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Abstract: We introduce a variable selection procedure for function-on-function linear models with multiple

functional predictors, using the functional principal component analysis (FPCA)-based estimation method

with the group smoothly clipped absolute deviation regularization. This approach enables us to select

significant functional predictors and estimate the bivariate functional coefficients simultaneously. A data-

driven procedure is provided for choosing the tuning parameters of the proposed method to achieve high

efficiency. We construct FPCA-based estimators for the bivariate functional coefficients using the proposed

regularization method. Under some mild conditions, we establish the estimation and selection consistencies

of the proposed procedure. Simulation studies are carried out to illustrate the finite-sample performance

of the proposed method. The results show that our method is highly effective in identifying the relevant

functional predictors and in estimating the bivariate functional coefficients. Furthermore, the proposed

method is demonstrated in a real-data example by investigating the association between ocean temperature

and several water variables.
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selection consistency; Regularization.

1. Introduction

Functional data analysis (FDA) is becoming increasingly prevalent (Ramsay and Silverman,

2005; Ferraty and Vieu, 2006). FDA was developed to analyze data recorded as curves, images,

or other objects over a continuum, usually time, in scientific areas such as econometrics, ecology,

and medical science. Functional regressions that allow the responses or predictor variables, or

both, to be functions are important FDA tools. Based on the response and predictor variables,

functional regression models can be classified into three broad categories: scalar-on-function

regressions (scalar responses against functional predictors), function-on-scalar regressions (func-

tional responses against scalar predictors), and function-on-function regressions (functional re-

sponses against functional predictors). Many estimation methods have been developed for these

functional regression models; see, for example, Yao et al. (2005), Cai and Hall (2006), Hall and

Horowitz (2007), Zhu et al. (2012), Zhang and Wang (2015), Meyer et al. (2015), Scheipl and

Greven (2016), Lin et al. (2016), Luo et al. (2016), Luo and Qi (2017), Liu et al. (2017), Imaizumi

and Kato (2018), Sang et al. (2018), Sun et al. (2018), Guan et al. (2020), and the references

therein.

In practical experiments, it is common to encounter functional and nonfunctional data with

many predictor variables. Incorporating all of these variables into the regression model directly

may cause a loss of prediction performance in the fitted model, because some predictors may
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be irrelevant to the response variables. Thus, identifying and selecting significant predictors is

particularly important in a regression analysis when the true underlying model has a sparse rep-

resentation. Under a standard linear regression framework with scalar covariates only, various

regularization procedures have been developed for variable selection, such as the LASSO (Tib-

shirani, 1996), smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), and minimax

concave penalty (MCP) (Zhang, 2010). These procedures have also been extended to grouped

variable selection problems (see, e.g., Yuan and Lin, 2006; Wang et al., 2007; Breheny and Huang,

2015).

There is increasing interest in variable selection for functional regressions. For example, Lian

(2013) studied the variable selection problem for multiple functional linear regressions using a

group SCAD penalty; Kong et al. (2016) incorporated scalar predictors into a functional linear

regression and proposed a shrinking estimation and selection procedure for a partially functional

linear regression in high dimensions; Yao et al. (2017) introduced a regularized method for a

partially functional quantile regression model; and Lin et al. (2017) proposed a functional SCAD

regularization procedure for functional linear regression models. Sang et al. (2020) estimated

a sparse functional additive model using the adaptive group LASSO approach. Other variable

selection studies on functional regressions can be found in the sequence of monographs by Zhou

et al. (2013), Huang et al. (2016), and Ma et al. (2019). Note that these investigations on

functional data are for scalar-on-function regressions in which the response is scalar. However,

few works have examined variable selection for function-on-function regressions.
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Here, we develop a variable selection procedure for multiple function-on-function linear re-

gressions by using the FPCA-based estimation method (Hall and Horowitz, 2007) and the group

SCAD regularization (Wang et al., 2007). This work contributes to the literature in the follow-

ing ways. First, our approach treats the regularization of each functional predictor as a whole

and, as a result, each bivariate functional coefficient is assigned to a group. This enables us

to estimate the bivariate functional coefficients and select relevant functional predictors with

nonzero regression coefficients simultaneously. Second, we construct FPCA-based estimators of

the bivariate functional coefficients in the function-on-function linear model, and show that our

estimators are consistent and exhibit sparsity. To the best of our knowledge, these theoretical

properties of variable selection for function-on-function regressions have not previously been in-

vestigated in the literature. In practice, we also attain the rates of convergence for the bivariate

functional coefficient estimators. Third, we present a data-driven procedure for choosing the

tuning parameters of the proposed method to achieve high efficiency. Simulation studies are

carried out to illustrate the performance of the proposed method. The results show that our

method is highly effective in identifying the relevant functional predictors and in estimating

the corresponding bivariate functional coefficients. Finally, we demonstrate the effectiveness of

the proposed method using a real-data example by investigating the associations between ocean

temperature and several water variables.

The rest of this paper is organized as follows. In Section 2, we introduce the function-on-

function linear model and describe the estimation method. In Section 3, we study the estimation
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and selection consistencies of the proposed procedure. Section 4 presents the implementation

algorithm and tuning parameter selection. Simulation results that evaluate the effectiveness of

the proposed method are reported in Section 5. Section 6 illustrates the proposed method by

analyzing Hawaii ocean data. Section 7 concludes the paper. The proofs are relegated to the

Appendix. The R code for the simulation studies and the real-data analysis can be downloaded

at https://github.com/caojiguo/VarSeFuL.

2. Model and Estimation Method

2.1 Function-on-Function Linear Model

We consider a function-on-function regression with multiple functional predictors. Suppose Y (t)

is a functional response defined on a closed interval T , and {Xj(s), j = 1, . . . , p} are p functional

predictors defined on S, where the number of functional predictors p is assumed to be fixed.

Without loss of generality, we also assume that the functional response Y (t) and the functional

predictors {Xj(s), j = 1, . . . , p} have been centered to have mean zero. Then, the function-on-

function linear model takes the form

Y (t) =

p∑
j=1

∫
S
βj(t, s)Xj(s)ds+ ε(t), (2.1)

where the bivariate functional coefficients {βj(t, s), j = 1, . . . , p} are assumed to be square-

integrable, that is,
∫
T

∫
S β

2
j (t, s)dsdt < ∞, and ε(t) is a mean-zero random error function inde-

pendent of {Xj(·), j = 1, . . . , p}. For convenience, we assume that only the first d functional
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2.2 Estimation Method6

predictors are significant, leading to nonzero functional coefficients, while the rest are not; that

is, βj(t, s) ≡ 0, for j = d+ 1, . . . , p.

2.2 Estimation Method

Let {Yi(t), Xij(s), j = 1, . . . , p, i = 1, . . . , n} be independent and identically distributed (i.i.d.)

samples generated from the population {Y ∈ L2 (T ) , Xj ∈ L2 (S) , j = 1, . . . , p}. We first

represent the response and predictor functions using functional principal components (FPC).

Denote CY (t1, t2) = cov(Y (t1), Y (t2)) and CXj
(s1, s2) = cov(Xj(s1), Xj(s2)) as the covariance

functions of Y (t) and Xj(s), respectively, for j = 1, . . . , p, where (Y,X1, . . . , Xp) represents a

generic set (Yi, Xi1, . . . , Xip). According to Mercer’s theorem, we have

CY (t1, t2) =
∞∑
k=1

wkφk(t1)φk(t2), CXj
(s1, s2) =

∞∑
l=1

ρjlψjl(s1)ψjl(s2),

where w1 > w2 > · · · > 0 and ρj1 > ρj2 > · · · > 0 are the eigenvalue sequences of the covariance

functions CY and CXj
, respectively, while {φk(t), k ≥ 1} and {ψjl(s), l ≥ 1} are the corresponding

eigenfunctions that form orthonormal bases in L2(T ) and L2(S). For the sample curves, we have

the Karhunen–Loève expansions

Yi(t) =
∞∑
k=1

ηikφk(t), Xij(s) =
∞∑
l=1

ξijlψjl(s), (2.2)

where ηik =
∫
T Yi(t)φk(t)dt and ξijl =

∫
S Xij(s)ψjl(s)ds are uncorrelated random variables with

mean zero and variances E(η2ik) = wk and E(ξ2ijl) = ρjl, respectively. These coefficients ηik and

ξijl are called FPC scores.
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The functional coefficients βj(t, s) can also be expressed in terms of the complete orthonormal

basis {φk(t), k ≥ 1} and {ψjl(s), l ≥ 1}:

βj(t, s) =
∞∑
k=1

∞∑
l=1

bjklφk(t)ψjl(s), j = 1, . . . , p. (2.3)

Substituting (2.2) and (2.3) into (2.1), we have

∞∑
k=1

ηikφk(t) =

p∑
j=1

∞∑
k=1

∞∑
l=1

bjklξijlφk(t) + εi(t), i = 1, . . . , n.

By the orthonormality of {φk(t), k ≥ 1}, we obtain

ηik =

p∑
j=1

∞∑
l=1

bjklξijl + εik, i = 1, . . . , n, k = 1, 2, . . . ,

where εik =
∫
T εi(t)φk(t)dt, for each k = 1, 2, . . . , .

Owing to the infinite expansions of the functional responses and functional predictors, s-

moothing and regularization are required in the preprocessing stage before conducting an esti-

mation. We adopt a simple, yet effective truncation method to represent the functional responses

and functional predictors. The truncated forms of Yi(t) and Xij(s) can be expressed as

Yi(t) ≈
kn∑
k=1

ηikφk(t) and Xij(s) ≈
mnj∑
l=1

ξijlψjl(s),

respectively, where kn and mnj are truncation parameters such that mnj → ∞ and kn → ∞

as n → ∞. Correspondingly, the bivariate functional coefficients βj(t, s) are represented as

βj(t, s)≈
∑kn

k=1

∑mnj

l=1 bjklφk(t)ψjl(s), for j = 1, . . . , p. Define Bj as a kn ×mnj matrix with the

(k, l)th element bjkl, for 1 ≤ k ≤ kn and 1 ≤ l ≤ mnj, and let B = (B1, . . . ,Bp). Then, the
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least-squares estimator for B is obtained by minimizing

Qn(B) =
n∑
i=1

∥∥∥∥∥
kn∑
k=1

ηikφk(t)−
p∑
j=1

kn∑
k=1

mnj∑
l=1

bjklξijlφk(t)

∥∥∥∥∥
2

=
n∑
i=1

kn∑
k=1

(
ηik −

p∑
j=1

mnj∑
l=1

bjklξijl

)2

.

In practice, the FPC scores ηik and ξijl are unknown, and are estimated from the data.

Using the empirical covariance functions ĈY (t1, t2) = n−1
∑n

i=1 Yi(t1)Yi(t2) and ĈXj
(s1, s2) =

n−1
∑n

i=1Xij(s1)Xij(s2), we can estimate the FPCs φk(t) and ψjl(s) by eigendecomposing the

empirical covariance functions:

ĈY (t1, t2) =
∞∑
k=1

ŵkφ̂k(t1)φ̂k(t2), ĈXj
(s1, s2) =

∞∑
l=1

ρ̂jlψ̂jl(s1)ψ̂jl(s2),

where ŵ1 ≥ ŵ2 ≥ · · · ≥ 0 and ρ̂j1 ≥ ρ̂j2 ≥ · · · ≥ 0. Then, the estimates of the FPC scores are

η̂ik =

∫
T
Yi(t)φ̂k(t)dt and ξ̂ijl =

∫
S
Xij(s)ψ̂jl(s)ds.

Note that setting βj(t, s) = 0 is equivalent to setting all the entries of Bj to zero. To achieve

variable selection and estimation simultaneously, we minimize

arg min
B


n∑
i=1

kn∑
k=1

(
η̂ik −

p∑
j=1

mnj∑
l=1

bjklξ̂ijl

)2

+ 2n

p∑
j=1

Jλnj
(‖Bj‖)

 , (2.4)

where ‖Bj‖ =
{∑kn

k=1

∑mnj

l=1 b
2
jkl

}1/2

is the group L2 norm, which reduces to the Frobenius norm

‖A‖ =
{

tr(ATA)
}1/2

for a matrix A, and to the vector L2 norm ‖a‖ =
{
aTa

}1/2
for a vector a,

and Jλnj
(·) is a shrinkage penalty function with tuning parameter λnj. Many penalty functions
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are available for variable selection. In this paper, we consider the SCAD penalty of Fan and Li

(2001), the derivative of which is defined as

J ′λ(θ) = λ

{
I(θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

I(θ > λ)

}
,

for a > 2 and θ > 0. Following the suggestion of Fan and Li (2001) we adopt a = 3.7 for

the implementation. The SCAD penalty possesses some desirable properties. For example,

it can produce sparse solutions, and it results in estimates that are almost unbiased for large

coefficients. This method is also referred to as the group SCAD procedure (Wang et al., 2007).

Let {b̂jkl, j = 1, . . . , p, k = 1, . . . , kn, l = 1, . . . ,mnj} be the solution to minimizing (2.4). Then,

the estimates of the bivariate functional coefficients βj(t, s), for j = 1, . . . , p, are given by

β̂j(t, s) =
kn∑
k=1

mnj∑
l=1

b̂jklφ̂k(t)ψ̂jl(s).

3. Asymptotic Properties

In this section, we establish the asymptotic properties of the proposed estimators. We first

specify some notation before stating the results. Let ‖ · ‖ represent the L2 norm in func-

tional spaces for different domains. That is, ‖f‖2 =
∫
T f

2(t)dt for f ∈ L2(T ), and ‖g‖2 =∫
T

∫
S g

2(t, s)dsdt for g ∈ L2(T × S). Without loss of generality, we use a common trunca-

tion parameter mn for all the functional predictors in the theoretical analysis. Let {b0jkl, j =

1, . . . , p, k ≥ 1, l ≥ 1} denote the true values of the coefficients {bjkl, j = 1, . . . , p, k ≥ 1, l ≥ 1},

and let β0j(t, s) =
∑∞

k=1

∑∞
l=1 b0jklφk(t)ψjl(s), for j = 1, . . . , p. Denote the minimum and
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maximum eigenvalues of a symmetric matrix A by ρmin(A) and ρmax(A), respectively. Let

ξjl be the lth FPC score of the jth functional predictor, and define the pmn × 1 vector Z̃ =

(ξ11ρ
−1/2
11 , . . . , ξ1mnρ

−1/2
1mn

, . . . , ξp1ρ
−1/2
p1 , . . . , ξpmnρ

−1/2
pmn )T to combine all functional predictors. Let

C > 1 represent a generic constant, of which the value may vary. We assume the following

regularity conditions:

(C1) The number of functional predictors p is assumed to be fixed, and for j = 1, . . . , p and all

l, E‖Xj‖4 <∞, and E(ξ4jl) ≤ Cρ2jl. Moreover, E‖Y ‖4 <∞, and E‖ε‖4 ≤ C.

(C2) The eigenvalues {wk}∞k=1 of CY and {ρjl}∞l=1 of CXj
satisfy

wk ≤ Ck−α1 , wk − wk+1 ≥ C−1k−α1−1

and

ρjl ≤ Cl−α2 , ρjl − ρj(l+1) ≥ C−1l−α2−1,

for k, l ≥ 1 and j = 1, . . . , p, where α1 > 1 and α2 > 1.

(C3) |b0jkl| ≤ Ck−γ1l−γ2 , for k, l ≥ 1 and j = 1, . . . , p, where γ1 > α1/2 + 1 and γ2 > α2/2+1.

(C4) mn →∞, kn →∞, and (m2α2+2
n +mα2+4

n + k3nm
α2
n )/n = o(1).

(C5) λnj = o(1) and max{n−1mα2+1
n kn,m

−2γ2+1
n , n−1k3nm

α2
n } = o(λ2nj), for j = 1, . . . , p.

(C6) 0 < C1 ≤ ρmin(U1) ≤ ρmax(U1) ≤ C2 <∞, for all n, where U1 = E(Z̃Z̃T ).
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Conditions (C1)–(C3) are usually required in the functional regression literature (see, e.g.,

Cai and Hall, 2006; Hall and Horowitz, 2007; Imaizumi and Kato, 2018). Specifically, condition

(C1) ensures the consistency of the empirical covariance functions ĈY (s1, s2) and ĈXj
(t1, t2)

(j = 1, . . . , p). (C2) prevents the spacings between the eigenvalues from being too small. (C3)

is the smooth condition for the bivariate functional coefficients. This condition guards against

the coefficients b0jkl decaying too slowly by controlling the tail for large k, l. (C4) requires that

the truncation parameters mn and kn are large enough but not too large, because higher-order

FPCs and eigenfunctions become increasingly unstable. (C5) gives the conditions for the tuning

parameters λnj. This condition is similar to Condition 7 in Kong et al. (2016), which is used

to guarantee the consistent estimation. Condition (C6) is similar to condition (c4) in Lian

(2013) and condition (B5) in the Supplementary Material of Kong et al. (2016), and ensures the

invertibility of U1.

Theorem 1 Under the conditions (C1)–(C6), we have

(a) (Estimation consistency) ‖β̂j − β0j‖ = op(1), for j = 1, . . . , p.

(b) (Selection consistency) β̂d+1 = · · · = β̂p = 0 with probability tending to one.

Remark 1 It is shown from the proof of Theorem 1 in the Appendix that ‖β̂j−β0j‖2 = Op(m
α2+1
n knn

−1+

k−2γ1+1
n + m−2γ2+1

n + k3nm
α2
n n

−1). In practice, the convergence rate of the estimator β̂j could be

close to the optimal convergence rate of univariate functional coefficient estimate in Hall and

Horowitz (2007) under some assumptions on the truncation parameters mn and kn. Similarly to

Hall and Horowitz (2007), if we set mn � n1/(α2+2γ2) and kn � n1/(2(α2+2γ2)), where an � bn for
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positive an and bn, meaning that the ratio an/bn is bounded away from zero and infinity, then we

obtain that ‖β̂j − β0j‖2 = Op(n
−(2γ2−3/2)/(α2+2γ2)) when γ2 > max{2, α2/2 + 1} and γ1 ≥ 2γ2 − 1.

It is easy to check that the sets mn � n1/(α2+2γ2) and kn � n1/(2(α2+2γ2)) meet condition (C4)

under the assumption that γ2 > max{2, α2/2 + 1}.

4. Computation and Tuning Parameters Selection

4.1 Computation

For convenience, let

Ŵ =



η̂11 η̂12 . . . η̂1kn

η̂21 η̂22 . . . η̂2kn

...
...

...
...

η̂n1 η̂n2 . . . η̂nkn


, Ẑj =



ξ̂1j1 ξ̂1j2 . . . ξ̂1jmnj

ξ̂2j1 ξ̂2j2 . . . ξ̂2jmnj

...
...

...
...

ξ̂nj1 ξ̂nj2 . . . ξ̂njmnj


,

Ẑ = (Ẑ1, . . . , Ẑp), Ĥj = Ẑj ⊗ Ikn , and Ĥ = (Ĥ1, . . . , Ĥp), where Ikn is the kn × kn identity

matrix, and ⊗ represents the Kronecker product. Recall that B = (B1, . . . ,Bp) is the coefficient

matrix. Let bj = vec(Bj), b =
(
bT1 , . . . , b

T
p

)T
and V̂ = vec

(
Ŵ T

)
. Then, the minimization of

(2.4) is equivalent to minimizing

Ln(b) =

∥∥∥∥∥V̂ −
p∑
j=1

Ĥjbj

∥∥∥∥∥
2

+ 2n

p∑
j=1

Jλnj
(‖bj‖). (4.1)

The minimization problem of (4.1) may be solved using the local quadratic approximation

(LQA; Fan and Li, 2001), one-step local linear approximation (LLA; Zou and Li, 2008), or group
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coordinate descent (GCD; Wei and Zhu, 2012; Breheny and Huang, 2015) algorithms. The idea

behind the GCD algorithm is the same as that of the coordinate descent algorithms (Friedman

et al., 2007; Breheny and Huang, 2011), which have been shown to enjoy theoretical convergence

properties and are computationally more efficient than the LQA and LLA algorithms in terms

of fitting MCP and SCAD models. As pointed out in Breheny and Huang (2015), the GCD

algorithm not only inherits the high computational efficiency and convergence properties of

coordinate descent algorithms, but is also fast, efficient, and stable in solving the optimization

problem in group SCAD and group MCP models. Thus, instead of the LQA or LLA, we adopt

the GCD algorithm to solve the minimization problem.

Before applying the GCD algorithm, it is often necessary to orthonormalize each predictor

group. This orthonormalization can be accomplished without loss of generality, because the

resulting estimates can be transformed back to their original scale after fitting the model. We

orthonormalize each group of FPC scores that serve as predictor variables using the singular value

decomposition; that is, ĤT
j Ĥj/n = QjΛjQ

T
j , where Qj is an orthonormal matrix containing

the eigenvectors of ĤT
j Ĥj/n, and Λj is a diagonal matrix of the eigenvalues of ĤT

j Ĥj/n. Let

Ȟj = ĤjQjΛ
−1/2
j . Then, we have ȞT

j Ȟj/n = I and Ȟj b̃j = Ĥj(QjΛ
−1/2
j b̃j), where b̃j is the

reparameterized coefficient vector of bj satisfying bj = QjΛ
−1/2
j b̃j for the optimization problem

of (4.1) on the orthonormalized scale. In other words, the minimization problem of (4.1) can be
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transformed to the optimization problem

b̌ = arg min
b̃

 1

2n

∥∥∥∥∥V̂ −
p∑
j=1

Ȟj b̃j

∥∥∥∥∥
2

+

p∑
j=1

Jλnj
(‖b̃j‖)

 ,

where b̌ = (b̌T1 , . . . , b̌
T
p )T is the solution with orthonormalized groups of predictors. Then, the

solution b̌ can be easily transformed back to the original problem using b̂j = QjΛ
−1/2
j b̌j. Note

that ‖b̃j‖ =
√
bTj (ĤT

j Ĥj/n)bj = n−1/2‖Ĥjbj‖. Therefore, orthonormalizing the groups is also

equivalent to applying an L2 penalty on the scale of the linear predictor. As suggested in

Breheny and Huang (2015), we use λnj = λ(kn
∑mnj

l=1 ρ̂jl)
1/2, where λ is an unknown regularization

parameter, and the (kn
∑mnj

l=1 ρ̂jl)
1/2 term is used to normalize across groups of different sizes.

Let zj = n−1ȞT
j (V̂ − Ȟ−j b̃−j) be the unpenalized solution for the jth group of coefficients

b̃j, where Ȟ−j is the portion of Ȟ that remains after Ȟj is removed, and b̃−j denotes the

corresponding regression coefficients. As described in Wei and Zhu (2012) and Breheny and

Huang (2015), the group estimator of b̃j has the following closed form:

b̌j = F (zj, λnj, a)


S (zj, λnj) if ‖zj‖ ≤ 2λnj,

a−1
a−2S

(
zj,

aλnj

a−1

)
if 2λnj < ‖zj‖ ≤ aλnj,

zj if ‖zj‖ > aλnj,

(4.2)

where S(z, λ) = (1 − λ/‖z‖)+z is the multivariate soft-thresholding operator. Next, we briefly

describe the GCD algorithm. Denote r = V̂ −Ȟb̃. Then, we have zj = n−1ȞT
j (V̂ −Ȟ−j b̃−j) =

n−1ȞT
j r+ b̃j. Suppose that the initial estimate of b̃ is given, and is denoted b̌(0). Then, for any

given λ, at step j of iteration m, for j = 1, . . . , p, m = 0, 1, . . ., the following three calculations
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4.2 Tuning Parameters Selection15

are made until convergence:

(1) calculate zj = n−1ȞT
j r + b̌

(m)
j ,

(2) update b̌
(m+1)
j ← F (zj, λnj, a),

(3) update r ← r − Ȟj(b̌
(m+1)
j − b̌(m)

j ),

where λnj = λ
√
knmnj. The GCD algorithm possesses the descent property because it minimizes

the objection function with respect to b̃j at each update, meaning that the objective function

decreases with every iteration. We choose the initial values for this algorithm using a similar

approach to those in Breheny and Huang (2011) and Breheny and Huang (2015). Note that the

regularization parameter λ may vary from a maximum value λmax, for which all the penalized

coefficients are zero down to a minimum value λmin, at which the model becomes excessively

large. It is clear from (4.2) that λmax = max1≤j≤p{‖n−1ȞT
j V̂ ‖}. We choose these initial values

by starting at λmax with b̌(0) = 0, and proceeding toward λmin, using b̌ from the previous value of

λ as the initial value of b̃ for the next value of λ. The GCD algorithm can be implemented using

the R package grpreg, developed by (Breheny and Huang, 2015). Let b̌j be the final estimate

of b̃j. We then obtain the final estimate of bj as b̂j = QjΛ
−1/2
j b̌j, for j = 1, . . . , p.

4.2 Tuning Parameters Selection

To implement the proposed method, we need to choose the truncation parameters kn,mn1,

. . . ,mnp, and the regularization parameter λ. Several criteria, such as generalized cross-validation

(GCV, Lian, 2013), the Schwarz information criterion (SIC, Huang et al., 2016), and the ABIC
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4.2 Tuning Parameters Selection16

procedure proposed by Kong et al. (2016), can be used to select these tuning parameters simul-

taneously.

In practice, the computation for selecting all p + 2 tuning parameters simultaneously is

intensive. To reduce the computational burden, we adopt a three-stage method to select these

parameters. We choose the truncation parameter kn when the cumulative percentage of variance

explained (CPVE) of Y based on the first kn estimated FPCs exceeds a desired level (99% is the

recommended level); that is,
(∑kn

k=1 ŵk/
∑∞

k=1 ŵk

)
≥ 99%. In order to retain the information of

the functional predictors and fit the model simultaneously, we first select the initial parameters

m̃nj (j = 1, . . . , p) using the CPVE method, and then refine them using the AIC procedure

adopted in Kong et al. (2016). Given a set of values for kn,mn1, . . . ,mnp, we use the V -fold

cross-validation method to select the regularization parameter λ and obtain the index set of the

selected functional predictors. Specifically, let D denote the full data set, and randomly split D

into V subsets of roughly equal size, denoted as D1, . . . ,DV . The criterion is defined as

CV (λ) =
V∑
v=1

∑
i∈Dv

kn∑
k=1

(
η̂ik −

p∑
j=1

mnj∑
l=1

b̂
(−v)
jkl ξ̂ijl

)2

, (4.3)

where b̂
(−v)
jkl are obtained from the data set D −Dv. In this paper, we consider λ on a grid from

λmax = max1≤j≤p{‖n−1ȞT
j V̂ ‖} to λmin = 0.01λmax, with 100 equally spaced log-scaled grids,

and choose the optimal value of λ using five-fold cross-validation.

The detailed steps for selecting these tuning parameters are as follows:

(a) Choose the parameter kn and the initial truncation parameters m̃nj (j = 1, . . . , p) when the
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corresponding CPVEs exceed 99%. In other words, the selected kn and m̃nj (j = 1, . . . , p)

represent a sufficiently large number of FPCs that explain nearly all, say 99%, of the

variance in Y and Xj, respectively, for j = 1, . . . , p.

(b) Given the selected kn and m̃nj (j = 1, . . . , p), choose λ using five-fold cross-validation and

obtain the index set of the selected functional predictors, denoted by G ⊂ {1, 2, . . . , p}.

Then, refit the model and select the optimal mnj by minimizing

AIC (mnj : j ∈ G) = log RSS (mnj : j ∈ G) + 2n−1
∑
j∈G

mnj,

where

RSS (mnj : j ∈ G) =
n∑
i=1

∫
T

{
Yi(t)−

∑
j∈G

kn∑
k=1

mnj∑
l=1

b̂∗jklξ̂ijlφ̂k(t)

}2

dt,

with b̂∗jkl being the refitted values using the ordinary least squares method.

(c) Minimize (4.3) based on the selected kn, selected functional predictors, and optimal mnj to

get the optimal λ.

5. Simulation Studies

In this section, we conduct several Monte Carlo experiments to illustrate the finite-sample per-

formance of the proposed method. We set T = S = [0, 1]. Each response and predictor curve

is observed at 100 equally spaced points in their domains. The simulated data are generated

from model (2.1) with p = 4 functional predictors, and the error term ε(t) is simulated as a

mean-zero Gaussian process with covariance function Σε(t1, t2) = σ2ρ10|t1−t2|, where σ2 is the
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variance of ε(t), and ρ controls the correlation between ε(t1) and ε(t2), for all t1, t2 ∈ [0, 1]. We

use similar mechanisms to those in Lian (2013) to generate the functional predictors and bivari-

ate functional coefficients. For j = 1, . . . , 4, we take Wj(s) =
∑50

k=1 ξjkψk(s), where ξjk are i.i.d.

as N(0, 16(2k − 1)−2) for different j, ψ1(s) ≡ 1, and ψk(s) =
√

2 cos{(k − 1)πs}, for k ≥ 2. The

functional predictors are defined through the linear transformations

X1 = W1 + τ (W2 +W3) , X2 = W2 + τ (W1 +W3) ,

X3 = W3 + τ (W1 +W2) , X4 = W4,

where τ controls the strength of the dependence between the first three functional predictors, with

τ = 0 resulting in independent predictors. The corresponding bivariate functional coefficients

are

β1(t, s) =
4∑

k,l=1

b1,klψk(t)ψl(s), β2(t, s) =
50∑

k,l=1

b2,klψk(t)ψl(s),

and β3(t, s) = β4(t, s) = 0, where b1,kl = 0.1(k + l) and b2,kl = 2(−1)k+lk−1l−2.

We fix σ2 = 0.1 and consider three within-function correlation levels ρ = 0, 0.5, 0.8. When

ρ = 0, ε(t) is Gaussian white noise. When ρ is bigger, the auto-correlation in ε(t) is stronger

and the sample curve is smoother. We consider sample sizes n = 100, 200, 400 and set τ = 0 or

0.5. For each scenario, we use 100 Monte Carlo runs for the model assessment. In all numerical

experiments, the proposed estimator is implemented using the R package grpreg (https://cran.r-

project.org/package=grpreg), and the tuning parameters of the proposed method are selected

using the procedure presented in Section 4.2. All integrations required in the simulations are

approximated by the Riemann sums. To evaluate the performance of the proposed method, we
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report the positive selection rate (PSR) and the noncausal selection rate (NSR), as advocated

by Wang et al. (2013), as well as the average and standard deviation of the integrated squared

error (ISE),

ISE =

p∑
j=1

∫
T

∫
S
{β̂j(t, s)− βj(t, s)}2dtds,

over 100 simulation replicates, where the PSR is the proportion of causal features selected by

one method in all causal features, and the NSR is the average, restricted only to the true

zero coefficient functions. Let {X∗ij, Y ∗i , j = 1, . . . , 4, i = 1, . . . , N} be an independent test set

generated from the same model with sample size N = 200 for each Monte Carlo replicate. We

assess the prediction accuracy using the relative prediction error (RPE),

RPE =
1

N

N∑
i=1

∫
T {Ŷ

∗
i (t)− Y ∗i (t)}2dt∫
T {Y

∗
i (t)}2dt

,

where Ŷ ∗i (t) =
∑p

j=1

∫
S β̂j(t, s)X

∗
ij(s)ds, with β̂j(t, s) estimated from the corresponding training

sample.

Table 1 presents the simulation results when varying the truncation parameter mnj ≡ mn

from 1 to 16 in the scenario with sample size n = 200, correlation level ρ = 0.5, and τ = 0.5

over 100 simulation replicates, where the other tuning parameter kn is selected using the CPVE

method, and λ is chosen using five-fold cross-validation. The results show that the selection

of the functional predictors is quite accurate and stable when mn reaches a certain level. The

ISE achieves a minimum when mn = 6, and deteriorates as mn depart from this value. The

RPE keeps decreasing until mn reaches seven and appears more stable for a wide range of mn
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beyond the optimal level. Using the different truncation parameters mnj selected by the proposed

method to fit the model yields similar results to those at the optimal RPE. This implies that

the proposed method is not sensitive to the values of mnj around the optimal level. Moreover,

we examine the computational efficiency of the proposed method with the tuning parameters

selected using the procedure presented in Section 4.2. The average computing time based on 100

simulation replicates for the case when ρ = 0.5, τ = 0.5, and n = 200 is around 50 seconds on a

personal laptop with a 3.4 GHz Intel Core i5-7500 CPU.

For comparison, we also apply the least squares method without regularization as the base-

line, and report the corresponding results in the same table. The truncation parameters required

in this method are selected using the AIC criterion. Table 2 summarizes the simulation results

for the cases ρ = 0, 0.5, 0.8 and τ = 0, 0.5 with sample sizes of n = 100, 200, 400. Several obser-

vations can be made from the table. First, there is a general tendency for the ISE and the RPE

to decrease as the sample size n increases. At the same time, the RPE tends to be more stable

than the ISE. Second, the within-function correlation level in ε(t) has a significant effect on the

estimation errors and on the noncausal selection rate. The proposed method tends to be more

accurate when the correlation level ρ is low. In particular, for the Gaussian white noise case

where ρ = 0, the proposed method appears to be the best. Third, the estimation errors become

larger when the correlations between different functional predictors increase. This phenomenon

is more evident when the within-function correlation level ρ is strong. Finally, the estimation

errors and the RPEs of the proposed method are obviously smaller than those of the least squares
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method without penalization. This finding indicates that the proposed method is efficient, and

can enhance the predictability and interpretability of the results when irrelevant predictors exist

in the model. We also performed an additional simulation study when the function-on-function

linear model has 20 functional predictors. A detailed discussion and the results are presented in

the Supplementary Material.

6. Application

The proposed method is applied to analyze Hawaii ocean data, available from the Hawaii o-

cean time-series program. This program has been making repeated observations of various hy-

drographic, chemical, and biological characteristics of the water column at a station north of

Oahu, Hawaii, since October 1988. In this study, we collect a portion of the data in the data

set (http://hahana.soest.hawaii.edu/hot/hot-dogs/cextraction.html) of this program for the 20

years from January 1, 1999, to December 31, 2018. The data include five functional variables:

temperature (in the international temperature scale of 1990 (ITS-90)), oxygen concentration

(umol/kg), potential density (kg/m3), salinity (in the practical salinity scale of 1978 (PSS-78)),

and chloropigment (ug/l), all of which were measured every 2 m between 0 and 200 m below the

sea surface. After removing samples with missing measurements and the observations measured

at 0 m (sea surface), a total of 200 samples are included in our analysis; see Figure 1.

We view these five variables as functions of depth, and investigate the association between

the temperature (Y (t)) and the other four functional variables, oxygen (X1(s)), potential density
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Figure 1: The 200 sample curves for five functional variables, temperature, oxygen, potential density, salinity,

and chloropigment, on the depth domain [2, 200] below the sea surface.

(X2(s)), salinity (X3(s)), and chloropigment (X4(s)). To eliminate the effect of the intercept, we

centralize the functional response and four functional predictors to have mean zero, and apply

the multiple function-on-function linear regression in (2.1) with p = 4 to the data set. We fit

the model using the proposed method. The tuning parameters are chosen using the procedure

described in Section 4.2.

Our method selects potential density and salinity as two significant functional predictors with

nonzero coefficients; and the estimated bivariate functional coefficients are displayed in Figure
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2. The first heatmap in Figure 2 shows that β̂2(t, s) takes negative values around the diagonal

line (t = s), and takes large or positive values when |t − s| is relatively large. This implies

that there exists a strong negative influence of potential density on temperature. Similarly, the

second heatmap in Figure 2 implies that temperature is positively associated with salinity for

the region when |t− s| is less than 25 m. Moreover, we see that these associations are strongest

near a depth of 200 m (t = s = 200). It is known that 200 m below the sea surface is the depth

that separates the epipelagic zone (the layer between 0 m and 200 m below the sea surface)

from the mesopelagic zone (depths between 200 m and 1000 m below the sea surface). The

epipelagic zone is also referred to as the sunlight zone, where most of the visible light exists. In

constrast, very little light reaches the mesopelagic zone, which weakens the impact of sunlight

on the temperature.
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Figure 2: The estimated coefficient functions β̂2(t, s) and β̂3(t, s) for two selected functional predictors, Potential

Density (X2(s)) and Salinity (X3(s)), in the estimated model for the Hawaii ocean data set.
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To assess our models and measure the goodness of fit, we calculate the average functional

R2, as in Harezlak et al. (2007). Given the fitted values Ŷi(t), the R2 is formulated as

R2
ave =

1

T

∫ T

0

R2(t)dt, where R2(t) = 1−
∑n

i=1(Yi(t)− Ŷi(t))2∑n
i=1(Yi(t))

2
.

To better understand the effects of the selected functional predictors, we first fit the model using

only the selected functional predictors, obtaining R2
ave = 0.98968. Adding oxygen (X1(s)) yields

R2
ave = 0.98969. Adding both oxygen (X1(s)) and chloropigment X4(s) leads to R2

ave = 0.98972.

These results imply that including oxygen and chloropigment does not obviously enhance the in-

terpretability of the variability in the temperature (Y (t)). In other words, oxygen and chloropig-

ment have no significant effects on temperature in these data. In addition, R2
ave of the selected

model is very close to one, meaning that it is enough to explain the temperature using only the

selected predictors, potential density and salinity.

Finally, we illustrate the prediction accuracy by using the RPE defined in Section 5. For

comparison, we calculate the RPEs for the selected model including only potential density and

salinity, the marginal model containing only oxygen and chloropigment, and the full model

involving all four functional predictors. We repeat the following procedure 200 times to calculate

the averages and standard deviations of the RPEs corresponding to these three models. In

each repetition, we randomly split the 200 samples into a training set with 140 samples and a

test set with 60 samples. We estimate the bivariate functional coefficients using the training

set, and then conduct predictions for the responses in the test set. The average and standard

deviation of the RPEs over 200 repetitions are 1.599 × 10−2 and 0.234 × 10−2, respectively,
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for the selected model, 61.7 × 10−2 and 12.5 × 10−2, respectively, for the marginal model, and

1.606 × 10−2 and 0.238 × 10−2, respectively, for the full model. The lowest RPE indicates

that the selected model based on the proposed procedure has the best prediction performance.

In contrast, the marginal model performs badly in terms of prediction. This implies that it

would be inappropriate to predict the temperature using only the oxygen and chloropigment

levels. Overall, the temperature variables in the data set are well predicted when using the two

functional predictors, potential density and salinity, which are selected by the proposed method.

In other words, our method is feasible for analyzing this data set and exhibits good performance.

7. Conclusion

We develop a variable selection procedure for multiple function-on-function linear models using

the FPCA-based estimation method and the group SCAD regularization. Note that our method

employs, but is not limited to the group SCAD regularization idea. Other regularization proce-

dures, including the group LASSO (Yuan and Lin, 2006) and group MCP (Huang et al., 2012),

can also be adapted to our method.

A computational algorithm based on the group coordinate descent is provided for imple-

menting the proposed method. FPCA-based estimators for the bivariate functional coefficients

in the regression model are constructed. With some mild conditions, we show that the resulting

estimators are consistent and exhibit sparsity. To achieve high efficiency, we present a data-

driven procedure for choosing the tuning parameters of the proposed method. Simulation results
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show that the proposed method is highly effective in identifying the relevant functional predic-

tors and in estimating the bivariate functional coefficients simultaneously. A real-data example

demonstrates the effectiveness of our method.

We have examined the variable selection problem for a function-on-function linear regression

with a fixed number of functional predictors. Whether the proposed method and its associ-

ated theoretical properties hold for a regression in which the number of functional predictors

diverges with the sample size is unclear, and warrants further investigation. Variable selection

for function-on-function quadratic regression models and regressions with both functional and

scalar predictors are additional interesting topics for future research.

Supplementary Material

The online Supplementary Material includes additional simulation studies.
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Appendix: Proof for Theorem 1.

For convenience, we set mnj ≡ mn for all j ∈ {1, . . . , p} in the following proofs. Let V =

(η11, . . . , η1kn , . . . , ηn1, . . . , ηnkn)T and ε = (ε11, . . . , ε1kn , . . . , εn1, . . . , εnkn)T be two nkn×1 vectors.

To facilitate the theoretical analysis, we adopt a strategy similar to Kong et al. (2016) that

reparameterizes bjkl by writing θjkl = ρ
1/2
jl bjkl, so that the FPC scores serving as predictor

variables are on a common scale of variability. This reparameterization is used only for technical

derivations and does not appear in the estimation procedure. Let Aj = diag
(
ρ
1/2
j1 , . . . , ρ

1/2
jmn

)
,

Žj = ẐjA
−1
j , Ňj = Žj ⊗ Ikn , Ž = (Ž1, . . . , Žp), Ň = (Ň1, . . . , Ňp), θj = (Aj ⊗ Ikn)bj and

θ = (θT1 , . . . ,θ
T
p )T . The minimization of (4.1) is equivalent to minimizing

Ln(θ) = ‖V̂ − Ňθ‖2 + 2n

p∑
j=1

Jλnj
(‖bj‖).

Given univariate functions f , g and a bivariate function G, write ‖f‖,
∫
fg (or 〈f, g〉), f ⊗ g

and |||G||| for {
∫
T f

2(t)dt}1/2,
∫
T f(t)g(t)dt, f(t)g(s) and {

∫
S

∫
T G

2(t, s)dtds}1/2, respectively. To

prove Theorem 1, we first state some useful lemmas.

Lemma 1 Under conditions (C1), (C2) and (C4), for j, j1, j2 = 1, . . . , p, l, l1, l2 = 1, . . . ,mn,

k = 1, . . . , kn and i = 1, . . . , n, we have

|ξ̂ijl − ξijl|2ρ−1jl = Op

(
n−1lα2+2

)
, |η̂ik − ηik|2 = Op

(
n−1k2

)
,∣∣∣∣∣ 1n

n∑
i=1

{
η̂ikξ̂ijl − E(ηikξijl)

}
ρ
−1/2
jl

∣∣∣∣∣ = Op

(
n−1/2k + n−1/2lα2/2+1

)
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and ∣∣∣∣∣ 1n
n∑
i=1

{
ξ̂ij1l1 ξ̂ij2l2 − E(ξij1l1ξij2l2)

}
(ρj1l1ρj2l2)

−1/2

∣∣∣∣∣ = Op(n
−1/2l

α2/2+1
1 + n−1/2l

α2/2+1
2 ).

Proof of Lemma 1. Note that ψ̂jl is the eigenfunction of ĈXj
, ψjl is the eigenfunction of

CXj
. For any fixed j, we obtain that |||ĈXj

− CXj
||| = Op

(
n−1/2

)
by Theorem 2.5 of Horváth and

Kokoszka (2012). Note that ‖ψ̂jl−ψjl‖2 = Op (n−1l2) (see, e.g., Kong et al., 2016; Imaizumi and

Kato, 2018). We have

|ξ̂ijl − ξijl|2ρ−1jl =

∣∣∣∣∫ Xij

(
ψ̂jl − ψjl

)∣∣∣∣2 ρ−1jl ≤ ‖Xij‖2‖ψ̂jl − ψjl‖2ρ−1jl = Op

(
n−1lα2+2

)
uniformly for l = 1, . . . ,mn. By condition (C1), it holds that

E

(
1

n

n∑
i=1

{ξij1l1ξij2l2 − E(ξij1l1ξij2l2)} (ρj1l1ρj2l2)
−1/2

)2

= n−1E
[
{ξij1l1ξij2l2 − E(ξij1l1ξij2l2)}

2 (ρj1l1ρj2l2)
−1]

≤ n−1E
(
ξ2ij1l1ρ

−1
j1l1
ξ2ij2l2ρ

−1
j2l2

)
≤ n−1

{
E(ξ4ij1l1ρ

−2
j1l1

)E(ξ4ij2l2ρ
−2
j2l2

)
}1/2

≤ Cn−1.

Therefore, we have∣∣∣∣∣ 1n
n∑
i=1

{ξij1l1ξij2l2 − E(ξij1l1ξij2l2)} (ρj1l1ρj2l2)
−1/2

∣∣∣∣∣ = Op(n
−1/2).
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Note that ∣∣∣∣∣ 1n
n∑
i=1

(
ξ̂ij1l1 ξ̂ij2l2 − ξij1l1ξij2l2

)
(ρj1l1ρj2l2)

−1/2

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

ξ̂ij1l1

(
ξ̂ij2l2 − ξij2l2

)
(ρj1l1ρj2l2)

−1/2

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

ξij2l2

(
ξ̂ij1l1 − ξij1l1

)
(ρj1l1ρj2l2)

−1/2

∣∣∣∣∣
≤ 1

n

(
n∑
i=1

ξ̂2ij1l1ρ
−1
j1l1

)1/2{ n∑
i=1

(
ξ̂ij2l2 − ξij2l2

)2
ρ−1j2l2

}1/2

+
1

n

(
n∑
i=1

ξ2ij2l2ρ
−1
j2l2

)1/2{ n∑
i=1

(
ξ̂ij1l1 − ξij1l1

)2
ρ−1j1l1

}1/2

.

Since E(
∑n

i=1 ξ
2
ij2l2

ρ−1j2l2) = n for any l2 = 1, . . . ,mn, we have
∑n

i=1 ξ
2
ij2l2

ρ−1j2l2 = Op(n) uni-

formly for l2 = 1, . . . ,mn. Moreover,

n∑
i=1

ξ̂2ij1l1ρ
−1
j1l1

≤ 2
n∑
i=1

(
ξ̂ij1l1 − ξij1l1

)2
ρ−1j1l1 + 2

n∑
i=1

ξ2ij1l1ρ
−1
j1l1

= Op(l
α2+2
1 + n) = Op(n)

uniformly for l1 = 1, . . . ,mn. Then, we have∣∣∣∣∣ 1n
n∑
i=1

(
ξ̂ij1l1 ξ̂ij2l2 − ξij1l1ξij2l2

)
(ρj1l1ρj2l2)

−1/2

∣∣∣∣∣ = Op(l
α2/2+1
1 n−1/2 + l

α2/2+1
2 n−1/2).
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It then follows that∣∣∣∣∣ 1n
n∑
i=1

{
ξ̂ij1l1 ξ̂ij2l2 − E(ξij1l1ξij2l2)

}
(ρj1l1ρj2l2)

−1/2

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

(
ξ̂ij1l1 ξ̂ij2l2 − ξij1l1ξij2l2

)
(ρj1l1ρj2l2)

−1/2

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

{ξij1l1ξij2l2 − E(ξij1l1ξij2l2)} (ρj1l1ρj2l2)
−1/2

∣∣∣∣∣
= Op(l

α2/2+1
1 n−1/2 + l

α2/2+1
2 n−1/2),

uniformly for l1, l2 = 1, . . . ,mn. Similarly, we can prove that |η̂ik − ηik|2 = Op (n−1k2) and∣∣∣n−1∑n
i=1{η̂ikξ̂ijl − E(ηikξijl)}ρ−1/2jl

∣∣∣ = Op

(
n−1/2k + n−1/2lα2/2+1

)
uniformly for k = 1, . . . , kn

and l = 1, . . . ,mn.

Denote the minimum and maximum eigenvalues of a symmetric matrix A by ρmin(A) and

ρmax(A). Let ξjl be the lth FPC score of the jth functional predictor and define the pmn×1 vector

Z̃ = (ξ11ρ
−1/2
11 , . . . , ξ1mnρ

−1/2
1mn

, . . . , ξp1ρ
−1/2
p1 , . . . , ξpmnρ

−1/2
pmn )T to combine all functional predictors.

Let U1 = E(Z̃Z̃T ), H̃ = Z̃ ⊗ Ikn and U2 = E(H̃H̃T ). Denote the true vector value of

b =
(
bT1 , . . . , b

T
p

)T
by b0 =

(
bT01, . . . , b

T
0p

)T
, and the true value of θ = (θT1 , . . . ,θ

T
p )T by θ0 =

(θT01, . . . ,θ
T
0p)

T . Let P = Ň (ŇTŇ )−1ŇT , ∆1 = P (V −Ňθ0) and ∆2 = P (V̂ −Ňθ0). Lemma

2 characterizes the eigenvalues of the matrix ŇTŇ/n, and Lemma 3 concerns the asymptotic

order of ∆2 which is handled in the proofs of our main theorems

Lemma 2 Under conditions (C1), (C2), (C4) and (C6), we have |ρmin(ŇTŇ/n)−ρmin(U2)| =

op(1) and |ρmax(Ň
TŇ/n)− ρmax(U2)| = op(1).

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0473



31

Proof of Lemma 2. Let ‖·‖1 denote the L1 norm for a matrix. It is obvious that |ρmin(ŽT Ž/n)−

ρmin(U1)| ≤ ‖ŽT Ž/n−U1‖1. By Lemma 1, we have

‖ŽT Ž/n−U1‖1 ≤ Op

{
mn∑
l1=1

(
n−1/2l

α2/2+1
1 + n−1/2mα2/2+1

n

)}
= Op(m

α2/2+2
n n−1/2).

Hence, it follows that

|ρmin(ŽT Ž/n)− ρmin(U1)| = Op(m
α2/2+2
n n−1/2).

Note that ŇTŇ = (Ž ⊗ Ikn)T (Ž ⊗ Ikn) = (ŽT Ž) ⊗ Ikn and U2 = U1 ⊗ Ikn , we then have

ρmin(ŇTŇ/n) = ρmin(ŽT Ž/n) and ρmin(U2) = ρmin(U1). Therefore, we conclude that

|ρmin(ŇTŇ/n)− ρmin(U2)| = Op(m
α2/2+2
n n−1/2) = op(1).

by condition (C4). Similarly, we can obtain that

|ρmax(Ň
TŇ/n)− ρmax(U2)| = op(1).

Lemma 3 Under conditions (C1)–(C4) and (C6), we have ‖∆2‖2 = Op(r
2
n), where r2n = mnkn+

nm−α2−2γ2+1
n + k3n.

Proof of Lemma 3. By condition (C6) and Lemma 2, we know that ŇTŇ is invertible, hence

P exists. We first explore the asymptotic order for ∆1. Observe that

∆1 = P (V − Ňθ0) = P {ε+ ν + (N − Ň )θ0},
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where ε = (ε11, . . . , ε1kn , . . . , εn1, . . . , εnkn)T and ν = (ν11, . . . , ν1kn , . . . , νn1, . . . , νnkn)T are two

nkn× 1 vectors with νik =
∑p

j=1

∑∞
l=mn+1 ξijlb0jkl, N is the matrix similar to Ň , where ξ̂ijlρ

−1/2
jl

is replace by ξijlρ
−1/2
jl .

For Pε, we have E‖Pε‖2 = E(εTPε) = E{E(εTPε|X)} = E[tr{PE(εεT )}]. By condi-

tion (C1) and the orthonormality of φk, it follows that E(ε2ik) = E〈εi, φk〉2 ≤ E‖εi‖2 ≤ C and

E(εi1k1εi2k2) = 0 for i1 6= i2 or (and) k1 6= k2, i1, i2 = 1, . . . , n and k1, k2 = 1, . . . , kn. Then, we

obtain that E‖Pε‖2 ≤ Ctr(P ) = O(pmnkn), hence ‖Pε‖2 = Op(mnkn).

For P (N − Ň )θ0, by Lemma 1 and condition (C3), we have

‖P (N − Ň )θ0‖2 ≤ ‖(N − Ň )θ0‖2 =
n∑
i=1

kn∑
k=1

{
p∑
j=1

mn∑
l=1

(ξijl − ξ̂ijl)b0jkl

}2

≤ O

 n∑
i=1

kn∑
k=1

p∑
j=1

{
mn∑
l=1

(ξijl − ξ̂ijl)b0jkl

}2
 ≤ O

{
n∑
i=1

kn∑
k=1

p∑
j=1

mn

mn∑
l=1

(ξijl − ξ̂ijl)2b20jkl

}

≤ O

{
n∑
i=1

kn∑
k=1

p∑
j=1

Op

(
mn

mn∑
l=1

n−1k−2γ1l2−2γ2

)}
= Op(mn).

For Pν, it follows that

E‖Pν‖2 ≤ E‖ν‖2 = E


n∑
i=1

kn∑
k=1

(
p∑
j=1

∞∑
l=mn+1

ξijlb0jkl

)2


≤ O


n∑
i=1

kn∑
k=1

p∑
j=1

E

(
∞∑

l=mn+1

ξijlb0jkl

)2
 = O

{
n∑
i=1

kn∑
k=1

p∑
j=1

Var

(
∞∑

l=mn+1

ξijlb0jkl

)}

= O

(
n∑
i=1

kn∑
k=1

p∑
j=1

∞∑
l=mn+1

ρjlb
2
0jkl

)
≤ O

(
n∑
i=1

kn∑
k=1

p∑
j=1

∞∑
l=mn+1

k−2γ1l−α2−2γ2

)

= O(nm−α2−2γ2+1
n ),
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where the last two lines holds by conditions (C2) and (C3). Thus, we have ‖Pν‖2 = Op(nm
−α2−2γ2+1
n ).

Then, we obtain that

‖∆1‖2 ≤ O{‖Pε‖2 + ‖P (N − Ň )θ0‖2 + ‖Pν‖2} = Op(mnkn + nm−α2−2γ2+1
n ).

Moreover, by Lemma 1, we can prove that

‖∆2 −∆1‖2 = ‖P (V̂ − Ňθ0)− P (V − Ňθ0)‖2 ≤ ‖V̂ − V ‖2 = Op(k
3
n).

Hence, it follows that

‖∆2‖2 = ‖∆2 −∆1 + ∆1‖2 ≤ 2‖∆2 −∆1‖2 + 2‖∆1‖2 = Op(r
2
n).

Lemma 4 Under conditions (C1)–(C6), let r2n = mnkn + nm−α2−2γ2+1
n + k3n, we have

(i) there exists a local minimizer θ̂ of Ln(θ) such that ‖θ̂ − θ0‖2 = Op(n
−1r2n);

(ii) Pr(θ̂j = 0, j = d+ 1, . . . , p)→ 1.

Proof of Lemma 4 (i). Since only the first d functional predictors are significant, we constrain

Ln (θ) on the subspace {θ ∈ Rpknmn : θj = 0, j = d+ 1, . . . , p} and prove the consistency in this

subspace. Let αn = rnn
−1/2, it suffices to show that for any given δ > 0, there exists a large

constant C such that

Pr

{
inf
‖u‖=C

Ln (θ0 + αnu) > Ln (θ0)

}
> 1− δ, (A.1)

where u = (uT1 , . . . ,u
T
p )T is a pknmn × 1 vector. This implies with probability at least 1 − δ

that there exists a local minimizer θ̂ of Ln (θ) in the ball {θ0 + αnu : ‖u‖ ≤ C} such that
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‖θ̂ − θ0‖ = Op(αn). Under condition (C4), it follows that αnρ
−1/2
jmn

≤ O(rnm
α2/2
n n−1/2) = o(1).

With Jλnj
(0) = 0, applying Taylor expansion, we have

Ln (θ0 + αnu)− Ln (θ0)

= ‖V̂ − Ň (θ0 + αnu)‖2 − ‖V̂ − Ňθ0‖2

+ 2n

p∑
j=1

{Jλnj
(‖b0j + αn(Aj ⊗ Ikn)−1uj‖)− Jλnj

(‖b0j‖)}

≥ ‖αnŇu‖2 − 2αn(V̂ − Ňθ0)TŇu

+ 2n
d∑
j=1

{Jλnj
(‖b0j + αn(Aj ⊗ Ikn)−1uj‖)− Jλnj

(‖b0j‖)}

= ‖αnŇu‖2 − 2αn∆
T
2 Ňu

+ 2n
d∑
j=1

{Jλnj
(‖b0j + αn(Aj ⊗ Ikn)−1uj‖)− Jλnj

(‖b0j‖)}

≥ nα2
nρmin(ŇTŇ/n)‖u‖2 − 2n1/2αn‖∆2‖ρ1/2max(Ň

TŇ/n)‖u‖

+ 2n
d∑
j=1

{J ′λnj
(‖b0j‖)αn‖(Aj ⊗ Ikn)−1uj‖

+ J ′′λnj
(‖b0j‖)α2

n‖(Aj ⊗ Ikn)−1uj‖2(1 + o(1))}

≥ nα2
nC1‖u‖2 − n1/2αnC2‖∆2‖‖u‖

+ 2n
d∑
j=1

{J ′λnj
(‖b0j‖)αn‖(Aj ⊗ Ikn)−1uj‖

+ J ′′λnj
(‖b0j‖)α2

n‖(Aj ⊗ Ikn)−1uj‖2(1 + o(1))}, (A.2)

where C1 and C2 are some positive constants, and the last inequality follows by Lemma 2 and
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condition (C6). By Lemma 3, we know that ‖∆2‖ = Op(n
1/2αn). Then, the second term on

the right-hand side of (A.2) is on the order Op(nα
2
n‖u‖). By choosing sufficiently large C, the

first term nα2
nC1‖u‖2 dominates the second term n1/2αnC2‖∆2‖‖u‖ in ‖u‖ = C. According to

Fan and Li (2001), we know that the SCAD penalty satisfies J ′λnj
(‖b0j‖) = J ′′λnj

(‖b0j‖) = 0 for

all j = 1, . . . , d since ‖b0j‖ ≥ C3 for some constant C3. Thus, the third term in (A.2) is also

dominated by the first term. Hence, with sufficiently large C, we have Ln (θ0 + αnu) > Ln (θ0),

which implies that there exists a local minimizer θ̂ of Ln(θ) such that ‖θ̂ − θ0‖ = Op(αn).

Proof of Lemma 4 (ii). Let θ(1) =
(
θT1 , . . . ,θ

T
d

)T
and θ(2) =

(
θTd+1, . . . ,θ

T
p

)T
. Then,

θ =
(
θ(1)T ,θ(2)T

)T
, θ̂ =

(
θ̂(1)T , θ̂(2)T

)T
, and the true coefficient vector is θ0 =

(
θ
(1)T
0 ,θ

(2)T
0

)T
with θ

(2)
0 = 0. We now prove that θ̂(2) = 0 with probability 1. It is sufficient to show that with

probability tending to 1 as n→∞, for any given θ(1) satisfying ‖θ(1) − θ(1)0 ‖ = Op(αn) and for

any constant C,

Ln
{(
θ(1)T ,0T

)T}
= min
‖θ(2)‖≤Cαn

Ln
{(
θ(1)T ,θ(2)T

)T}
. (A.3)
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Note that

Ln
{(
θ(1)T ,0T

)T}− Ln {(θ(1)T ,θ(2)T )T}
=
[
Ln
{

(θ(1)T ,0T )T
}
− Ln

{
(θ

(1)T
0 ,0T )T

}]
−
[
Ln
{

(θ(1)T ,θ(2)T )T
}
− Ln

{
(θ

(1)T
0 ,0T )T

}]
=

∥∥∥∥Ň (
(θ(1) − θ(1)0 )T ,0T

)T∥∥∥∥2 − 2
(
V̂ − Ň (θ

(1)T
0 ,0T )T

)T
Ň
(

(θ(1) − θ(1)0 )T ,0T
)T

−
∥∥∥∥Ň (

(θ(1) − θ(1)0 )T ,θ(2)T
)T∥∥∥∥2 + 2

(
V̂ − Ň (θ

(1)T
0 ,0T )T

)T
Ň
(

(θ(1) − θ(1)0 )T ,θ(2)T
)T

−2n

p∑
j=d+1

Jλnj
(‖bj‖)

=

∥∥∥∥Ň (
(θ(1) − θ(1)0 )T ,0T

)T∥∥∥∥2 − ∥∥∥∥Ň (
(θ(1) − θ(1)0 )T ,θ(2)T

)T∥∥∥∥2
+2
(
V̂ − Ň (θ

(1)T
0 ,0T )T

)T
Ň
(
0T ,θ(2)T

)T − 2n

p∑
j=d+1

Jλnj
(‖bj‖)

=

∥∥∥∥Ň (
(θ(1) − θ(1)0 )T ,0T

)T∥∥∥∥2 − ∥∥∥∥Ň (
(θ(1) − θ(1)0 )T ,θ(2)T

)T∥∥∥∥2
+2∆T

2 Ň
(
0T ,θ(2)T

)T − 2n

p∑
j=d+1

Jλnj
(‖bj‖)

≤ nρmax(Ň
TŇ/n)

∥∥∥((θ(1) − θ(1)0 )T ,0T
)∥∥∥2 − nρmin(ŇTŇ/n)‖θ − θ0‖2

+2n1/2‖∆2‖ρ1/2max(Ň
TŇ/n)‖(0T ,θ(2)T )‖ − 2n

p∑
j=d+1

Jλnj
(‖bj‖), (A.4)

where the last inequality holds by Cauchy-Schwarz inequality. By Lemma 2, Lemma 3, condition

(C6) and ‖θ − θ0‖ = Op(αn), we know that the first, second and third terms on the right-hand

side of (A.4) are on the order Op(nα
2
n). By conditions (C2), (C5) and ‖θ(2)‖ ≤ Cαn, we know

that for all j ∈ {d + 1, . . . , p}, ‖bj‖ = ‖(Aj ⊗ Ikn)−1θj‖ = O(m
α2/2
n αn) = o(λnj), and then

n
∑p

j=d+1 Jλnj
(‖bj‖) = (

∑p
j=d+1 nλnj‖bj‖){1 + o(1)}. Since λnj/(m

α2/2
n αn)→∞, it follows that
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nλnj‖bj‖ ≥ nm
α2/2
n αn‖θj‖{λnj/(mα2/2

n αn)} is of higher order than nα2
n, which implies that the

last term on the right-hand side of (A.4) dominates the first, second and third terms on the

right-hand side of (A.4). Hence, we have Ln{(θ(1)T ,0T )T} < Ln{(θ(1)T ,θ(2)T )T} for any given

‖θ(2)‖ ≤ Cαn and large n. Combining with the proof of part (i), (A.3) holds. Therefore, we

have θ̂(2) = 0 with probability tending to 1.

Now, we prove the main theorem.

Proof of Theorem 1. For part (a), for j = 1, . . . , p, the definitions of β̂j and β0j yield that

‖β̂j − β0j‖2 =

∥∥∥∥∥
kn∑
k=1

mn∑
l=1

b̂jklφ̂k ⊗ ψ̂jl −
∞∑
k=1

∞∑
l=1

b0jklφk ⊗ ψjl

∥∥∥∥∥
2

=

∥∥∥∥∥
kn∑
k=1

mn∑
l=1

(
b̂jkl − b0jkl

)
φ̂k ⊗ ψ̂jl +

kn∑
k=1

mn∑
l=1

b0jkl

(
φ̂k ⊗ ψ̂jl − φk ⊗ ψjl

)

−
kn∑
k=1

∞∑
l=mn+1

b0jklφk ⊗ ψjl −
∞∑

k=kn+1

∞∑
l=1

b0jklφk ⊗ ψjl

∥∥∥∥∥
2

≤ 4
kn∑
k=1

mn∑
l=1

(
b̂jkl − b0jkl

)2
+ 4

∥∥∥∥∥
kn∑
k=1

mn∑
l=1

b0jkl

(
φ̂k ⊗ ψ̂jl − φk ⊗ ψjl

)∥∥∥∥∥
2

+ 4
kn∑
k=1

∞∑
l=mn+1

b20jkl + 4
∞∑

k=kn+1

∞∑
l=1

b20jkl

, 4I1 + 4I2 + 4I3 + 4I4.

Given b̂j = (Aj ⊗ Ikn)−1θ̂j and b0j = (Aj ⊗ Ikn)−1θ0j, by condition (C4) and the results in

Lemma 4, it follows that I1 = ‖b̂j − b0j‖2 = Op(m
α2+1
n knn

−1 +m−2γ2+1
n + n−1k3nm

α2
n ). Note that

‖φ̂k ⊗ ψ̂jl − φk ⊗ ψjl‖2 = ‖φ̂k ⊗ (ψ̂jl − ψjl) + (φ̂k − φk)⊗ ψjl‖2

≤ 2‖ψ̂jl − ψjl‖2 + ‖φ̂k − φk‖2.
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It holds that ‖φ̂k − φk‖ = Op(n
−1/2k) and ‖ψ̂jl − ψjl‖ = Op(n

−1/2l) (see, e.g., Kong et al., 2016;

Imaizumi and Kato, 2018). Then, by Cauchy-Schwarz inequality, we have

I2 =

∫
T

∫
S

{
kn∑
k=1

mn∑
l=1

b0jkl

(
φ̂k(t)ψ̂jl(s)− φk(t)ψjl(s)

)}2

dsdt

≤ mnkn

kn∑
k=1

mn∑
l=1

b20jkl

∥∥∥φ̂k ⊗ ψ̂jl − φk ⊗ ψjl∥∥∥2
≤ Op

{
mnkn

kn∑
k=1

mn∑
l=1

k−2γ1l−2γ2
(
k2n−1 + l2n−1

)}

= Op(mnknn
−1),

where the last line holds because γ1 > 3/2 and γ2 > 3/2 by condition (C3).

We can deduce that

I3 ≤ O

(
kn∑
k=1

∞∑
l=mn+1

k−2γ1l−2γ2

)
= O(m−2γ2+1

n ).

Similarly, we obtain I4 = O(k−2γ1+1
n ). Hence, for j = 1, . . . , p, we conclude that ‖β̂j − β0j‖2 =

Op(m
α2+1
n knn

−1+k−2γ1+1
n +m−2γ2+1

n +k3nm
α2
n n

−1) = op(1) by condition (C4). Moreover, it follows

by Lemma 4 that part (b) holds. This completes the proof of Theorem 1.
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Table 1: The positive selection rate (PSR), noncausal selection rate (NSR), and averages and

standard deviations (in parentheses) of the integrated squared error (ISE) and the relative predic-

tion error (RPE) when varying the truncation parameter mnj ≡ mn from 1 to 16 in the scenario

with sample size n = 200, correlation level ρ = 0.5, and τ = 0.5 over 100 simulation replicates.

Tunemnj
indicates that the tuning parameter mnj is chosen using the proposed procedure.

mn PSR NSR ISE RPE

1 0.89 0.60 8.9899 (1.0935) 1.0708 (0.2716)

2 1.00 0.65 1.8192 (0.9301) 0.3254 (0.1353)

3 1.00 0.79 0.6726 (0.1941) 0.1232 (0.0544)

4 1.00 0.96 0.0988 (0.0432) 0.0381 (0.0090)

5 1.00 0.98 0.0778 (0.0258) 0.0355 (0.0074)

6 1.00 0.97 0.0703 (0.0192) 0.0348 (0.0070)

7 1.00 0.96 0.0725 (0.0186) 0.0347 (0.0072)

8 1.00 0.95 0.0802 (0.0206) 0.0347 (0.0072)

9 1.00 0.91 0.0940 (0.0275) 0.0349 (0.0071)

12 1.00 0.91 0.1651 (0.0496) 0.0354 (0.0072)

16 1.00 0.91 0.3447 (0.0937) 0.0361 (0.0073)

Tunemnj
1.00 0.99 0.0693 (0.0187) 0.0347 (0.0071)
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Table 2: The positive selection rate (PSR), noncausal selection rate (NSR), and averages and

standard deviations (in parentheses) of the integrated squared error (ISE) and the relative predic-

tion error (RPE), based on 100 Monte Carlo replicates for the cases ρ = 0, 0.5, 0.8 and τ = 0, 0.5,

with sample sizes of n = 100, 200, 400.

Proposed method Baseline

ρ τ n PSR NSR ISE RPE ISE RPE

0 0 100 1.000 0.995 0.106 (0.028) 0.046 (0.007) 0.134 (0.064) 0.050 (0.013)

200 1.000 1.000 0.051 (0.011) 0.045 (0.007) 0.067 (0.028) 0.046 (0.007)

400 1.000 1.000 0.032 (0.006) 0.044 (0.007) 0.037 (0.011) 0.044 (0.007)

0.5 100 1.000 1.000 0.109 (0.030) 0.034 (0.007) 0.180 (0.144) 0.035 (0.008)

200 1.000 1.000 0.057 (0.014) 0.032 (0.006) 0.078 (0.034) 0.033 (0.006)

400 1.000 1.000 0.033 (0.006) 0.032 (0.006) 0.046 (0.015) 0.032 (0.006)

0.5 0 100 1.000 0.925 0.109 (0.027) 0.049 (0.009) 0.138 (0.058) 0.052 (0.010)

200 1.000 0.930 0.057 (0.012) 0.046 (0.008) 0.070 (0.021) 0.048 (0.009)

400 1.000 0.950 0.034 (0.006) 0.045 (0.008) 0.040 (0.012) 0.046 (0.009)

0.5 100 1.000 0.940 0.128 (0.037) 0.037 (0.008) 0.174 (0.080) 0.038 (0.009)

200 1.000 0.990 0.069 (0.019) 0.035 (0.007) 0.093 (0.040) 0.036 (0.008)

400 1.000 1.000 0.039 (0.007) 0.034 (0.007) 0.053 (0.025) 0.034 (0.007)

0.8 0 100 1.000 0.935 0.118 (0.034) 0.052 (0.012) 0.154 (0.071) 0.057 (0.016)

200 1.000 0.945 0.061 (0.012) 0.049 (0.012) 0.079 (0.029) 0.051 (0.012)

400 1.000 0.920 0.036 (0.007) 0.048 (0.012) 0.043 (0.011) 0.049 (0.012)

0.5 100 1.000 0.980 0.145 (0.043) 0.037 (0.010) 0.190 (0.106) 0.039 (0.011)

200 1.000 0.945 0.076 (0.023) 0.035 (0.009) 0.096 (0.041) 0.036 (0.010)

400 1.000 0.995 0.044 (0.012) 0.034 (0.009) 0.055 (0.021) 0.034 (0.009)

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0473


	Introduction
	Model and Estimation Method
	Function-on-Function Linear Model
	Estimation Method

	Asymptotic Properties
	Computation and Tuning Parameters Selection
	Computation
	Tuning Parameters Selection

	Simulation Studies
	Application
	Conclusion
	2020-0473 v2.pdf
	Introduction
	Model and Estimation Method
	Function-on-Function Linear Model
	Estimation Method

	Asymptotic Properties
	Computation and Tuning Parameters Selection
	Computation
	Tuning Parameters Selection

	Simulation Studies
	Application
	Conclusion




