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Abstract: This study examines unit-root testing with unspecified and heavy-tailed het-

eroscedastic noise. A new weighted least squares estimation (WLSE) is designed for the

Dickey–Fuller (DF) test, the asymptotic normality of which is verified. However, the perfor-

mance of the DF test relies strongly on the estimation accuracy of the asymptotic variance,

which is not stable for dependent time series. To overcome this issue, we develop two novel

unit-root tests by applying the empirical likelihood technique to the WLSE score equation.

We show that both empirical likelihood-based tests converge weakly to a chi-squared dis-

tribution with one degree of freedom. Furthermore, the limiting theory is extended to the

weighted M -estimation score equation. In contrast to existing unit-root tests for heavy-

tailed time series, empirical likelihood tests do not involve any estimators of the unknown

parameters or any restrictions on the tail index of the noise. This makes them appealing in

practice, with wide applications in finance and econometrics. Extensive simulation studies

are conducted to examine the effectiveness of the proposed methods.

Key words and phrases: G/ARCH type noise; Heavy-tailed; Unit-root; Empirical likelihood.
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1. Introduction

Consider the following AR(1) model:

yt = φyt−1 + εt, (1.1)

where the noise {εt} is a sequence of stationary random variables. We are interested

in detecting a possible unit root in model (1.1); that is, we test the null hypothesis

H0 : φ = 1 versus the alternative H1 : |φ| < 1. There is an extensive and relatively

complete body of literature on unit-root estimation and testing when Eε2t is finite.

When the noise {εt} is an independent and identically distributed (i.i.d.) random

variable, Dickey and Fuller (1979) and Evans and Savin (1981) proposed the classical

Dickey–Fuller (DF) test and Student’s t test, respectively, based on the ordinary

least squares estimator (LSE) of the regression parameter. Phillips (1987) further

studied these tests and established the corresponding limiting theory when the noise

is strong-mixing. For a concise review on this topic, see Chan (2009).

In the past two decades, a growing number of empirical studies have documented

heavy-tailed noise in financial markets. Koedijk and Kool (1992) studied the ex-

change rate returns for three East European currencies, and found that their tail

indices are smaller than two. Francq and Zaköıan (2013) investigated nine major fi-

nancial markets, arguing that time series modeling driven by heavy-tailed noise may

be more appropriate for financial data analyses; see Rachev (2003) and She and Ling

(2020), among many others. All previous findings show that there is a practical and
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urgent need to study heavy-tailed time series. Moreover, unit-root detection for

models with heavy-tailed innovations is of practical importance.

However, when the noise is heavy-tailed (i.e., Eε2t = ∞), a unit-root inference

is much more complicated and challenging, even for the i.i.d. case. For instance,

Chan and Tran (1989) studied the DF test when εt lies in the domain of attraction

of a stable law with tail index α < 2, such that they have an infinite variance.

They found that, compared with the finite-variance case, the limiting distributions

of the classical DF tests are no longer pivotal, because they depend on the un-

known tail index of the noise, which is very difficult to estimate properly in practice

(Resnick, 1997). To bypass the problem in heavy-tailed time series, one popular

approach is to use the bootstrap or subsampling method to approximate the crit-

ical values. For example, Cavaliere, Georgiev, and Taylor (2018) proposed a sieve

wild bootstrap method to obtain the null distribution of the augmented DF (ADF)

test when the noise is a linear process driven by i.i.d. heavy-tailed innovations;

see Horváth and Kokoszka (2003) and Moreno and Romo (2012) for early work.

Zhang and Chan (2020) extended the results in Cavaliere, Georgiev, and Taylor (2018)

to the case where the noise is from a standard GARCH model. However, their sim-

ulation results indicate that the aforementioned wild bootstrap method cannot deal

with heavy-tailed GARCH noise. Recently, Huang et al. (2020) proposed a novel

empirical-likelihood-based method to construct a unified test for model (1.1), with
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the noise following the standard GARCH(p, q) model, namely,

εt = ηtht, h2t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjh
2
t−j, (1.2)

where ω > 0, αi ≥ 0, and βj ≥ 0. The core part of their work is to bound the possi-

ble heavy tail of ht by some weighting or normalizing function so that the heavy tail

effect in ht is eliminated, leading to the robustness of their test. Using the empirical

likelihood technique, their test also removes the estimation for the nuisance param-

eters. Nonetheless, the form of their normalizer may rely on the specific structure

of ht in (1.2), making it infeasible in cases without a priori knowledge on the struc-

ture of ht. Furthermore, the conditions imposed on the moments of ηt and ht (e.g.,

Eη2t < ∞ and Eht < ∞) are relatively restrictive, and exclude the classical heavy-

tailed i.i.d. case (Eη2t = ∞ and ht = 1). The heavy-tailed case with Eht = ∞ is

also indispensable, even under the condition Eη2t <∞, as illustrated by the domain

D2 in Figure 1. Therefore, these issues identified in Huang et al. (2020) motivate us

to construct a unified unit-root test for model (1.1) or its extensions that is free of

strong moment conditions on the noise and does not require a priori information on

the structure of ht.

In this study, we examine the unit-root process with unspecified and heavy-tailed

heteroscedastic noise. To address the foregoing issues, a new weighted least squares

estimation (WLSE) is proposed and embedded in the traditional DF test. We show

that the derived DF-type test converges in distribution to a normal distribution un-
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der the null hypothesis, and to negative infinity under the alternative. However,

the performance of the new DF test is vulnerable to the estimation accuracy of the

asymptotic variance, which is not stable for strongly dependent time series. We thus

develop two novel unit-root tests by applying the empirical likelihood technique to

the WLSE score equations. Both empirical likelihood-based tests are shown to be

asymptotically chi-squared with power approaching one. The corresponding asymp-

totic theory is also extended to the general weighted M -estimation score equations.

As expected, our unit-root tests remove the estimations of the regression parame-

ters, tail index of the noise, and structure of the heteroscedasticity, and thus have a

broader application in finance and econometrics. In addition, the proposed tests can

be used in more general settings, such as the unit root with a constant term and the

unit root in the AR(r) model. A simulation study is conducted to demonstrate the

performance of the proposed tests.

The rest of the paper is organized as follows. Section 2 gives a fundamental

assumption and studies the DF-type test based on the new WLSE. Section 3 derives

the asymptotic properties of the proposed unit-root tests using the standard empirical

likelihood method and the adjusted empirical likelihood method. Extensions to more

general unit-root models are presented in Section 4. The results of the simulation

studies and a comparison with existing tests are summarized in Section 5. The

technical proofs of the main results are given in the Supplementary Material.
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Figure 1: The regions of the tail index α of ht in the GARCH(1,1) model when ηt ∼ N(0, 1),

Laplace(0, 1), t2, or Cauchy distribution, where D1 means the domain of no stationary solution, D2

means the domain of tail index α ∈ (0, 1), D3 means the domain of tail index α ∈ (1, 2), and D4

means the domain of tail index α ∈ (2,∞).

2. Assumption and the WLSE

2.1 Assumption

Throughout this paper, we focus on the noise satisfying the heteroscedastic form:

εt = ηtht and ht = h(ηt−1, ηt−2, · · · ), (2.1)

Statistica Sinica: Preprint 
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where the innovation {ηt} is a sequence of i.i.d. symmetric random variables with

P (ηt 6= 0) > 0, and h(·) is a measurable positive function. Because the structure of

ht is not specified, it is general enough, and many popular G/ARCH-type models

are included in model (2.1), such as the absolute value GARCH model in Taylor

(1986) and Schwert (1989), nonlinear GARCH model in Engle (1990), GJR model

in Glosten, Jagannathan, and Runkle (1993), threshold GARCH model in Zaköıan

(1994), quadratic ARCH model in Sentana (1995), and volatility switching GARCH

model in Fornari and Mele (1997). We make the following fundamental assumption

on {εt}.

Assumption 2.1. There exists some strictly positive deterministic sequence {an},

such that, in the Skorohod space D[0, 1] equipped with an S-topology,

Sn(τ) =
1

an

[nτ ]∑
t=1

εt
w−→ S(τ),

where an →∞ and
∫ 1

0
S2(τ)dτ > 0 almost surely.

Assumption 2.1 is actually a very mild condition that allows for both the finite-

variance case (α > 2) and the infinite-variance case (α < 2). For a better illustration,

we now provide several examples and conditions under which Assumption 2.1 holds,

especially for those commonly used in the literature and the model used in the

simulation.

Note that the S-topology is a sequential topology on the Skorohod space D[0, 1]
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proposed by Jakubowski (1997). By Proposition 3.1 and Theorem 3.5 in that paper,

for Assumption 2.1 to hold, it is sufficient to show that

(Sn(τ1), · · · , Sn(τk))
d−→ (S(τ1), · · · , S(τk)),∀k ∈ N and τi ∈ [0, 1], (2.2)

‖Sn‖ = Op(1), and for any a < b, we have Na,b(Sn) = Op(1), (2.3)

where ‖Sn‖ = supτ∈[0,1] |Sn(τ)|, and Na,b(Sn) is the usual number of up-crossing

defined by the following relation: Na,b(Sn) ≥ l if and only if there exist numbers

0 ≤ τ1 < τ2 < · · · < τ2l−1 < τ2l ≤ 1 such that Sn(τ2i) > b and Sn(τ2i−1) < a, for all

i = 1, · · · , l. Although the weak convergence in an S-topology is much weaker than

that in a J1-topology (or uniform topology), it has been proved that the well-known

almost sure Skorohod representation theorem still holds; see Jakubowski (1997) for

details. Thus, the S-topology can be widely used in many scenarios, especially for

heavy-tailed data.

Remark 2.1. The convergence in (2.2) is well known as the convergence of a finite-

dimension distribution, and is found in many G/ARCH-type processes. For example,

consider one representative class of G-GARCH processes in Zhang and Ling (2015),

with

h2t = ω + c(ηt−1)h
2
t−1,

where ω > 0, and c(·) is a nonnegative function with c(0) < 1. Zhang and Ling

(2015) show that there exists a unique α ∈ (0, 2k0] such that E(c(ηt))
α/2 = 1, and
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the noise εt is a regular variation with tail index α (i.e., P (|εt| > x) ∼ x−α), under

the following conditions:

(a) E log(c(ηt)) < 0;

(b) There exists a k0 > 0 such that E(c(ηt))
k0 ≥ 1 and E[(c(ηt))

k0 log+(c(ηt))] <∞,

and E(|ηt|2k0) <∞, where log+(x) = max{0, log(x)};

(c) The density f(x) of ηt is positive in the neighbourhood zero.

Furthermore, using similar arguments to those for Theorem 2.1 in Chan and Zhang

(2010), it is straightforward to obtain condition (2.2), in which an =
√
n for α > 2

(light-tail) and an = n1/α for α < 2 (heavy-tail).

Remark 2.2. On the other hand, one can easily show that condition (2.3) is satisfied

for the two foregoing cases. In the first case, the tail index α > 2 and an =
√
n.

Here, because Sn(τ) is martingale and by Doob’s inequality, it follows that, for any

M > 0,

P (‖Sn‖ > M) ≤ 3M−1 sup
τ∈[0,1]

E|Sn(τ)|, ENa,b(Sn) ≤ 1

b− a
(|a|+ sup

τ∈[0,1]
E|Sn(τ)|).

Then, condition (2.3) holds from supn supτ∈[0,1]E|Sn(τ)| ≤ (Eε2t )
1/2 < ∞. In the

second case, the tail index α < 2 and an = n1/α. Rewrite

Sn(τ) =

[nτ ]∑
t=1

εt1(|εt|<an)/an +

[nτ ]∑
t=1

εt1(|εt|≥an)/an = Sn1(τ) + Sn2(τ).
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Note that Sn1(τ) is still martingale, and by Karamata’s theorem, we have

sup
τ∈[0,1]

ES2
n1(τ) =

nEε2t1(|εt|<an)

a2n
−→ α

2− α
, as n→∞.

Then, condition (2.3) holds for Sn1(τ). Furthermore, choose ρ ∈ (0, α∧ 1). Then, by

Karamata’s theorem again, we have

E‖Sn2‖ρ ≤
nE|εt|ρ1(|εt|≥an)

aρn
−→ α

α− ρ
, as n→∞,

which implies that ‖Sn2‖ = Op(1). ForNa,b(Sn2), becauseNa,b(Sn2) ≤
∑n

t=1 1(|εt|≥an),

lim supnEN
a,b(Sn2) ≤ lim supn nP (|εt| ≥ an) <∞. Thus, (2.3) holds for Sn2(τ). As

a result, condition (2.3) holds for Sn(τ) = Sn1(τ) + Sn2(τ).

2.2 The WLSE approach

Now, we investigate the estimation of φ. The ordinary LSE is defined as

φ̂lse = arg min
n∑
t=1

(yt − φyt−1)2 =

∑n
t=1 ytyt−1∑n
t=1 y

2
t

.

Conventionally, when φ = 1 (i.e., under H0), Assumption 2.1 may imply that

n(φ̂lse − 1) = n

∑n
t=1 εtyt−1∑n
t=1 y

2
t

d−→
∫ 1

0
S−(τ)dS(τ)∫ 1

0
S2(τ)dτ

,

where S−(τ) denotes the left-hand limit of S(τ). When the variance of εt is in-

finite, S(τ) is always a stable process with a tail index smaller than two, as in

Chan and Zhang (2010) and the references therein. In this case, the above limit-

ing distribution is not pivotal, and the existing bootstrap methods are very sen-

sitive to the structure and tail index of εt (Cavaliere, Georgiev, and Taylor, 2018;
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Zhang and Chan, 2020). It seems infeasible to use a unified bootstrap method to

deal with this issue.

Inspired by the main ideas of Chan, Li, and Peng (2012) and Huang et al. (2020),

we define the WLSE as

φ̂wlse = arg min
n∑
t=1

(yt − φyt−1)2

(1 + y2t−1)
1/2[1 + (∆yt)

2]1/2
,

where ∆yt = yt − yt−1. Then, under the null hypothesis, it is easy to get that

n∑
t=1

y2t−1

(1 + y2t−1)
1/2[1 + (∆yt)

2]1/2
(φ̂wlse − 1) =

n∑
t=1

yt−1εt

(1 + y2t−1)
1/2[1 + (∆yt)

2]1/2
.

Thus, we can derive the DF-type test statistic

Tn = n−1/2
n∑
t=1

y2t−1

(1 + y2t−1)
1/2[1 + (∆yt)

2]1/2
(φ̂wlse − 1).

The asymptotic properties of Tn are given in Theorem 2.1.

Theorem 2.1. Suppose that Assumption 2.1 holds. Under H0, it follows that

Tn
d−→ N(0, σ2),

where σ2 = E[ε2t/(1 + ε2t )]. Under H1, it follows that Tn
p−→ −∞.

Remark 2.3. In practice, we can replace σ2 with σ̂2 = n−1
∑n

t=1 (∆yt)
2/[1 + (∆yt)

2]

and develop the WLSE-based test as

T̃n = Tn/σ̂.

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0415



Empirical Likelihood-based Tests 12

Because σ̂ is a consistent estimator of σ under H0, by (2.1) and the ergodic theorem,

it is obvious that T̃n converges in distribution to N(0, 1). At the same time, because σ̂

is bounded by one, we still have T̃n
p−→ −∞ under H1. Then, at the given significant

level α, the null hypothesis should be rejected when T̃n < uα, where uα denotes the

αth quantile of the standard normal distribution. Under this criterion, the power

approaches one as n→∞.

However, it is well known that the estimation of the asymptotic variance is not

always stable, especially for strongly dependent time series or a small sample size.

As a result, the WLSE-based test T̃n may suffer from a serious size distortion, as

shown in Section 5. In the next section, we attempt to bypass the estimation of

the nuisance parameters by using the empirical likelihood technique in Owen (2001),

which has been found to be very useful in many scientific fields.

3. Empirical Likelihood Methods

3.1 Empirical likelihood test

Recall that the proposed WLSE is based on the core idea that, under the null

hypothesis, the heavy-tailed term εt (i.e.,∆yt) can be bounded by [1 + (∆yt)
2]1/2,

whereas yt−1 can be bounded by (1 + y2t−1)
1/2. Thus, we consider the score function

Zt(φ) =
yt−1(yt − φyt−1)

(1 + y2t−1)
1/2[1 + (yt − φyt−1)2]1/2

. (3.1)

Statistica Sinica: Preprint 
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The empirical likelihood function is given by

L(φ) = sup

{ n∏
t=1

(npt) :
n∑
t=1

pt = 1,
n∑
t=1

ptZt(φ) = 0, pt > 0, t = 1, · · · , n
}
.

Using the Lagrange multiplier technique, we can show that

L(φ) =
n∏
t=1

1

1 + λZt(φ)
,

where the Lagrange multiplier λ is the solution of

n∑
t=1

Zt(φ)

1 + λZt(φ)
= 0.

At the same time, the empirical log-likelihood ratio is

l(φ) = −2 logL(φ) = 2
n∑
t=1

log[1 + λZt(φ)].

Now, we give the asymptotic results for l(φ) in the following theorem.

Theorem 3.1. Suppose that Assumption 2.1 holds. Under H0, it follows that

l(1)
d−→ χ2

1,

as n→∞. Under H1, we have l(1)
p−→∞ and l(φ)

d−→ χ2
1, as n→∞.

According to Theorem 3.1, we reject the null hypothesis at the significance level

α if l(1) > χ2
1,1−α, where χ2

1,1−α denotes the (1 − α)th quantile of a chi-squared

distribution with one degree of freedom. After rejecting H0, Theorem 3.1 implies

that the confidence interval for φ at level 1− α can be constructed as

I1−α = {φ : l(φ) < χ2
1,1−α}.
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Remark 3.1. The new empirical likelihood test (ELT) based on the score function

Zt(φ) in (3.1) is essentially distinct from the ELT proposed by Huang et al. (2020)

in terms of both model settings and methodology. In our settings, under the null,

Zt(1) =
yt−1∆yt

(1 + y2t−1)
1/2[1 + (∆yt)

2]1/2
.

Because ∆yt = εt must be bounded by the normalizer [1 + (∆yt)
2]1/2, all the heavy-

tailed effects in the noise εt cancel out. As a result, our method does not rely on

any specific form of h(·) and no moment condition on ht or ηt is required, making it

applicable to many popular G/ARCH-type models, such as the standard GARCH,

nonlinear GARCH, and GJR, among many others. In contrast, Huang et al. (2020)

mainly considered noise εt satisfying the standard GARCH(p,q) model, as in (1.2),

and their ELT method depends on the functional of h(·). For instance, when q = 0

(ARCH model), under the null, they use the following score equation:

Yt(1) =
yt−1∆yt

(1 + y2t−1)
1/2[1 +

∑m
k=1 (∆yt−k)2]1/2

= ηt ×
yt−1ht

(1 + y2t−1)
1/2[1 +

∑m
k=1 (∆yt−k)2]1/2

,

where m is chosen to be larger than p to guarantee the inequality

h2t ≤ max {ω, α1, · · · , αp}
[
1 +

m∑
k=1

(∆yt−k)
2
]
.

Therefore, a priori information on the model structure h(·) is indispensable, albeit

typically unknown in practice, especially when checking the stationarity of a time

Statistica Sinica: Preprint 
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series. On the other hand, the normalizer [1 +
∑m

k=1 (∆yt−k)
2]1/2 in the denominator

of Yt(1) is only able to remove the heavy-tailed effect in ht, resulting in the inefficiency

for the case with Eη2t =∞, as shown in Section 5. See Figure 1, in which Huang et al.

(2020) may not be able to handle the domain D2.

3.2 Adjusted ELT

In order to improve the size performance of the proposed ELT, we further consider

the adjusted empirical likelihood approach proposed by Chen, Variyath, and Abraham

(2008). Define the additional term

Zn+1(φ) = −bnn−1
n∑
t=1

Zt(φ),

where Zt(φ) is defined in (3.1) and bn is some positive constant. Then, the adjusted

empirical likelihood function is defined as

La(φ) = sup

{ n+1∏
t=1

(n+ 1)pt : pt > 0, t = 1, · · · , n+ 1;
n+1∑
t=1

pt = 1,
n+1∑
t=1

ptZt(φ) = 0

}
.

Similarly, the corresponding adjusted empirical log-likelihood ratio is

la(φ) = −2 logLa(φ) = 2
n+1∑
t=1

log[1 + λZt(φ)],

where the Lagrange multiplier λ is the solution of

n+1∑
t=1

Zt(φ)

1 + λZt(φ)
= 0.

Then, the limiting theory of la(φ) can be derived as follows.

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0415



Empirical Likelihood-based Tests 16

Theorem 3.2. Suppose that Assumption 2.1 holds and bn/n + 1/bn = o(1). Under

H0, it follows that

la(1)
d−→ χ2

1,

as n→∞. Under H1, we have la(1)
p−→∞ and la(φ)

d−→ χ2
1, as n→∞.

Theorem 3.2 shows that we need to reject the null hypothesis at the significance

level α if la(1) > χ2
1,1−α and the confidence interval of φ at level 1−α is constructed

as Ia1−α = {φ : la(φ) < χ2
1,1−α}.

Remark 3.2. Here, we simply point out the difference between the two empirical

likelihood methods based on l(φ) and la(φ). By the definition of L(φ), we can see

that the necessary and sufficient condition for its existence is that the original point

is an interior point of the convex hull of {Zt(φ), t ≤ n}. Under some moment and

dependence assumptions, this condition can hold with probability tending to one

as n → ∞ (Owen, 2001). However, for general time series or in the case of a

small sample size, this may be a serious limitation (Chen, Variyath, and Abraham,

2008). Thus, the adjusted term Zn+1(φ) is used to ensure that the original point

is an interior point of the convex hull of {Zt(φ), t ≤ n + 1} such that La(φ) is well

defined. As shown in our simulations, la(1) has better size performance than that

of l(1). At the same time, bn can be chosen as max{1, log(n)/2}, as recommended

by Chen, Variyath, and Abraham (2008). For more discussions on the two ELTs, we
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refer to Zheng and Yu (2013).

We are now ready to extend the score function Zt(φ) to a more general form

Zt(φ) =
yt−1

(1 + y2t−1)
1/2
ρ(yt − φyt−1), t = 1, · · · , n,

and Zn+1(φ) = −bnn−1
∑n

t=1 Zt(φ), where ρ(x) is a function on the real line. Using

a proof similar to those of Theorems 3.1–3.2, it is not hard to obtain the following

corollary.

Corollary 3.1. Suppose that Assumption 2.1 holds and bn/n+ 1/bn = o(1). If ρ(x)

is a bounded odd monotonic function, and one of the following conditions holds:

1. ρ(x) is strictly monotonic;

2. ρ(x) 6= ρ(y), ∀xy < 0, and the density of ηt is positive in the neighborhood of

zero.

Then, all the limiting results in Theorems 3.1–3.2 still hold.

Remark 3.3. The traditional M -estimator φ̂M of φ is the solution of the equation

n∑
t=1

yt−1ρ(yt − φyt−1) = 0,

where ρ(x) is typically the first derivative of some loss function. In this case,

the statistical inference is based on the asymptotic property of φ̂M . To guaran-

tee the derived DF-type test to be asymptotically Gaussian under H0, additional
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continuous conditions for ρ(x) are often needed (Knight, 1991; Shin and So, 1999;

Samarakoon and Knight, 2009). However, the proposed unit-root tests do not rely

on any estimator of φ or need any continuous assumption for ρ(·). Thus, many

widely used functions are incorporated in this framework, such as the Huber func-

tion ρ(x) = min [c,max (−c, x)] and the sign function ρ(x) = 1(x>0) − 1(x<0).

4. Extensions to other models

In this section, we further generalize the proposed empirical likelihood method

to other unit-root models. We first study the unit-root model with a constant term,

namely,

yt = µ+ φyt−1 + εt, (4.1)

where µ is a constant and εt satisfies the heteroscedastic form (2.1). Recall that the

LSE of the parameters (φ, µ) is the solution of the equations

n∑
t=1

εt(φ, µ) = 0 and
n∑
t=1

yt−1εt(φ, µ) = 0,

where εt(φ, µ) = yt − µ − φyt−1. Then, it is natural to consider the weighted LSE

score equations Zt(φ, µ) = (Zt,1(φ, µ), Zt,2(φ, µ))′, with

Zt,1(φ, µ) =
εt(φ, µ)

[1 + ε2t (φ, µ)]1/2
and Zt,2(φ, µ) =

yt−1
(1 + y2t−1)

1/2
Zt,1(φ, µ).

Under H0, because |yn|/(1 + y2n)1/2
p−→ 1, it is not hard to show that

n−1/2
n∑
t=1

Zt,i(1, µ0)
d−→ N(0, σ2),
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for i = 1, 2, where µ0 is the true parameter and σ2 is defined in Theorem 2.1. At the

same time, n−1/2
∑n

t=1 Zt,2(1, µ0) is asymptotically equivalent to n−1/2
∑n

t=1 Zt,1(1, µ0),

which implies that neither of them are bivariate normal. To overcome this degen-

erate issue, similarly to Li, Chan, and Peng (2014) and Huang et al. (2020), we add

some independent samples into the score equations. Specifically, define Z̃t(φ, µ) =

(Z̃t,1(φ, µ), Z̃t,2(φ, µ))′, with

Z̃t,1(φ, µ) =
εt(φ, µ)

[1 + ε2t (φ, µ)]1/2
,

Z̃t,2(φ, µ) =
yt−1

(1 + y2t−1)
δ
Z̃t,1(φ, µ) + wt,

where the constant δ > 1/2 and wt is a sequence of i.i.d. random variables with

P (wt = ±1) = 1/2. As suggested by Li, Chan, and Peng (2014), δ is usually set to

0.75. Then, the associated empirical likelihood function is given by

L̃(φ, µ) = sup

{ n∏
t=1

(npt) : pt > 0,
n∑
t=1

pt = 1,
n∑
t=1

ptZ̃t(φ, µ) = 0

}
. (4.2)

Because the true parameter µ0 is unknown, we need to consider the profile empirical

likelihood function L̃(φ) = maxµ L̃(φ, µ) and put l̃(φ) = −2 log(L̃(φ)). The following

theorem gives its limiting property.

Theorem 4.1. Suppose that Assumption 2.1 holds and an/n → c ∈ [0,∞]. Then,

under H0, it follows that l̃(1)
d−→ χ2

1, as n→∞. Furthermore, under H1, it follows

that l̃(1)
p−→∞.
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Now, we investigate a more complicated unit-root AR(r) model with a constant

term, namely,

yt = µ+ φyt−1 +
r∑
j=1

φj∆yt−j + εt, r ≥ 1. (4.3)

Denote θ = (µ, φ1, · · · , φr)′ and εt(φ,θ) = yt−µ−φyt−1−
∑r

j=1 φj∆yt−j. Note that,

under the null hypothesis, the term ∆yt−j is also likely to be heavy tailed, and thus

the score equations are modified as follows:

Z̄t,1(φ,θ) =
εt(φ,θ)

[1 +
∑r

j=1 (∆yt−j)2]3/2[1 + ε2t (φ,θ)]1/2
,

Z̄t,2(φ,θ) =
yt−1

(1 + y2t−1)
δ
Z̄t,1(φ,θ) + wt,

Z̄t,2+j(φ,θ) =
∆yt−j

[1 + (∆yt−j)2]1/2
Z̄t,1(φ,θ), for j = 1, · · · , r,

where the additional term [1+
∑r

j=1 (∆yt−j)
2]3/2 in the denominator is used to bound

∂kZ̄t,1(φ,θ)/∂θk, for k = 1, 2, 3. Let Z̄t(φ,θ) = (Z̄t,1(φ,θ), Z̄t,2(φ,θ), · · · , Z̄t,2+r(φ,θ))′

and the empirical likelihood function is

L̄(φ,θ) = sup

{ n∏
t=1

(npt) : pt > 0,
n∑
t=1

pt = 1,
n∑
t=1

ptZ̄t(φ,θ) = 0

}
. (4.4)

Similarly, define L̄(φ) = maxθ L̄(φ,θ) and l̄(φ) = −2 log(L̄(φ)). Note that ∆yt is

a linear process with respect to the noise εt. Hence, before showing its limiting

property, we need the following counterpart of Assumption 2.1.
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Assumption 4.1. There exists some deterministic sequence {ān}, such that

S̄n(τ) =
1

ān

[nτ ]∑
t=1

ut
w−→ S̄(τ),

where ān →∞ and ut =
∑∞

l=0 ρlεt−l with ρl = O(ρl), for some ρ ∈ (0, 1).

Remark 4.1. When εt is a sequence of i.i.d. heavy-tailed noises, Avram and Taqqu

(1992) show that, under the classical J1-topology, Assumption 4.1 holds if and if only

the linear process {ut} is independent. Assumption 4.1, though it seems to be unrea-

sonable under the J1-topology, does make sense under the S-topology. Indeed, one

can easily derive Assumption 4.1 from Assumption 2.1 using the sufficient conditions

in (2.2) and (2.3), if the following additional condition holds:

lim
H→∞

lim sup
n→∞

P
(

sup
0≤τ≤1

∣∣∣a−1n [nτ ]∑
t=1

ut,H

∣∣∣ > η
)

= 0,

where η is any positive number and ut,H =
∑∞

l=H+1 ρlεt−l. In this case, S̄(τ) =

(
∑∞

l=0 ρl)S(τ) and ān = an; see Zhang, Sin, and Ling (2015) for some examples.

Theorem 4.2. Suppose that Assumption 4.1 holds and ān/n → c ∈ [0,∞]. Then,

under H0, if {∆yt} is strictly stationary, then it follows that l̄(1)
d−→ χ2

1 as n→∞.

Furthermore, under H1, if {yt} is strictly stationary , then it follows that l̄(1)
p−→∞.

Theorems 4.1–4.2 show that the proposed profile ELTs are still asymptotically

chi-squared, even in the more complicated unit-root models (4.1) and (4.3). In
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general, time series {yt} is generated from the linear model

yt =
k∑
i=1

γifi(t) + φyt−1 +
r∑
j=1

φj∆yt−j + εt +
m∑
l=1

ρlεt−l,

where {fi(t)} are time trend functions. Let θ = (γi, · · · , φj, · · · , ρl, · · · )′ and define

εt(φ,θ) = yt −
k∑
i=1

γifi(t)− φyt−1 −
r∑
j=1

φj∆yt−j −
m∑
l=1

ρlεt−l(φ,θ), (4.5)

where εt(φ,θ) = 0, for t < 1. Then, the weighted score functions denoted by

Zt(φ,θ) can be constructed in the same way as those in (4.2) and (4.4). Further-

more, if n−1/2
∑n

t=1 Zt(1,θ0) is asymptotically normal and ∂kZt(φ,θ)/∂θk is uni-

formly bounded for k = 1, 2, 3, the asymptotically chi-squared property can be de-

rived using a similar proof procedure to those of Theorems 4.1–4.2; see the Supple-

mentary Material for technical details. Therefore, our empirical likelihood methods

are feasible for many structures of unit-root models.

Remark 4.2. As suggested by one of the referees, we consider the unit-root testing

problem when the noise is a linear process, namely,

yt = φyt−1 + ut = φyt−1 + εt +
∞∑
l=1

ρlεt−l. (4.6)

In contrast to all the foregoing models, infinite numbers of parameters {ρ1, ρ2, · · · }

are involved in (4.6). Thus, it is not feasible to use the recursive definition for

εt(φ,θ) as (4.5), where m is finite. One possible method is to use the basic idea in
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the ADF test, as in Zhang and Chan (2020). Specifically, under H0, model (4.6) can

be rewritten as

yt = φyt−1 +
k∑
j=1

βj∆yt−j + εt + ρt,k, (4.7)

where (1−
∑∞

j=1 βjz
j) is the inverse function of (1+

∑∞
l=1 ρlz

l) and ρt,k =
∑∞

j=k+1 βjut−j.

Then, we define εt(φ,θ) = yt − φyt−1 −
∑k

j=1 βj∆yt−j, with θ = (β1, · · · , βk)′. Note

that εt(1,θ0) = εt + ρt,k and, thus, it is necessary to select an appropriate k → ∞

as n→∞. Nevertheless, this procedure involves a high-dimensional empirical likeli-

hood, which is substantially different from the methodology in the fixed-dimensional

case. Therefore, we leave this problem for future work.

5. Simulation Studies

To examine the finite-sample behavior of the proposed unit-root tests, we focus

on model (1.1), with φ = 1 corresponding to the null hypothesis (i.e., unit root),

and φ ∈ {0.95, 0.9, 0.85} corresponding to the alternative (i.e., stationary). In all

simulations, we take 1000 replications for each case, and the results are reported at

the 5% significance level.

5.1 GARCH-type noise

In this section, we consider the following GARCH-type noise

εt = ηtht, h
2
t = ω + [β1 + α1η

2
t−1 + γη2t−11(ηt−1<0)]h

2
t−1, (5.1)
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εt = ηtht, h
2
t = ω + {β1 + α1[1− 2γsign(ηt−1) + γ2]η2t−1}h2t−1, (5.2)

where ω = 0.1 and γ = 0.1. Let θ = (β1, α1) be the unknown parameters, and α be

the tail index of εt. By Remark 2.1, the following heavy-tailed cases are considered:

1. For α ∈ (1, 2), we uniformly take (i) θ = (0.6, 0.4), with ηt being N(0, 1); (ii)

θ = (0.5, 0.3), with ηt being a Laplace(0,1) distribution; (iii) θ = (0.7, 0.1),

with ηt being a t3 distribution; and (iv) θ = (0.5, 0.1), with ηt being a t2

distribution.

2. For α ∈ (0, 1), we uniformly take (i) θ = (0.6, 0.5), with ηt being N(0, 1); (ii)

θ = (0.5, 0.4), with ηt being a Laplace(0,1) distribution; (iii) θ = (0.65, 0.1),

with ηt being a t2 distribution; and (iv) θ = (0.35, 0.1), with ηt being a Cauchy

distribution.

For comparison, we also implement the ELT proposed by Huang et al. (2020) with

the order m = 2 (see Remark 3.1).

Tables 1–2 report the size and power of the tests with α ∈ (1, 2) when n = 100

and n = 300, respectively. Under the null hypothesis (φ = 1), it is apparent that the

proposed test T̃n is always undersized. In particular, the size of T̃n is only 0.016 in

model (5.2) when ηt ∼ N(0, 1) and n = 100. Instead, the proposed ELTs l(1) and

la(1) present satisfactory size performance, whereas the ELT is oversized and the size

distortion becomes more severe as the tail of ηt becomes heavier. In addition, all the
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ELTs improve in terms of power when the sample size increases from 100 to 300. The

proposed tests l(1) and la(1) are more powerful than the ELT in almost all cases,

except for ηt ∼ N(0, 1), where the ELT is better, but the gap is acceptable. Similar

phenomena are observed in Tables 3–4, which summarize the associated simulation

results for α ∈ (0, 1).

For extremely heavy-tailed noise, Tables 3–4 show that the size and power per-

formance of l(1) and la(1) are quite robust, with a stable size and a rational power.

However, when ηt follows a Cauchy distribution, the ELT can suffer from serious size

distortion and a severe loss in power, even for a large sample size. Therefore, the

existing ELT is sensitive to the tail of ηt, and may not be used in unit-root testing

when the tail index is unknown. In summary, our proposed ELTs are efficient and

powerful for detecting a possible unit root, especially for models with heavy-tailed

innovations.

5.2 The i.i.d. noise

We now conduct a simulation study to illustrate that the proposed tests are still

valid when εt are i.i.d. (i.e., ht = 1) with an infinite variance. Specifically, the noise

εt is generated from the model

εt = |ηt|1/αsign(ηt),

where ηt ∼Cauchy distribution and α is the tail index. For comparison, we also
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Table 1: Size and power of the unit-root tests (×100) with α ∈ (1, 2) and n = 100

εt ∼model (5.1) εt ∼model (5.2)

ηt ∼ φ T̃n l(1) la(1) ELT T̃n l(1) la(1) ELT

N(0,1) 1.00 2.4 4.8 4.7 5.7 1.6 4.5 4.9 6.7

0.95 19.3 19.8 17.3 22.6 17.6 19.5 16.7 23.5

0.90 34.1 36.0 33.9 47.0 32.6 39.0 37.0 49.3

0.85 54.9 58.1 55.9 68.4 51.5 60.2 57.5 72.8

Laplace 1.00 3.4 5.3 4.8 6.5 2.9 4.9 4.8 6.2

0.95 42.7 39.0 36.6 28.9 38.2 36.1 34.0 25.5

0.90 64.1 62.3 59.9 47.5 59.7 60.1 57.0 48.7

0.85 77.1 78.7 78.7 58.9 77.9 79.4 78.1 63.9

t3 1.00 2.8 5.1 4.7 7.3 2.8 4.2 5.0 7.1

0.95 35.2 28.6 26.9 21.5 27.9 26.9 25.2 23.0

0.90 57.4 53.0 50.5 39.3 58.1 60.5 58.2 40.3

0.85 77.9 76.1 73.9 52.1 80.8 84.7 82.8 55.9

t2 1.00 4.3 5.5 4.9 8.8 3.6 5.6 5.1 8.8

0.95 54.4 51.1 48.8 28.0 54.2 52.5 50.1 25.7

0.90 80.2 80.3 77.9 41.7 81.9 82.7 81.4 43.4

0.85 91.5 91.5 90.3 51.0 92.0 94.6 94.2 49.2

Table 2: Size and power of the unit-root tests (×100) with α ∈ (1, 2) and n = 300

εt ∼model (5.1) εt ∼model (5.2)

ηt ∼ φ T̃n l(1) la(1) ELT T̃n l(1) la(1) ELT

N(0,1) 1.00 3.6 5.5 5.3 5.7 3.6 4.6 4.7 5.4

0.95 71.6 66.7 65.6 76.6 73.1 68.4 67.0 75.0

0.90 94.2 92.3 91.6 96.6 96.1 96.5 95.4 97.6

0.85 98.9 98.5 98.3 99.3 99.5 99.5 99.4 99.8

Laplace 1.00 3.7 4.9 4.7 6.4 3.3 4.3 4.9 5.7

0.95 96.3 94.1 93.8 79.0 93.9 92.8 92.6 80.4

0.90 99.6 99.9 99.6 92.8 99.7 99.9 99.7 94.7

0.85 100 100 100 94.8 100 100 100 98.2

t3 1.00 4.3 5.4 5.2 6.5 3.9 5.3 5.0 6.9

0.95 91.4 86.3 85.5 84.4 91.9 88.8 88.9 59.9

0.90 99.4 99.1 99.1 76.4 99.7 99.7 99.7 83.7

0.85 100 100 100 89.3 100 100 100 91.9

t2 1.00 3.6 4.7 4.9 8.0 3.5 4.4 4.8 7.7

0.95 99.2 98.7 98.5 59.3 99.1 98.8 98.8 59.4

0.90 100 100 100 73.1 100 100 100 75.3

0.85 100 100 100 79.8 100 100 100 82.7
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Table 3: Size and power of the unit-root tests (×100) with α ∈ (0, 1) and n = 100

εt ∼model (5.1) εt ∼model (5.2)

ηt ∼ φ T̃n l(1) la(1) ELT T̃n l(1) la(1) ELT

N(0,1) 1.00 3.9 5.0 4.8 5.6 3.2 5.0 4.7 6.1

0.95 21.9 21.6 19.2 23.5 22.4 19.4 17.4 21.9

0.90 37.9 31.4 30.0 39.7 36.9 34.0 31.1 44.5

0.85 49.0 43.7 41.2 55.8 53.5 51.3 49.4 60.4

Laplace 1.00 4.1 5.5 4.7 6.3 3.3 4.6 4.9 5.9

0.95 47.8 41.1 40.7 29.7 48.7 41.7 41.2 29.1

0.90 66.8 58.8 56.7 43.8 66.9 61.0 58.2 45.3

0.85 78.0 72.9 70.9 51.4 78.5 75.7 74.6 58.1

t2 1.00 3.3 4.6 4.5 9.1 3.6 4.9 4.8 10.3

0.95 51.9 41.5 41.8 26.5 51.7 44.3 43.7 24.0

0.90 74.9 67.4 65.3 35.3 77.9 73.4 70.7 37.2

0.85 82.9 78.5 76.7 41.4 91.6 90.2 89.1 45.4

Cauchy 1.00 4.2 4.8 4.5 21.6 4.6 5.2 4.7 19.5

0.95 93.4 89.3 88.7 33.8 95.0 92.9 92.5 36.1

0.90 98.2 96.2 95.8 35.5 99.2 98.1 97.8 35.3

0.85 99.0 97.5 97.5 38.8 99.3 98.9 98.9 36.3

Table 4: Size and power of the unit-root tests (×100) with α ∈ (0, 1) and n = 300

εt ∼model (5.1) εt ∼model (5.2)

ηt ∼ φ T̃n l(1) la(1) ELT T̃n l(1) la(1) ELT

N(0,1) 1.00 4.4 4.8 4.8 7.2 4.7 4.9 4.8 6.6

0.95 67.2 58.0 57.3 65.8 74.2 65.4 64.6 71.1

0.90 85.6 78.4 77.3 84.4 90.6 85.8 85.4 90.1

0.85 96.0 91.7 91.6 94.2 96.9 95.7 95.5 96.2

Laplace 1.00 5.8 5.1 5.0 6.6 4.8 4.9 4.7 6.5

0.95 97.3 94.0 94.7 74.7 96.6 94.7 94.2 78.1

0.90 99.4 98.9 98.9 84.0 99.8 99.6 99.6 89.3

0.85 99.8 99.8 99.8 89.1 99.6 99.6 99.5 94.3

t2 1.00 4.7 5.3 5.2 9.2 4.2 4.6 4.7 7.6

0.95 98.1 95.9 95.7 49.8 98.7 97.6 97.4 50.5

0.90 99.8 99.6 99.6 60.1 100 100 100 69.9

0.85 100 100 100 66.8 100 100 100 72.9

Cauchy 1.00 4.2 5.4 5.2 20.5 4.4 4.5 4.6 22.6

0.95 100 100 100 42.3 100 100 100 42.3

0.90 100 100 100 39.1 100 100 100 39.9

0.85 100 100 100 35.4 100 100 100 37.7
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consider two common ADF-type tests:

Rn,κ =
(n− k)(φ̂− 1)

1−
∑k

j=1 β̂j
, Qn,κ =

φ̂− 1

s(φ̂)
,

where (φ̂, β̂1, · · · , β̂k) is the LSE of the regression parameters in model (4.7), s(φ̂)

is the usual standard error of φ̂, and k = [κ(n/100)1/4] is the selected lag length,

with κ = 4 and 12. To implement these two tests in heavy-tailed cases, we employ

the wild sieve bootstrap method proposed by Cavaliere, Georgiev, and Taylor (2018)

with bootstrap size b = 1000, and denote the associated tests as Rb
n,κ and Qb

n,κ. The

simulation results are presented in Tables 5–6.

The results show that the proposed ELTs l(1) and la(1) outperform all com-

petitors in terms of power performance, with a stable size for nearly all cases. The

wild bootstrap tests are sensitive to the selected lag length κ, where a smaller κ

means higher power, which is consistent with that in Cavaliere, Georgiev, and Taylor

(2018). In addition, it is interesting that the proposed tests become more powerful

when the tail of the noise becomes heavier.

Supplementary Material

The Supplementary Material contains technical proofs for the results in Sec-

tions 2–4, and the simulation results for the confidence interval estimation under the

alternative.
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Table 5: Size and power of the unit-root tests (×100) for i.i.d. noise when n = 100

Empirical likelihood Wild bootstrap

φ T̃n l(1) la(1) ELT Qbn,4 Rbn,4 Qbn,12 Rbn,12
α = 2.0 1.00 3.0 4.5 4.4 8.9 5.5 3.7 5.2 4.7

0.95 32.1 30.4 27.8 23.6 33.0 31.8 26.9 17.9

0.90 61.7 61.3 58.8 40.4 67.0 60.9 43.2 32.8

0.85 80.4 82.3 80.2 53.1 84.4 82.3 55.0 40.7

α = 1.5 1.00 4.6 5.6 5.2 10.5 5.1 4.6 6.3 5.2

0.95 69.5 64.4 62.5 26.1 39.6 37.3 34.2 22.2

0.90 91.2 89.7 88.9 33.2 69.9 67.6 51.9 37.7

0.85 97.3 96.8 96.3 41.7 86.0 85.6 64.6 48.9

α = 1.0 1.00 4.9 5.3 4.9 20.8 5.0 5.6 6.9 5.0

0.95 98.6 97.7 97.2 29.5 56.0 50.0 45.8 35.5

0.90 99.8 99.7 99.7 34.7 78.9 76.5 60.9 49.0

0.85 100 100 100 34.5 88.3 88.9 72.3 59.5

α = 0.5 1.00 4.0 5.2 4.7 44.7 4.5 4.8 9.2 6.7

0.95 100 100 100 51.7 75.1 75.5 65.7 60.4

0.90 100 100 100 50.0 87.4 86.2 78.4 67.3

0.85 100 100 100 50.5 92.2 93.2 81.7 75.9

Table 6: Size and power of the unit-root tests (×100) for i.i.d. noise when n = 300

Empirical likelihood Wild bootstrap

φ T̃n l(1) la(1) ELT Qbn,4 Rbn,4 Qbn,12 Rbn,12
α = 2.0 1.00 4.3 4.8 4.7 8.0 5.6 5.4 4.7 4.6

0.95 89.1 84.9 84.2 53.9 91.8 93.7 78.9 76.7

0.90 99.8 99.8 99.8 75.7 99.8 99.7 97.1 94.7

0.85 100 100 100 84.5 100 100 98.2 95.9

α = 1.5 1.00 3.5 4.7 4.9 11.3 4.7 5.4 4.9 4.3

0.95 99.7 99.4 99.4 43.7 91.6 92.4 82.3 80.2

0.90 100 100 100 54.2 99.7 99.5 95.4 94.7

0.85 100 100 100 62.5 99.6 99.6 97.1 95.0

α = 1.0 1.00 5.3 5.1 4.6 21.0 4.9 5.5 6.0 4.8

0.95 100 100 100 33.5 94.4 92.7 86.6 84.9

0.90 100 100 100 33.2 98.8 98.5 94.3 93.7

0.85 100 100 100 35.3 99.0 99.8 97.0 95.5

α = 0.5 1.00 4.8 5.2 4.9 46.4 4.7 4.4 5.2 5.8

0.95 100 100 100 49.5 95.2 94.1 89.9 90.5

0.90 100 100 100 47.9 97.7 98.9 94.1 95.5

0.85 100 100 100 47.0 98.3 98.3 95.3 94.9
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