
) 𝑌(1)(𝑥)) − 𝐸(𝐼(𝑋(𝑧) ≤ 𝑥)𝑌(1)(𝑥))|  (by condition (5)) 

≤ 𝑚(𝑥) 𝐸|Φ (
𝑥−𝑋(𝑧)

𝜎
) − 𝐼(𝑋(𝑧) ≤ 𝑥)| 

≤ 𝑚(𝑥) [Φ (−
1

√𝜎
) + 4(sup

𝑥,𝑧
𝑝𝑧(𝑥))√𝜎 ] (13) 

The last inequality (13) holds because  |Φ (
𝑥−𝑋(𝑧)

𝜎
) − 𝐼(𝑋(𝑧) ≤ 𝑥)| is bounded by 2 on 𝐴(𝜎) 

and by Φ(−
1

√𝜎
) on 𝐴(𝜎)𝐶, where 𝐴(𝜎) is the event {|𝑋(𝑧) − 𝑥| ≤ √𝜎}. Finally (11) follows 

from (13) because of the exponentially decreasing tail of the normal distribution. 

Since both 𝐾(𝑧, 𝑥) and 𝜇(𝑧) in the integral equation (7) are determined by the distributions of 

(𝑋, 𝑍) and (𝑌, 𝑍), it follows that 𝜃 is also determined if the solution to (7) is unique. 

To establish uniqueness, let 𝑎 be a fixed constant, and define for any 𝜃( ), its anti-derivative 

𝜆(𝑥) = 𝑎 − ∫ 𝜃(𝑡)𝑑𝑡
∞

𝑥
. Suppose 𝜃1 and 𝜃2 are two solutions to (7) and 𝜆1 and 𝜆2 are the 

corresponding anti-derivatives, then 

𝐸(𝜆1(𝑋) − 𝜆2(𝑋)|𝑍 = 𝑧) = ∫ 𝑝𝑋|𝑍(𝑥|𝑧) (𝜆1 − 𝜆2)(𝑥)𝑑𝑥

= − ∫ 𝑃(𝑋 ≤ 𝑥|𝑍 = 𝑧)(𝜃1 − 𝜃2)(𝑥)𝑑𝑥 = − ∫ 𝑃(𝑋 ≤ 𝑥|𝑍 = 0)(𝜃1 − 𝜃2)(𝑥)𝑑𝑥. 

Since the last expression does not depend on 𝑧, condition(6) implies 𝜆1 = 𝜆2 , and therefore 

𝜃1 = 𝜃2. 
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Discussion 

Of the 6 conditions in the theorem, the first 3 are needed just to set up the model and are not 

restrictive. On the other hand, conditions (4), (5), (6) each represents a significant constraint on 

the model. Condition (4) says that 𝑍 is independent of all other causal variables that affect 𝑋 

and 𝑌. Together with (1) and (2), this means that the only way 𝑍 can affect 𝑌 causally is 

indirectly through its effect on 𝑋. This is a natural condition on an instrumental variable. 

Condition (6) implies that the family of conditional distributions 𝑃(𝑋|𝑍 = 𝑧) as 𝑧 varies, is a 

large family. This means that 𝑍 has non-trivial relationship with 𝑋 in the sense that varying the 

value of 𝑧 leads to rich changes in the distribution of 𝑋. This is also a reasonable condition on an 

instrumental variable. This type of completeness condition was first introduced into causal 

inference by Newey and Powell (2003). Finally, condition (5) requires the conditional 

expectation of the causal effect 𝑌(1)(𝑥) =
𝜕𝑓

𝜕𝑥
(𝑥, 𝑈) to be uncorrelated to 𝐼(𝑋(𝑧) ≤ 𝑥) =

𝐼(𝑔(𝑧, 𝑉) ≤ 𝑥),  which is a strong condition. However, even in the simplest case when both 𝑋 

and 𝑍 are binary variables, it is not possible to identify the average treatment effect (analog of 

𝜃 in that case) from the distribution (X,Z) and (Y,Z) without similarly strong conditions (see 

discussion in Angrist, Imbens and Rubin 1996). In the general context of (1)-(4), we are not 

aware of alternative conditions that can be used to relate 𝜇(𝑧) to 𝜃(𝑥). The following example 

illustrates the use of our result in a nonlinear, nonparametric model that allows i) unobserved 

confounders and ii) heterogeneity in the causal effect of 𝑋 on 𝑌. 
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Example: Suppose 𝑌 = ℎ(𝑋, 𝑈1) + 𝑈2 , 𝑋 = 𝑔(𝑍, 𝑉), where ℎ( ) is a smooth and bounded 

function in 𝑥. If 𝑈1is independent of 𝑉, then condition (5) is satisfied. Note that since no 

restriction is imposed on the joint distribution of 𝑈2 and 𝑉, they may include unobserved 

confounders that affect both 𝑋 and 𝑌. Also, the completeness condition (6) is not too 

restrictive. For example, (6) holds in the following cases (a) 𝑔(𝑧, 𝑣) = 𝑠(𝑧 + 𝑣) where 𝑠( ) is an 

invertible function and 𝑉 is a continuous random variable, (b) 𝑔(𝑧, 𝑣) = 1+𝑣1𝑧 + 𝑣2𝑧2, 𝑉1 and

𝑉2 are independent random variables.  

From the proof of the theorem, it is clear that if condition (5) holds only for some values of 𝑧 

and 𝑧0, then equation (7) will hold for those 𝑧 and 𝑧0. If we are willing to make some modeling 

assumptions on 𝜃( ), say 𝜃(𝑥) = ∑ 𝛼𝑖𝑏𝑖(𝑥)𝑘
1  where 𝑏𝑖( ), 𝑖 = 1, . . 𝑘 are fixed functions, then we 

may weaken condition (5) by requiring it to hold only for a finite subset of values for 𝑧 and then 

use the corresponding finite set of equations to identify the parameters 𝛼𝑖, 𝑖 = 1, . . 𝑘. 

Finally, we note that above proof of the theorem follows the way we discovered the integral 

equation originally, namely, start with the expression for 𝐸(𝑌|𝑍 = 𝑧), replace the delta 

function in the expression by the normal kernel and then integrate by part to obtain an 

expression involving 𝜃( ). Weijie Su (personal communication) suggests a second proof, which 

starts from the given 𝐾(𝑧, 𝑥) and then shows that the integral in (7) gives rise to 𝜇(𝑧) − 𝜇(0). 

His proof has the advantage that it does not require the existence of bounded second 

derivatives. 

Acknowledgment: The author thanks Xiaohong Chen, Peng Ding, Dylan Small, and Weijie Su for 

helpful comments. This work was supported by NSF grants DMS1811920 and DMS1952386. 
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