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Abstract: In this paper, we propose a cross-validation metric learning approach to learn a

distance metric for dimension reduction in the multiple-index model. We minimize a leave-

one-out cross-validation-type loss function, where the unknown link function is approximated

by a metric-based kernel-smoothing function. To the best of our knowledge, we are the first

to reduce the dimensionality of multiple-index models in a framework of metric learning.

The resulting metric contains crucial information on both the central mean subspace and

the optimal kernel-smoothing bandwidth. Under weak assumptions on the design of the

predictors, we establish asymptotic theories for the consistency and convergence rate of the

estimated directions, as well as the optimal rate of the bandwidth. Furthermore, we develop

a novel estimation procedure to determine the structural dimension of the central mean

subspace. The proposed approach is relatively easy to implement numerically by employing

fast gradient-based algorithms. Various empirical studies illustrate its advantages over other

existing methods.
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1. Introduction

The performance of many successful machine learning algorithms, such as the

k-nearest neighbors (Cover and Hart, 1967) (KNN) and support vector machine

(Cortes and Vapnik, 1995), rely heavily on the notion of a metric or a distance be-

tween pairs of inputs. Here, the Euclidean distance is a commonly used distance

metric. However, it ignores how samples are distributed in the feature space, espe-

cially in high-dimensional settings. A great deal of effort has been devoted to learning

a proper pseudometric or Mahalanobis distance in settings such as classification, re-

gression, and clustering, among others. A comprehensive discussion may be found

in Bellet et al. (2013). It is known that learning a Mahalanobis metric is equivalent

to identifying a linear transformation of the feature vectors (or predictors), and ap-

plying the standard Euclidean metric to the transformed data (Xing et al., 2003).

When the linear projection is of lower rank, the metric is particularly important for

data visualization, dimension reduction, and algorithm efficiency. Specifically, for

two entries x,x′ ∈ Rp, the Mahalanobis metric

dM(x,x′) ≡
√

(x− x′)>M(x− x′) = ‖A>(x− x′)‖,

for a p×p positive semi-definite matrix M, where the second equality is the result of

the decomposition that M = AA>, for some A with rank(A) ≤ p. Goldberger et al.
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(2005) presented a neighborhood components analysis by maximizing a variant of the

leave-one-out KNN score using gradient-based algorithms, which is conceptually ap-

pealing and effective for a low-rank A. Nevertheless, its theoretical justifications are

generally quite challenging. The large margin nearest neighbors algorithm (LMNN)

by Weinberger et al. (2006) and Weinberger and Saul (2009) directly learns a metric

M to determine the “target neighbors” in a KNN classification based on certain local

pairs or triples conditions. For regression problems, Weinberger and Tesauro (2007)

constructed a novel metric learning algorithm for a kernel regression, without any

theoretical justification for the resulting metric; Noh et al. (2017) investigated an

effective approach for reducing the bias and mean squared error in kernel regressions

under Gaussian models. Though both works studied metric-learning for kernel re-

gressions, they do not consider the problems for multiple-index models, which have

received much attention and have been investigated intensively in many scientific

fields.

In this study, we focus on dimension reduction for the multiple-index model in

a framework of metric learning. Specifically, for a response Y ∈ R and a vector

of predictors X ∈ Rp, we concentrate on reducing the dimensionality of the mean

function f(X) = E(Y |X), leaving the rest of Y |X as “nuisance parameters.” A

reduced-rank structure of the regressors f(x) leads to the popular multiple-index
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model

Y = g(L>0 X) + ε, (1.1)

where g : Rr0 → R is an unknown link function (r0 ≤ p), L0 is a p × r0 column

orthogonal matrix, and the noise ε satisfies E(ε|X) = 0, almost surely. The subspace

spanned by the column vectors of L0 is referred to as the central mean subspace

(CMS), as introduced by Cook and Li (2002), and is of major importance in the

literature. It is well defined and is unique under mild conditions. We refer to r0

as the structural dimension of the CMS, and to the column vectors of L0 as the

directions in the CMS.

Note that there is a large body of literature in statistics on dimension reduction

for model (1.1) and its variants. One of the most fundamental and powerful methods

is the seminal sliced inverse regression (SIR), invented by Li (1991). It can be

used to find vectors outside the CMS, but inside the central subspace, the smallest

subspace capturing the complete dependence of Y on X (Cook and Li, 2002). Li

(1991) also developed a sequential testing procedure to determine the dimension of

the CMS when r0 is unknown. Since then, many state-of-the-art inverse regression-

based approaches have been developed, such as the sliced average variance estimation

(SAVE) (Shao et al., 2007); see Bura and Cook (2001a), Bura (2003), Cook and

Li (2004), Cook and Ni (2005), and Yin and Cook (2006), among many others.

These methods are computationally simple, and thus widely applied in data mining.
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However, it is known that the inverse regression-based methods usually need strong

assumptions on the design of X, such as the elliptical symmetry condition, similar to

the requirement in the principal Hessian directions method (pHd) (Li, 1992; Cook,

1998). As an important alternative, Xia et al. (2002) invented a novel minimum

average variance estimation method (MAVE) based on local linear smoothing. Based

on the MAVE, they also proposed a consistent estimate for the dimension of the CMS.

Other related approaches, including the average derivative estimation (Härdle and

Stoker, 1989), structure adaptive approach (SA) (Hristache et al., 2001), and outer

products of gradients (OPG) (Samarov, 1993), are designed to estimate the derivative

of the regressor g(L>0 x) pertaining to the CMS. More advancements can be found in

Xia (2008), Wang and Xia (2008), Dalalyan et al. (2008), Chen et al. (2011), Alquier

and Biau (2013), and Akritas (2016). Overall, compared with the inverse regression,

direct regression methods are easy to implement and are superior in terms of their

finite-sample performance (Hristache et al., 2001; Xia et al., 2002; Xia, 2007). With

the bandwidth carefully chosen, direct regression methods report elegant results. Ma

and Zhu (2012) provided a novel semiparametric approach to estimate the CMS by

solving estimating equations, and later studied its efficiency issues (Ma and Zhu,

2014). Recently, an important discussion paper (Cannings and Samworth, 2017)

introduced a general classifier for high-dimensional data using random projections.

In this paper, we propose the cross-validation metric learning (CVML) approach
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to learn a distance metric that contains crucial information on the CMS and the

nonparametric link function in model (1.1). For any fixed dimension r, such that

1 ≤ r ≤ p, the CVML procedure minimizes a leave-one-out cross-validation-type sum

of squared errors over matrix A ∈ Rp×r, in which the link function is approximated

by the Nadaraya-Watson kernel estimator. One can thus estimate the directions of

the CMS and the bandwidth of the link function simultaneously using the singular

value decomposition M̂ = ÂÂ> = L̂1Ĥ
−2L̂>1 . When r = r0, the CVML estimate

for the directions of the CMS is shown to be consistent at a certain convergence

rate. Furthermore, a sequential procedure is developed to determine the dimension

r0 of the CMS when it is unknown. The results of simulation studies show that the

proposal outperforms other alternatives in terms of estimating the directions and

dimension of the CMS. The CVML procedure is model-free, in the sense that its va-

lidity does not rely on any specific functional relation between the response variable

and the predictors, making it practically appealing. Furthermore, unlike many other

metric learning algorithms, such as the methods developed in Xing et al. (2003),

Weinberger et al. (2006), and Weinberger and Saul (2009), the loss function of the

proposed CVML is differentiable and free of local constraints. As a result, computa-

tion of the proposal is straightforward, with the help of gradient-based algorithms.

The rest of the paper is organized as follows. Section 2 describes the proposed

CVML procedure for estimating the directions and the dimension of the CMS, and
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presents the theoretical results for the consistency, asymptotic expansion and conver-

gence rate. The results of simulations and real-data applications are given in Sections

3 and 4, respectively. Assumptions and remarks are summarized in the Appendix.

Technical proofs are provided in the Supplementary Material.

2. Cross-validation metric learning method

Suppose that {(Yi,Xi), i = 1, . . . , n} are independent random copies of (Y,X)

taking values in R× Rp, and εi are random errors such that

Yi = g(L>0 Xi) + εi, i = 1, . . . , n, (2.1)

where Xi is supported by a bounded set Ω.

Note that model (1.1) is not uniquely defined. This is because for any orthonor-

mal transformation Q ∈ Rr0×r0 ,

f(x) = g(L>0 x) = g(Q>QL>0 x) ≡ g1(L∗>0 x),

where g1(u) = g(Q>u) and L∗0 = L0Q
>. Although L0 is not unique, the subspace

spanned by the column vectors of L0, denoted by S(L0), is unique, with the projection

matrix L0L
>
0 . In this paper, S(L0) is referred to as the CMS.

2.1. Estimating the directions in the CMS

Given the true projection matrix L0, the regression function can be written as

f(x) = E(Y |X− x ∈ L⊥0 ),
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where L⊥0 denotes the space spanned by vectors perpendicular to S(L0). We estimate

f(·) using the kernel smoothing method, as follows.

For any fixed 1 ≤ r ≤ p, set M = L1H
−2L>1 , where L1 is of size p× r satisfying

L>1 L1 = Ir, and H = diag(h1, . . . , hr) is the bandwidth matrix with h1 > 0, . . . , hr >

0. Hence, the matrix M is positive semi-definite, and can be viewed as a distance

metric between two samples. The kernel function based on the distance metric M is

defined as

KM(t) =
1

h1 · · ·hr
K(t>Mt) =

1

h1 · · ·hr
K(t>L1H

−2L>1 t), t ∈ Rp,

where K(·) is a univariate kernel function defined on [0,∞), with a bounded support

satisfying
∫
s∈Rr K(‖s‖2)ds = 1.

Heuristically, the Nadaraya-Watson kernel-smoothing estimator of f(x) is

f̂n(x) =

∑n
i=1 YiKM(Xi − x)∑n
i=1 KM(Xi − x)

, for any x ∈ Rp,

where M is unknown and to be estimated. Thus, we define

K∗j,i =
KM(Xj −Xi)∑
l 6=iKM(Xl −Xi)

, for j 6= i,

and K∗i,i = 0. Note that
∑n

j=1K
∗
j,i = 1 and K∗j,i 6= K∗i,j, for any i 6= j. Let Sp+ be the

cone of symmetric positive semi-definite p × p real-valued matrices. The proposed

estimator of M is the minimizer of

CMn(M) =
1

n

n∑
i=1

{f̂ (−i)(Xi)− Yi}2w(Xi), (2.2)
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over all M ∈ Sp+, denoted by M̂, where

f̂ (−i)(Xi) =
n∑
j=1

YjK
∗
j,i =

∑
j 6=i YjKM(Xj −Xi)∑
j 6=iKM(Xj −Xi)

, (2.3)

and w(·) is a bounded and positive weight function with support Ω◦ strictly inside Ω.

The objective function (2.2) is essentially a leave-one-out cross-validation based on

the squared errors, and thus the proposed procedure is called cross-validation metric

learning. The weight function w(·) is introduced to handle the boundary effect by

letting w(x) = 0 if infy∈∂Ω ‖x − y‖ < c, for some constant c > 0, where ∂Ω is the

boundary of Ω.

In practise, to obtain M̂, we remove the constraint M ∈ Sp+ using the decompo-

sition M = AA>, for all A ∈ Rp×r. Let vec(A) denote the vectorization of a matrix

A by its column vectors, and let A1 ⊗A2 denote the Kronecker product of A1 and

A2. Then, (2.3) can be written as

f̂ (−i)(Xi) =
n∑
j=1

YjK
∗
j,i =

∑
j 6=i YjK(‖(Ir ⊗X>ij)vec(A)‖2)∑
j 6=iK(‖(Ir ⊗X>ij)vec(A)‖2)

,

where Xij ≡ Xj −Xi. Taking the derivative of (2.2) with respect to vec(A) yields a

gradient rule:

∂CMn(M)

∂vec(A)
= − 2

n

n∑
i=1

∂f̂ (−i)(Xi)

∂vec(A)
{Yi − f̂ (−i)(Xi)}w(Xi), (2.4)

where

∂f̂ (−i)(Xi)

∂vec(A)
=

2
∑

j 6=i K̇(‖A>Xij‖2){Yj − f̂ (−i)(Xi)}(Ir ⊗XijX
>
ij)vec(A)∑

j 6=iK(‖A>Xij‖2)
.
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Here, K̇(·) denotes the first derivative of the kernel function K(·). Therefore, the

numerical computation of the proposed CVML approach can be carried out by em-

ploying gradient-based algorithms, such as the conjugate gradient or gradient descent

algorithms. In particular, when r � p, the computation would be relatively efficient.

To further improve the computational efficiency, one may also consider using algo-

rithms such as the stochastic gradient decent. Once M̂ is obtained, the estimated

bandwidth matrix Ĥ and the directions L̂1 can be calculated immediately using the

singular value decomposition of M̂.

The detailed estimation procedure for the proposed CVML method is summa-

rized in Algorithm 1. This procedure is free of local pairwise constraints that are

required in many other metric learning methods. Moreover, the procedure to si-

multaneously estimate the effective directions and the bandwidths avoids the bias

problem arising from using two separate cost functions to estimate the directions

and the link function in many popular methods; see Hall (1989), Härdle and Stoker

Statistica Sinica: Preprint 
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(1989), and Carroll et al. (1997).

Algorithm 1: Estimation of directions and bandwidth

Data: X, y, r

Result: L̂1, Ĥ

1 Get Â by minimizing (2.2) with the gradient (2.4);

2 Calculate M̂ = ÂÂ>;

3 Singular value decomposition M̂ = L̂1Λ̂L̂>1 ;

4 Ĥ = Λ̂−1/2;

Remark 1. Härdle et al. (1993) first applied the cross-validation technique to es-

timate the single-index model (r0 = 1), and the estimator is shown to have good

asymptotic properties. The proposed method is similar, but also substantially dif-

ferent from their method. The cross-validation method cannot be extended easily

to multiple-index models, because it uses a grid search algorithm to estimate the

directions and bandwidths, which is inefficient and costly in higher-dimensional set-

tings. In addition, instead of estimating the bandwidths and directions separately,

we simply regard the fusion matrix M as a Mahalanobis metric. A relevant work to

Algorithm 1 is Weinberger and Tesauro (2007). Nonetheless, the bandwidth and di-

rections in the CMS are not studied in their setup, and no theoretical justification for

the properties of M̂ is established. They do not consider how to estimate the desired

dimensionality when it is unknown. In contrast to Weinberger and Tesauro (2007)

and Noh et al. (2017), we provide an in-depth study of the structure of M̂ (eigenval-
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ues and eigenvectors) in a statistical way and attempt to apply it to multiple-index

models.

Remark 2. In contrast to some SIR-based methods (Li, 1991, 1992; Cook, 1998), the

proposed method is free of the linearity condition and constant covariance condition;

see condition (C1) in the Appendix. Methods such as the seminal MAVE and SA

methods usually perform a nonparametric kernel estimation procedure to estimate

the link function or its derivative, which involves selecting bandwidths to be used in

estimating effective directions. This is not needed in the proposed CVML approach,

because it directly obtains a data-driven bandwidth. For all large n, the estimated

bandwidth is shown to be at the same rate as the theoretically optimal bandwidth

in the sense of minimizing the mean weighted integrated squared errors∫
x∈Rp

E{f̂n(x)− f(x)}2w(x)fX(x)dx. (2.5)

Here and after, ‖A‖ denotes the Frobenius norm for matrix A, and ġ(x) and

g̈(x) denote the first and second derivatives of g(·) at x, respectively.

Theorem 1 (Consistency). Suppose that the true dimension r0 of the CMS is known

and conditions (C1)–(C5) in the Appendix hold. Define h = (h1, . . . , hr0)
>. If ‖h‖ →

0 and h1h2 · · ·hr0 > n−δ, for some 0 < δ < 1, then L̂1 → L∗ in probability as n→∞,

where S(L∗) = S(L0).

Theorem 1 states that under certain conditions, the estimated direction L̂1 con-
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verges to the directions in the true CMS. In other words, the CVML method is able

to estimate the directions in the CMS consistently. To determine the convergence

rate, we first present the asymptotic expansion of CMn(M). Let

R1(K)Ir0 =

∫
s∈Rr0

ss>K(‖s‖2)ds, R2(K) =

∫
s∈Rr0

K2(‖s‖2)ds.

Theorem 2 (Asymptotic expansion). Suppose that the true dimension r0 of the

CMS is known and conditions (C1)–(C5) in the Appendix hold. Let

L =

(
L1 L2

)
be a p× p orthonormal matrix, where L1 ∈ Rp×r0 and L2 is the augmented orthonor-

mal basis in Rp satisfying ‖L>0 L2‖ → 0. Let fr0(·) be the density of L>0 X. Then,

uniformly over {h : ‖h‖ ≤ δn} for any δn → 0, and h1h2 · · ·hr0 > n−δ for some

0 < δ < 1,

CMn(M)− η0 =

∫
t∈Rp

{ψ(t,h,L1)}2fX(t)
w(t)

f 2
r0

(L>0 t)
dt +

R2(K)V0

nh1 · · ·hr0

+ op

(
‖L>0 L2‖2 + ‖h‖4 +

1

nh1 · · ·hr0

)
, (2.6)

where η0 = n−1
∑n

i=1w(Xi)ε
2
i ,

ψ(t,h,L1) = ġ(L>0 t)>L>0 L2b(L>0 t) +R1(K)tr{HL>1 L0A(L>0 t)L>0 L1H},

A(L>0 t) =
1

2
g̈(L>0 t)fr0(L

>
0 t) + ġ(L>0 t)ḟr0(L

>
0 t)>, t ∈ Rp,

b(L>0 t) = Eu2|u1(U2 − L⊥>0 t|U1 = L>0 t)fr0(L
>
0 t),

V0 =

∫
t∈Rp

σ2(L>0 t)
fX(t)w(t)

fr0(L
>
0 t)

dt.
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Remark 3. The asymptotic expansion in (2.6) offers some insight into the CVML

method. The first term on the right-hand side of (2.6) is the bias term, and the

second term is the variance term. For instance, when the identifiability condition

(C4) in the Appendix is violated, there exists a unit vector `1 ∈ Rp, such that

`>1 L0ġ(L>0 t) = 0, for all t ∈ Rp. Then, `>1 L0A(L>0 t)L>0 `1 = 0. The bandwidth

along the direction `1 need not be small. In a special case that g(·) is constant,

and thus A(L>0 t) = 0, the bias term is irrelevant to the bandwidth h, and only the

variance term R2(K)V0/(nh1 · · ·hr0) plays a role in CMn(M) − η0. As a result, the

estimated bandwidth tends to be large and the estimate of the link function reduces

to a constant.

The following corollary presents the rate of convergence of L̂1. Define the distance

between the subspaces spanned by L0 and L̂1 as m(L̂1,L0) = ‖L>0 (Ip−L̂1L̂
>
1 )‖, where

Ip is a p× p identity matrix.

Corollary 1 (Rate of convergence). Suppose that the true dimension r0 of the CMS

is known and conditions (C1)–(C5) in the Appendix hold. Then,

m(L̂1,L0) = Op(‖h‖2).

Moreover, the resulting bandwidth minimizing (2.6) is at the order of n−1/(r0+4).

Recall that the theoretically optimal bandwidth for the nonparametric estimation

in the sense of minimizing (2.5) is also at the order of n−1/(r0+4). This implies that we
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can simultaneously estimate the central mean subspace and the link function with

the optimal rate of bandwidth.

On the other hand, it can be seen from the asymptotic expansion (2.6) in Theo-

rem 2 that the esimated directions in the CMS are only relevant to the bias term. As

a result, the convergence rate of L̂1 is at the order of ‖h‖2. Intuitively, a narrower

bandwidth would result in a faster convergence rate. This finding induces the follow-

ing correction method that allows a faster rate of convergence. Instead of minimizing

CMn(M), one can minimize

CMn(M)− R2(K)V̂0

nh1 · · ·hr0

over M, where V̂0 is an estimate of V0. Recall that V0 is related to the density fX(x)

and the variance function σ2(x), which are usually unknown. The density fX(x) can

be estimated using conventional density estimation methods. The variance function

σ2(·) can be estimated by referring to Härdle et al. (1993). The correction method

improves the rate of convergence and is of theoretical interest.

The following remark provides greater insight into the convergence rate and the

optimal rate of the bandwidth in Corollary 1.

Remark 4. Let α = (α1, . . . , αr0)
>, h1 = α1n

−1/(r0+4), · · · , hr0 = αr0n
−1/(r0+4),

L>0 L1 = D̃r0×r0 , which is an orthonormal matrix, and L>0 L2 = n−2/(r0+4)Dr0×(p−r0).

Statistica Sinica: Preprint 
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The leading term of the right-hand side of (2.6) is

n
− 4

r0+4

{∫
t∈Rp

[
ġ(L>0 t)>Db(L>0 t) +R1(K)tr

{
diag(α)D̃>A(L>0 t)D̃diag(α)

}]2

× fX(t)w(t)

f 2
r0

(L>0 t)
dt +

R2(K)V0

α1 · · ·αr0

}
.

(2.7)

Denote the minimizer of (2.7) as α∗,D∗, D̃∗. As a result, the optimal bandwidth

ĥ = n−1/(r0+4)α∗{1 + o(1)} and L̂1 = (L0 − n−2/(r0+4)L̂⊥1 D>∗ )D̃−1
∗ {1 + o(1)}.

2.2. Determining the dimension of the CMS

The true dimension r0 is crucial to the estimation of the CMS, but it is often

unknown in practice. Determining r0 is also a nontrivial task. Many existing ap-

proaches used to determine the structural dimension of the CMS are inspired by the

equivalence between dimension reduction and matrix eigen-decomposition. The se-

quential test methods (Li, 1991; Bura and Cook, 2001b; Cook and Ni, 2005) generally

cannot give a consistent r̂ owing to the type-I error. The bootstrapping methods (Ye

and Weiss, 2003; Zhu and Zeng, 2006; Luo and Li, 2016) can determine the dimension

in a data-driven manner, but are computationally burdensome. The BIC criterion

(Zhu et al., 2006; Zhu and Zhu, 2007) and the ratio estimation methods (Luo et al.,

2009; Xia et al., 2015; Zhu et al., 2019, 2020) are able to produce consistent esti-

mations of r0 and are computationally attractive. The sparse eigen-decomposition

proposed by Zhu et al. (2010) can estimate directions and the structural dimension
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of the CMS simultaneously. However, the aforementioned methods rely on a relevant

kernel matrix, usually obtained by inverse regression-based estimation procedures,

and thus the link function is lost. In a nonparametric regression framework, Xia et

al. (2002) proposed determining r0 using a leave-one-out cross-validation procedure

based on MAVE estimated directions. Inspired by the novel ideas of Xia et al. (2002)

and the ratio estimation approaches, we propose the CVML method for determining

the dimension of the CMS.

Proposition 1. Suppose that the conditions (C1)–(C5) in the Appendix hold. Under

model (1.1), as n→∞, with probability tending to one,

(i) CMn(M̂r)/CMn(M̂r0) > 1, for all 1 ≤ r < r0;

(ii) CMn(M̂r)/CMn(M̂r0)→ 1, for all r0 ≤ r ≤ p.

Proposition 1 shows that CMn(M̂r) > CMn(M̂r0), for all r < r0, because of

lack of fit. Intuitively, CMn(M̂r) would decrease as r increases until it arrived at r0.

Therefore, we attempt to track the first time that the ratio CMn(M̂r)/CMn(M̂r+1)

hits one, and estimate the dimension of CMS as

r̂ ≡ min
0≤r≤p−1

{
r :

∣∣∣∣ CMn(M̂r)

CMn(M̂r+1)
− 1

∣∣∣∣ < τn

}
,

where τn is positive and converges to zero at a slow rate and CMn(M̂0) = n−1(yi−ȳ)2.

The choice of τn is given in Section 3. The estimation procedure is detailed in

Algorithm 2.
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Remark 5. The estimation procedure ranges r from 1 to p. The method in Xia et al.

(2002) involves calculating cross-validation errors for all r ∈ {1, . . . , p}. Our proposed

approach stops at a certain r < p and, thus, possibly avoids the computational

burden caused by the calculation of M̂r for some large r. In practise, to ensure

the estimation accuracy, one can require that the procedure stops only when two

consecutive ratios are close to one or, equivalently, modify the stopping condition as

|CMn(M̂r)/CMn(M̂r+1)− 1| < τn and |CMn(M̂r+1)/CMn(M̂r+2)− 1| < τn, for some

fixed r.

The empirical performance of the proposed method in terms of determining the

dimension of the CMS is shown in the next section.

3. Simulations

In this section, we examine the performance of the proposed CVML method

in terms of estimating the directions in the CMS and determining the structural

dimension of the CMS, respectively. We adopt the Gaussian-type kernel function

K(u) = exp(−1
2
u>Mu). For simplicity, the weight function w(x) is set to be one, and

thus all the observations have equal weights. The CVML approach is implemented

with the help of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-

gorithm in the lbfgs package in R. Let ε follow the standard normal distribution

N(0, 1). We generate models from the following cases:

Example 3.1. We generate Xi from the standard normal distribution N(0, 1) inde-
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Algorithm 2: Determining the dimension of the CMS

Data: X, y

Result: r̂, M̂r̂

1 Initialization: τn, r = 1, ∆ = 10, Err0 = n−1
∑n

i=1(yi − ȳ)2;

2 while |∆− 1| > τn do

3 if r=p+1 then

4 print r̂ = p, break;

5 else

6 Calculate M̂r by Algorithm 1, Err1 = CMn(M̂r);

7 ∆ = Err0/Err1, Err0 = Err1;

8 r = r + 1;

9 r̂ = r − 2.

pendently; we generate Y from

Model 1: Y = X1/{0.5 + (X2 + 1.5)2}+ 0.5ε,

Model 2: Y = X1(X1 +X2 + 1) + 0.5ε,

where Model 1 and Model 2 follow those of, for example, Li (1991) and Xia et al.

(2002). The sample size is set at n = 200 or n = 400 and p = 10 or p = 30. In

each case, 100 replications are drawn. Let `1 = (1, 0, . . . , 0)>, `2 = (0, 1, . . . , 0)>,

and L0 = (`1, `2).
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Example 3.2. We generate Xi from the uniform distribution U(0, 1). The response

variable Y is generated from

Model 3: Y = sin(2π`>1 X) + 4(`>2 X− 0.5)2 + σε. (3.1)

Let `1 = (1,−1, 1, 0, . . . , 0)>/
√

3 and `2 = (1, 1, 0, . . . , 0)>/
√

2.

Example 3.3. Consider the model:

Model 4: Y = 1 + 2(`>1 X)(`>2 X)2 + 2.5 exp{−(`>3 X)2}+ σε,

where Xi is generated from U(−1, 1). Let `1 = (1,−1, 1, 0, . . . , 0)>/
√

3, `2 =

(1, 1, 0, 1, 0, . . . , 0)>/
√

3, and `3 = (−1, 0, 1, 1, 0, . . . , 0)>/
√

3.

With regard to estimating the directions in the CMS, we compare the results

of the proposed methods with those of the MAVE, OPG, SIR, SAVE and pHd ap-

proaches. The means and standard deviations of the estimation error m(L̂1,L0) for

Models 1–4 are presented in Tables 1 and 2. Table 3 summarizes the means of the

estimated bandwidths for Model 3, with the sample size n varying from 200 to 1600.

It is seen clearly from Table 1 that the estimation errors of the proposed CVML

estimates are usually smaller than those of the alternatives for Models 1 and 2, es-

pecially when p is large and n is small. The results in Table 2 also indicate that the

CVML method performs comparably with existing methods in terms of estimating

the directions of the CMS. In addition, Table 3 shows that the estimated bandwidths

obtained by the CVML method become smaller as the sample size increases.

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0398



CROSS-VALIDATION METRIC LEARNING 21

We also compare the performance of the proposed method in terms of deter-

mining the structural dimension with that of the MAVE-based method (MAVE, Xia

et al. 2002), the ridge-type ratio estimation (RRE, Xia et al. 2015), and the BIC

(BIC, Zhu et al. 2006). For those methods that involve a tuning parameter, we use

the values recommended in the literature. In particular, we take the ridge value

cn = log(n)/(10
√
n) for the RRE and the penalty value αn =

√
n for the BIC. Based

on our limited simulation experiments, we recommend τn = 2.5n−1/3 for the CVML

method. The frequencies of the estimated dimensions for Models 1–4 are presented

in Table 4. Figure 1 presents the box plots of the ratio CMn(Mr)/CMn(Mr+1) for

Models 3 and 4, with red horizontal straight lines representing y = 1. It is seen from

the results in Table 4 that the CVML performs comparably with the MAVE and

outperforms the other competitors, especially for Model 4, where the true dimen-

sion of the CMS is three. Figure 1 verifies the feasibility of the proposed estimation

procedure.

Overall, the simulation results support our theoretical results, and the proposed

CVML works reasonably well in terms of dimension reduction, including estimating

both the directions and the dimension of the CMS.

4. Real-data illustration

4.1. London air quality data set

Air pollution may cause diseases, allergies, and even death. It occurs when harm-
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Table 1: Means and standard deviations (in parentheses) of m(L̂1,L0) for Model 1 and 2

Model p n CVML MAVE OPG SIR pHd SAVE

1 10 200 0.402 0.552 0.499 0.567 0.551 1.327

(0.095) (0.170) (0.154) (0.134) (0.104) (0.058)

400 0.223 0.319 0.279 0.375 0.385 1.227

(0.049) (0.069) (0.070) (0.071) (0.072) (0.114)

30 200 0.581 1.021 1.038 1.030 1.095 1.389

(0.058) (0.110) (0.111) (0.109) (0.103) (0.018)

400 0.475 0.785 0.779 0.728 0.778 1.400

(0.051) (0.168) (0.182) (0.089) (0.098) (0.011)

2 10 200 0.365 0.390 0.363 0.740 0.811 1.058

(0.102) (0.122) (0.123) (0.194) (0.186) (0.086)

400 0.240 0.242 0.210 0.484 0.628 0.961

(0.061) (0.065) (0.050) (0.127) (0.217) (0.104)

30 200 0.511 0.770 0.761 1.165 1.101 1.372

(0.065) (0.130) (0.121) (0.113) (0.038) (0.038)

400 0.475 0.785 0.779 0.728 0.778 1.400

(0.051) (0.168) (0.182) (0.089) (0.098) (0.011)

Table 2: Means and standard deviations (in parentheses) of m(L̂1,L0) for Model 3 and 4 with

σ = 0.2.
Model p n CVML MAVE OPG SIR pHd SAVE

3 10 200 0.144 0.142 0.143 0.958 0.355 0.983

(0.064) (0.039) (0.039) (0.090) (0.069) (0.078)

400 0.076 0.091 0.089 0.925 0.249 0.672

(0.021) (0.025) (0.025) (0.106) (0.035) (0.214)

30 200 0.275 0.354 0.402 1.132 0.753 1.342

(0.048) (0.076) (0.079) (0.067) (0.108) (0.054)

400 0.168 0.168 0.183 1.043 0.479 1.223

(0.022) (0.027) (0.027) (0.041) (0.052) (0.078)

4 10 200 0.417 0.657 0.619 1.269 1.082 1.183

(0.125) (0.273) (0.298) (0.099) (0.127) (0.115)

400 0.209 0.222 0.202 1.241 0.999 1.066

(0.047) (0.047) (0.039) (0.102) (0.120) (0.101)

30 200 0.598 0.968 0.969 1.614 1.224 1.537

(0.119) (0.104) (0.103) (0.054) (0.052) (0.075)

400 0.499 1.034 1.026 1.475 1.287 1.448

(0.099) (0.141) (0.188) (0.050) (0.075) (0.072)
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Table 3: Means and standard deviations (in parentheses) of estimated bandwidths for Model 3

p σ n = 200 n = 400 n = 800 n = 1600

5 0.1 ĥ1 × 10 0.356 0.295 0.285 0.275

(0.079) (0.056) (0.058) (0.044)

ĥ2 × 10 0.519 0.420 0.432 0.420

(0.097) (0.061) (0.051) (0.043)

0.2 ĥ1 × 10 0.469 0.439 0.397 0.359

(0.081) (0.039) (0.026) (0.020)

ĥ2 × 10 0.698 0.609 0.548 0.494

(0.096) (0.059) (0.037) (0.036)

10 0.1 ĥ1 × 10 0.313 0.291 0.274 0.266

(0.056) (0.053) (0.052) (0.050)

ĥ2 × 10 0.452 0.415 0.414 0.404

(0.072) (0.048) (0.047) (0.040)

0.2 ĥ1 × 10 0.327 0.323 0.300 0.288

(0.073) (0.055) (0.053) (0.052)

ĥ2 × 10 0.483 0.471 0.460 0.443

(0.099) (0.056) (0.043) (0.034)

Table 4: Frequencies of estimated dimension for Models 1–4 with p = 10
Model n = 200 n = 400

r̂ < r0 r̂ = r0 r̂ > r0 r̂ < r0 r̂ = r0 r̂ > r0

1 CVML 0.04 0.87 0.09 0 1 0

MAVE 0 0.77 0.23 0 0.99 0.01

BIC 0 0 1 0 0 1

RRE 0.44 0.48 0.08 0.27 0.72 0.01

2 CVML 0.24 0.73 0.03 0.05 0.95 0

MAVE 0.19 0.81 0 0.03 0.97 0

BIC 0 0 1 0 0 1

RRE 0.44 0.31 0.25 0.44 0.54 0.02

3 CVML 0 1 0 0 1 0

MAVE 0 1 0 0 1 0

BIC 0 0 1 0 0 1

RRE 0.98 0.01 0.01 0.99 0.01 0

4 CVML 0.16 0.82 0.02 0 1 0

MAVE 0.92 0.08 0 0.71 0.29 0.01

BIC 0 0.56 0.44 0 0.15 0.85

RRE 0.80 0.05 0.15 0.99 0.01 0
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Figure 1: Box plots of the ratio CMn(Mr)/CMn(Mr+1) for Model 3 (left) and Model 4 (right)

with n = 400 and p = 10
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ful substances, including particulates, liquid droplets, gases, and chemical molecules

produced by human activity, are introduced into the atmosphere. Pollutants are clas-

sified mainly as primary and secondary substances. Primary pollutants are usually

generated from a chemical process, such as the sulfur dioxide released from facto-

ries. Secondary pollutants form in the air when primary pollutants react or interact.

Ground-level ozone (O3) is a prominent example of a secondary pollutant.

In this study, we attempt to exploit the relationship between primary pollutants

and the secondary pollutant O3, based on the London air quality data in the R pack-

age openair. After deleting some missing data, the data set is collected from May 1,

1998, to September 30, 2004, with hourly updated records of wind speed (x1), wind

direction (x2), oxides of nitrogen concentration NOx (x3), nitrogen dioxide concen-

tration NO2 (x4), particulate PM10 in ug/m3 (x5), sulfur dioxide concentration SO2
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(x6), carbon monoxide concentration CO (x7), particulate PM2.5 in ug/m3 (x8), and

Ozone concentration (Y ). We convert the hourly level data to its daily average for

all variables, and apply the CVML method to the treated daily level data set.

The structural dimension estimated by the CVML procedure is r̂ = 1. From

Table 5, the direction estimated by the CVML approach indicates that NOx and NO2

have significant effects on O3 concentration. This provides empirical evidence for the

claim that secondary pollutants are usually products of the reactions of primary

pollutants under certain environmental conditions. Nevertheless, the effects of wind

speed, wind direction, and particulates seem not to be very significant.

Table 5: Estimated directions in CMS for London air quality data set

Direction x1 x2 x3 x4 x5 x6 x7 x8

(ws) (wd) (NOx) (NO2) (PM10) (SO2) (CO) (PM2.5)

ˆ̀
1 −0.045 0.006 0.948 −0.271 0.000 0.012 −0.161 −0.006

4.2. Beijing PM2.5 data set

Many cities experience hazy weather. The PM2.5—particulate matter less than

2.5 µm in diameter—is known to influence human health and the atmospheric cli-

mate. Epidemiological experts concluded that exposure to PM2.5 over a few hours to

weeks can cause cardiovascular disease, and longer-term exposure increases the risk

for cardiovascular mortality and even shortens the life span. In this real-data analy-

sis, we investigate the factors that affect the PM2.5 concentration. We analyze the

Beijing PM2.5 data set collected at the Aotizhongxin air-quality monitoring site. The
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data set is downloadable from UCI database with the link https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-

Site+Air-Quality+Data. The PM2.5 (Y ) data ranging from March 2013 to February

2017 are converted to daily averaged records, with potential affecting factors PM10

(x1), SO2 concentration (x2), NO2 concentration (x3), CO concentration (x4), O3

concentration (x5) in ug/m3, temperature (x6), pressure (x7), dew point tempera-

ture (x8), precipitation (x9), and wind speed (x10).

The structural dimension estimated by the CVML method is r̂ = 3. The three

estimated directions are shown in Table 6. Note that the first three eigenvalues of

M̂ are 154.447, 36.138, and 9.933. Therefore, the first direction is very important to

reveal the relationship between the PM2.5 and the potential affecting factors. The

first direction in Table 6 clearly indicates that the PM10, temperature, and dew

point temperature are crucial variables associated with the PM2.5 concentration.

The latter two factors were also identified by Zhang et al. (2017). The last two

directions reveal that the PM2.5 concentration has weak relationships with pressure

and wind speed, but is possibly related to NO2 and CO, which are potential chemical

components of the PM2.5.

Table 6: Estimated directions in CMS for Beijing PM2.5 data set
Direction x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

(PM10) (SO2) (NO2) (CO) (O3) (temp) (pres) (dewp) (preci) (ws)

ˆ̀
1 −0.540 0.002 0.079 −0.128 −0.029 0.410 −0.034 −0.717 0.025 0.003

ˆ̀
2 −0.795 −0.139 −0.231 0.040 −0.109 −0.209 −0.034 0.446 −0.193 0.018

ˆ̀
3 0.091 −0.504 −0.231 −0.492 −0.136 0.403 −0.159 0.250 0.397 −0.125
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5. Discussion

In this study, we attempt to reduce the dimension of multiple-index models in the

framework of metric learning. The proposed cross-validation-based metric learning

method produces a metric that contains crucial information on both the central mean

subspace and the unknown link function. The rate of convergence and the optimal

order of the bandwidth are derived. A novel algorithm is proposed to determine the

structural dimension of the CMS when it is unknown. For the purpose of prediction,

we refer to the work of Conn and Li (2019), who show that the kernel estimate using

a full bandwidth matrix achieves the optimal rate of convergence for a multiple-index

model.

Appendix: Assumptions and remarks

Let A⊥ denotes the space orthogonal to that spanned by the column vectors of

the matrix A. The following regularity conditions are imposed.

(C1) [Design of X.] The density function fX(x) of X is positive, bounded and is

continuously differentiable up to order two.

(C2) [Link function.] The second-order derivatives of g(·) exist and are bounded

away from infinity.

(C3) [Kernel function.] The kernel function K(·) is a symmetric univariate density

function with bounded derivatives.
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(C4) [Identifiability.] Let F = {t ∈ Rp : t ∈ L⊥0 }. For any x ∈ Rp, if f(x+ct) = f(x)

for all c ∈ R, then it must have t ∈ F .

(C5) [Moments of errors.] The error satisfies E(εi|Xi) = 0, E(ε2i |Xi) = σ2(L>0 Xi) =

σ2
i almost surely and supiE(|εi|4) < ∞ for all i, where σ2(·) is bounded and

continuous.

Condition (C1) is a relatively weaker assumption on the density of X, compared

with the linearity condition in many SIR-based methods. Conditions (C2)–(C3)

are common conditions on the nonparametric link function and the kernel function,

respectively. Condition (C3) is satisfied by many commonly-used kernel functions,

such as the biweight kernel and the quadratic kernel. The subspace F in Condition

(C4) indeed equals to the space orthogonal to S(L0). Hence, Condition (C4) indicates

that the dimension r0 cannot be further reduced and the regression function f(x)

remains constant when x varies in F . For more insights into condition (C4), we

consider a toy example in which t = (t1, t2)>, r0 = 2 and f(x) = (x1 + x2)2. By

choosing t1 = −t2, we have f(x + ct) = f(x) for all c ∈ R and t ∈ F in this

instance. The moment assumption up to the fourth order in condition (C5) is made

for technical simplicity.

Supplementary Material

The technical proofs are provided in the online Supplementary Material.
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