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Abstract: In this study, we focus on the analysis of high-dimensional data that

come from multiple sources (“experiments”), and thus have different, possibly

correlated responses, but share the same set of predictors. The measurements

of the predictors may be different across experiments. We introduce a new re-

gression approach, using multiple quantiles to select those predictors that affect

any of the responses at any quantile level and to estimate the nonzero param-

eters. Our approach differs from established methods by being able to handle

heterogeneity in data sets and heavy-tailed error distributions, two difficulties

that are often encountered in complex data scenarios. Our estimator minimizes

a penalized objective function that aggregates the data from the different exper-

iments. We establish the model selection consistency and asymptotic normality

of the estimator. In addition, we present an information criterion that can be

used for consistent model selection. Simulations and two data applications il-

lustrate the advantages of our method in recovering the underlying regression

aPreviously at Texas A&M University during the preparation of this work.
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models. These advantages come from taking the group structure induced by the

predictors across experiments and the quantile levels into account.

Key words and phrases: Data integration; High dimensional data; Information

criterion; Penalized quantile regression.

1. Introduction

To set the stage for this work on data integration (DI), consider K data sets

from K different populations, where K is some fixed number, with linear

regression models

Yk = XT
k α
∗
k + Uk (k = 1, . . . , K). (1.1)

Here, Yk is a scalar response, Xk is a p-dimensional predictor, α∗k is a p-

dimensional parameter vector, and Uk is the error term. Zellner (1962)

referred to this set of models as seemingly unrelated regressions and pro-

posed the idea of estimating the regression parameters simultaneously using

a generalized least squares method. The responses in model (1.1) are differ-

ent, but dependent. The predictors are the same in the K data sets, but not

their values. This can occur, for example, if individuals are assessed through

various responses from different experiments and the predictor values are

measured in different ways (Gao and Carroll, 2017).

Model (1.1), with the assumption that E(Uk | Xk) = 0, can also be
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written as a heterogenous linear regression model,

E(Yk −XT
k α
∗
k | Xk) = 0 (k = 1, . . . , K).

We consider the same scenario, but pursue a different approach. Instead

of modeling the conditional mean of the response given the covariates, we

assume heterogeneous linear regression models for the conditional quantiles

Qτm(Xk) at various quantile levels τm (m = 1, . . . ,M); that is

E{I(Yk ≤ XT
k θ
∗
km)− τm | Xk} = 0 (k = 1, . . . , K), (1.2)

where I(·) is the indicator function and θ∗km is a p-dimensional parameter

vector. This is equivalent to

pr(Yk ≤ XT
k θ
∗
km | Xk) = pr{Yk ≤ Qτm(Xk) | Xk} = τm

(m = 1, . . . ,M ; k = 1, . . . , K). We are interested in the high-dimensional

data situation and, therefore, let the dimension p = pn of the parameter

vector tend to infinity as the sample size n increases. In addition, we assume

that the data are sparse, that is, most of the parameters are zero, which

means that only a fraction of the predictors affect the responses.

An important goal is to identify the relevant predictors. One possible

approach is to aggregate each predictor’s effect in all experiments by form-

ing groups. In our scenario, all responses share the same set of predictors.
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Hence, we have a natural group structure: the parameters of different quan-

tiles and experiments that belong to the same predictor constitute a group;

see Gao and Carroll (2017), who develop a group penalized estimation

method using a pseudolikelihood. To handle the unspecified dependence

between the responses in the K experiments, they pool the marginal like-

lihoods and impose an L2-group penalization on the grouped parameters.

The group penalty was introduced in a 1999 Australian National University

Ph.D. thesis by S. Bakin, and then applied to group selection questions by

Yuan and Lin (2006). Gao and Carroll (2017) use it to select predictors that

are influential in any of the experiments. Their main tool is the smoothly

clipped absolute deviation (SCAD) penalty (Fan and Li, 2001). In addi-

tion, Gao and Carroll (2017) use the concept of the Bayesian information

criterion to develop a pseudolikelihood information criterion that applies to

high-dimensional scenarios. Their pseudolikelihood approach is an impor-

tant advance, and useful when the distribution of the error can be modeled

parametrically, which is not assumed in our case.

In this study, we use a linear quantile regression approach based on

model (1.2); that is, we do not work with a likelihood, but with a differ-

ent objective function. Quantile regression was introduced by Koenker and

Bassett (1978); see also Koenker (2005). In contrast to classical regres-

sion, it provides a global picture of the predictors’ effects on the distri-
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bution of the responses, and it is robust to heavy-tailed distributions. In

high-dimensional settings, Belloni and Chernozhukov (2011) studied linear

quantile regression with a Lasso penalty, Wang et al. (2012) proved the

selection consistency of linear quantile regression with nonconvex penalty

functions, and Sherwood and Wang (2016) derived the asymptotic proper-

ties of partially linear additive quantile regression with a nonconvex penalty.

In addition to these works on single quantile regression, Zou and Yuan

(2008a) introduced a composite quantile regression approach that consid-

ers multiple quantiles simultaneously. They assumed that the slopes are

the same across quantiles, and used the adaptive Lasso penalty from Zou

(2006). Their method shares the oracle properties proposed in Fan and

Li (2001). In another paper, which focuses on computation and not on

theoretical properties, Zou and Yuan (2008b) propose a related approach

for the heterogeneous scenario, that is, when the covariates and errors are

dependent so that the slopes vary across quantiles. They consider multi-

ple responses, but model just one single quantile for each response. Their

method is able to detect nonzero slopes simultaneously. The two 2008 stud-

ies by Zou and Yuan examine settings with a fixed number of parameters.

Recently, the composite quantile approach of Zou and Yuan (2008a) was ex-

tended to high-dimensional scenarios by Gu and Zou (2020). These authors

assume that the slopes are the same across quantiles, that is, homogene-
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ity. As such, their approach does not apply to the heterogeneous models

investigated by our research. Fan et al. (2016) studied quantile regression

with multiple responses under a “transnormal” assumption, which requires

that the responses and predictors can be transformed into a multivariate

normal variable using marginal monotone functions. This is not required in

our model. In Table 3 of Section 4, we consider a simulation setting with

some binary predictors, which violates this assumption. While we are inter-

ested in identifying relevant predictors, Fan et al. (2016) focus on predicting

responses and estimating correlation matrices.

Our goal is simultaneous variable selection with multiple quantiles across

K experiments. To take account of the unknown dependence structure be-

tween the responses in the different experiments, we integrate the data by

summing their quantile loss functions. This is analogous to Gao and Carroll

(2017), who pool the likelihood functions. In addition, similarly to Sher-

wood and Wang (2016), who also conduct variable selection with multiple

quantiles, we apply a nonconvex penalty on the L1-norm of the coefficients

related to each predictor. This represents the overall strength of the predic-

tor across multiple experiments and quantiles. The penalty function takes

the group structure into account, and excludes covariates that have no im-

pact on any of the responses at any of the quantile levels. Moreover, the

L1-norm is computationally convenient in quantile regression settings, ow-
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ing to the work of Peng and Wang (2015), who provide a “Quick Iterative

Coordinate Descent” algorithm for solving nonconvex penalized quantile

regression in high dimensions with no group structure. With modifications,

their algorithm can be adapted to our approach; see Section 4.

Our work is largely motivated by the widespread existence of hetero-

geneity in complex data sets (Yu et al., 2003; Wang et al., 2012; Lee et al.,

2014), such as the liver toxicity data set and the financial index data an-

alyzed in Section 5. Classical regression focuses on the conditional mean

or on one single conditional quantile of Yk given Xk (k = 1, . . . , K). In

contrast, a major advantage of our approach is its ability to identify pre-

dictors in heterogeneous models that affect the responses at one or more

quantile levels, but not necessarily globally. When the random errors in

the data-generating mechanism have a heavy-tailed distribution, for exam-

ple, a t-distribution with a small number of degrees of freedom, quantile

based methods have a better estimation accuracy than that of competing

approaches that use the quadratic loss function. Despite these clear advan-

tages, multiple quantile regression for dependent data that originate from

different sources has not, to the best of our knowledge, been studied in the

literature. We also cover the high-dimensional data scenario by adding a

nonconvex group penalty term. We establish the selection consistency and

asymptotic normality of our estimator in this quite general setting under
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mild assumptions. Additionally we propose a multiple quantile Bayesian

information criterion (MQBIC) based on pooled check functions, which is

an extension of the Bayesian information criterion for linear quantile re-

gression (Lee et al., 2014) to the multiple-experiment scenario. Similarly to

the pseudolikelihood information criterion in Gao and Carroll (2017), the

MQBIC permits consistent model selection (see Section 3) and choice of

the tuning parameter for the penalized estimator (see Section 4).

The main contribution of this study is the introduction of quantile-

based methods to the high-dimensional scenario of DI. We propose a pe-

nalized estimation process and an information criterion, which identify the

covariates that affect any of the responses at any of the quantile levels. Our

method enjoys robustness, and can be applied to the complex scenario with

heterogeneous data and dependent responses.

The rest of this article is organized as follows. In Section 2, we introduce

our objective function, which involves a nonconvex group penalization term,

and present the oracle properties of the estimator. The MQBIC is presented

in Section 3, and its model selection consistency is established. In Section

4, we compare our method with other approaches using simulations. Our

method is illustrated in Section 5 by means of empirical data examples.

Section 6 gives a brief discussion of further questions. All proofs, as well as

additional simulation results, are provided in the Supplementary Material.
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For notational clarity, we assume in the following that the sample sizes and

the quantile levels are the same in every experiment. The conclusions and

methods are essentially the same if we drop these assumptions.

2. Penalized estimator

Throughout this article, we use the capital letter C to represent a generic

constant, including C1, C2 and so on. We write Im for the m×m identity

matrix. The symbols ‖ · ‖1 and ‖ · ‖ refer to the L1- and L2-norms of a

vector, and ⊗ denotes the Kronecker product.

Our conditional quantile regression model is Qτm(Xk) = XT
k θ
∗
km, with

ordered levels 0 < τ1 < τ2 < · · · < τM < 1. We can set the first column of

Xk to be (1, . . . , 1)T so that the model contains intercept terms. For nota-

tional convenience, we assume the intercepts all equal zero. The number of

predictors p = pn tends to infinity as the sample size n increases.

For k = 1, . . . , K and i = 1, . . . , n, we consider n independent copies

{Yki, Xki}, with Xki = (Xki1, . . . , Xkipn)T of the base observation {Yk, Xk}

from model (1.1). Here, we use three subscripts to locate the predictors,

that is, Xkij represents the jth component of the ith observation in the kth

experiment. We write Xk·j = (Xk1j, . . . , Xknj)
T for the vector. The data

are summarized in Table 1.

The regression parameters θ∗km (k = 1, . . . , K, m = 1, . . . ,M) are as-
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sumed to be sparse; that is, most of the components of θ∗km are zero. Write

θ∗(j) for the parameters related to the jth predictor (j = 1, . . . , pn) across

the K experiments and the M quantile levels, that is,

θ∗(j) = (θ∗11j, . . . , θ
∗
1Mj, . . . , θ

∗
K1j, . . . , θ

∗
KMj)

T.

We want to select the predictors that have an effect on any of the responses,

that is, we want to specify the set A = {j : 1 ≤ j ≤ pn, ‖θ∗(j)‖ > 0}.

Without loss of generality, let A = {1, 2, . . . , qn}, that is, only the first qn

predictors have nonzero parameters. We assume that qn tends to infinity

as n and pn increase. For convenience of notation, we use the letter a at

the end of a subscript to refer to subvectors or submatrices that consist of

components with subscripts in A. For example, Xkia = (Xki1, . . . , Xkiqn)T,

Xk·a = (Xk1a, . . . , Xkna)
T, and θ∗kma = (θ∗km1, . . . , θ

∗
kmqn

)T.

The dependence between the experiments is unspecified. To integrate

the data, we therefore sum the quantile loss functions across the K experi-

ments and the M quantiles,

`n(θ) = n−1
∑K

k=1

∑M
m=1

∑n
i=1ρm(Yki −XT

kiθkm). (2.1)

In the above, ρm(x) = x{τm − I(x < 0)} is the check function and

θ = (θT
11, . . . , θ

T
1M , . . . , θ

T
K1, . . . , θ

T
KM)T

is a parameter vector. Loss functions analogous to (2.1) with K = 1 or
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Table 1: Data structure of multiple experiments

Experiment 1 . . . Experiment K

τ1 θ∗11 = (θ∗111, . . . , θ
∗
11pn

)T . . . θ∗K1 = (θ∗K11, . . . , θ
∗
K1pn

)T

...
...

...

τM θ∗1M = (θ∗1M1, . . . , θ
∗
1Mpn

)T . . . θ∗KM = (θ∗KM1, . . . , θ
∗
KMpn

)T

i = 1 Y11, X11 = (X111, . . . , X11pn
)T . . . YK1, XK1 = (XK11, . . . , XK1pn

)T

...
...

...

i = n Y1n, X1n = (X1n1, . . . , X1npn)
T . . . YKn, XKn = (XKn1, . . . , XKnpn)

T

Parameters related to τ1, . . . , τM and observations i = 1 to n.

M = 1 were used for low-dimensional linear models by Zou and Yuan

(2008b). The main difference between (2.1) and the composite quantile

loss function considered in Zou and Yuan (2008a) and Gu and Zou (2020)

is that we allow θkm 6= θkm′ (1 ≤ m 6= m′ ≤ M ; k = 1, . . . , K), that is,

different slopes.

To select the predictors that affect any of the responses, a nonconvex

penalty function Ωλn(·) with a tuning parameter λn is imposed on the overall

impact of each predictor. That impact is represented by the L1-norm of the

vector θ(j), which contains the parameters of the jth predictor in the K
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experiments. This gives the overall objective function

Γλn(θ) = `n(θ) +
∑pn

j=1Ωλn(‖θ(j)‖1). (2.2)

Our estimator is obtained by minimizing Γλn(θ). We use the SCAD penalty

function (Fan and Li, 2001)

Ωλn(x) =λnxI(0 ≤ x ≤ λn)+

aλnx− (x2 + λ2
n)/2

a− 1
I(λn < x < aλn) +

(a+ 1)λ2
n

2
I(x ≥ aλn),

where a is a constant that is usually set to 3.7 (Fan and Li, 2001). Before

stating the asymptotic properties of our estimator, we make the following

assumptions.

Assumption 1. There is a constant C > 0 such that |Xkij| ≤ C for every

k = 1, . . . , K, i = 1, . . . , n, and j = 1, . . . , pn.

Assumption 2. For every k = 1, . . . , K, there are positive constants C1

and C2 such that

C1 ≤ λmin(n−1XT
k·aXk·a) ≤ λmax(n−1XT

k·aXk·a) ≤ C2,

where λmin(·) and λmax(·) stand for the smallest and largest eigenvalues,

respectively. In addition Xk·a and (Yk1, . . . , Ykn)T are in “general positions,”

which is an identifiability condition that guarantees that a solution to the

quantile regression problem exists (Koenker, 2005, Section 2.2.2).
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Assumption 3. For every k = 1, . . . , K and m = 1, . . . ,M , the conditional

probability density fkm(· | x) of εkm = Yk−XT
k θ
∗
km given Xk = x is uniformly

bounded and bounded away from zero in a neighborhood of zero, and has a

derivative f ′km(· | x), which is uniformly bounded in a neighborhood of zero.

Assumption 4. The true model size satisfies qn = O(nc1), for some 0 ≤

c1 < 1/2.

Assumption 5. There are positive constants c2 and C such that 2c1 <

c2 ≤ 1, where c1 is the constant introduced in Assumption 4, and

n(1−c2)/2min1≤j≤qn‖θ∗(j)‖1 ≥ C.

Assumptions 1 and 2 guarantee the good behavior of the design matri-

ces. Assumption 1 can be relaxed by letting the covariate values increase

to infinity at a certain slow rate. We work with it mainly for reasons of

simplicity and clarity; see, for example, the closely related articles by Wang

et al. (2012), Lee et al. (2014), and Sherwood and Wang (2016), who also

limit themselves to the case with bounded covariates. The conditions in As-

sumption 3 concern the unknown distribution of the random errors. They

are considerably weaker than assuming a specific parametric model for the

error distribution. Assumption 4 regulates the growth rate of the true

model size. This is a standard assumption used to establish the asymptotic

properties of sparse estimators in linear models with a diverging number of
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parameters; see, for example, Wang et al. (2012) and Lee et al. (2014). In

addition, it is weaker than the condition qn = o(n1/5) required by Gao and

Carroll (2017). Assumption 5 excludes situations where the nonzero param-

eters decay too fast. Conditions similar to Assumptions 1–5 are required in

Wang et al. (2012) for single experiments with a single quantile.

The oracle estimator θ̂ is defined as the minimizer of `n(θ) that knows

that the first qn components of θ are nonzero and that the others are zero,

that is, ‖θ̂(j)‖ = 0, for qn < j ≤ pn. The following theorem provides the

model selection consistency of our estimator. More precisely, we show that,

with probability tending to one, the oracle estimator can be obtained using

our approach of minimizing the objective function Γλn(θ).

Theorem 1. Let S(λn) denote the set of local minimizers of Γλn(θ), and

θ̂denote the oracle estimator. Under Assumptions 1–5, pr{θ̂ ∈ S(λn)} → 1

as n→∞, if λn = o{n−(1−c2)/2}, n−1/2qn = o(λn), and n−1log pn = o(λ2
n).
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Before stating Theorem 2, we introduce some notation. We write

εkmi = Yki −XT
kiθ
∗
km, εkm = (εkm1, . . . , εkmn)T,

ε = (εT
11, . . . , ε

T
1M , . . . , ε

T
K1, . . . , ε

T
KM)T,

ψkmi(ε) = τm − I(εkmi < 0), ψnkm(ε) = {ψkm1(ε), . . . , ψkmn(ε)}T,

ψnk(ε) = {ψnk1(ε)T, . . . , ψnkM(ε)T}T, ψn(ε) = {ψn1(ε)T, . . . , ψnK(ε)T}T,

Hn = E{ψn(ε)ψn(ε)T | X} with X = {Xki : k = 1, . . . , K, i = 1, . . . , n},

where k = 1, . . . , K, m = 1 . . . ,M , and i = 1, . . . , n. Further, we set

Bnkm = diag{fkm(0 | Xk1), . . . , fkm(0 | Xkn)},

Bn = diag(Bn1, . . . , BnK) with Bnk = diag(Bnk1, . . . , BnkM),

θ∗a = (θ∗T11a, . . . , θ
∗T
1Ma, . . . , θ

∗T
K1a, . . . , θ

∗T
KMa)

T,

θ̂kma = (θ̂km1, . . . , θ̂kmqn)T, θ̂a = (θ̂T
11a, . . . , θ̂

T
1Ma, . . . , θ̂

T
K1a, . . . , θ̂

T
KMa)

T,

Xa = diag(IM ⊗X1·a, . . . , IM ⊗XK·a), Rn = n−1XT
a BnXa,

Sn = n−1XT
a HnXa, Σn = R−1

n SnR
−1
n .

The next theorem gives the asymptotic normality of low-dimensional pro-

jections of the nonzero part θ̂a of the oracle estimator θ̂ from Theorem 1. An

illustration of the result with histogram plots (for two simulation scenarios

from Section 4) is provided in Section S3 of the Supplementary Material.

Theorem 2. Let q∗n = qn ×M ×K. Consider an s× q∗n matrix An with s
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fixed and AnA
T
n → G, a positive-definite matrix. Then

n1/2AnΣ−1/2
n (θ̂a − θ∗a)→ N(0, G) (n→∞)

in distribution, provided Assumptions 1–4 are satisfied and λmin(Sn) is uni-

formly bounded away from zero.

Theorems 1 and 2 establish the model selection consistency and asymp-

totic normality of our estimator when experiments are correlated. This

shows that it is reasonable to aggregate information from multiple experi-

ments, rather than ignoring the correlation and analyzing each experiment

separately.

3. Multiple quantile Bayesian information criterion

To select the correct model, we use an information criterion that balances

the goodness-of-fit and the complexity of a model. By applying this in-

formation criterion to a set of competing models, the true model can be

identified with probability approaching one. In the context of quantile re-

gression, Lee et al. (2014) develop a Bayesian information criterion with a

diverging number of predictors. Their method considers one single quan-

tile and deals with data from one single experiment. We use a generalized

version of the criterion, now based on multiple quantiles and on data from

several experiments, which improves its ability to select the correct model.
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The multiple quantile Bayesian information criterion of a submodel D ⊂

{1, 2, . . . , pn} is

MQBIC(D) = log{
∑K

k=1

∑M
m=1

∑n
i=1ρm(Yki −XT

kiDθ̂kmD)}

+ (2n)−1|D|Tnlogn, (3.1)

where θ̂kmD = arg minθ∈R|D|
∑n

i=1 ρm(Yki − XT
kiDθ), for k = 1, . . . , K and

m = 1, . . . ,M , |D| is the cardinality of D, and Tn is a sequence of positive

constants diverging to infinity as n increases. The notation XkiD refers

to the subvectors of Xki· that contain only components with subscripts in

D. We set an upper bound on the cardinality of competing models, say

dn, and search for the best of the submodels with a cardinality smaller

or equal to dn. Define D∗ = {1, 2, . . . , qn} as the subset of {1, . . . , pn}

corresponding to the true model, andM = {D ⊂ {1, . . . , pn} : |D| ≤ dn} as

the set of all competing models. The first part of the MQBIC represents the

goodness-of-fit, and the second term is a penalty on the model complexity.

To guarantee the model selection consistency of the MQBIC, we need the

following assumptions, in addition to some of the assumptions from Section

2.

Assumption 6. For every k = 1, . . . , K, there are constants 0 < C3 ≤ C4

such that for any D ⊂ {1, . . . , pn}, the matrix Xk·D = (Xk1D, . . . , XknD)T
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satisfies

C3 ≤ min|D|≤2dnλmin(n−1XT
k·DXk·D) ≤ max|D|≤2dnλmax(n−1XT

k·DXk·D) ≤ C4.

Assumption 7. The full model size pn is of order pn = O(nc3), for some

c3 > 0; the true model size qn is fixed, qn = q, and satisfies q ≤ dn = O(nc4),

for some 0 < c4 < 1/2.

Assumption 8. The sequence Tn in the definition (3.1) satisfies Tn →∞

and n−1Tnlogn→ 0.

Assumption 9. The average n−1
∑K

k=1

∑M
m=1

∑n
i=1 ρm(εkmi) of the check

functions is bounded away from zero with probability tending to one.

Assumption 6 extends Assumption 2 for the true model to all candi-

date models. This is common for scenarios with more regression parame-

ters than observations, that is, pn > n. In Assumption 7, the true model

size is fixed because of a technical difficulty in handling the maximum of

|D\D∗|−1|n−1
∑n

i=1{ρm(Yki −XT
kiDθ̂kmD)− ρm(Yki −XT

kiD∗ θ̂kmD∗)}| over the

set of overfitted models {D ∈M : D∗ ⊂ D, D 6= D∗} (Lee et al., 2014). As-

sumption 8 regulates the growth rate of the sequence Tn. Assumption 9 is

made for convenience in the proofs because n−1
∑K

k=1

∑M
m=1

∑n
i=1 ρm(εkmi)

appears in denominators.

In the following theorem, we show that the true model has, with proba-
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bility tending to one, the smallest MQBIC value among all candidate mod-

els.

Theorem 3. If Assumptions 1, 3, and 6–9 hold, then with probability tend-

ing to one, the true model can be selected by minimizing the MQBIC, that

is,

limn→∞pr{minD∈(M\{D∗})MQBIC(D) > MQBIC(D∗)} = 1.

Theorem 3 establishes the model selection consistency of the MQBIC for

data from multiple dependent sources, which provides another approach to

identifying the true underlying model. In the MQBIC approach, estimation

and model selection are separate processes. This differs from minimizing

the objective function in Section 2, which is a one-step procedure. The

main advantage of the MQBIC is that we can use it to select the tuning

parameter λn for the penalized estimation process in Section 2, which is

computationally more efficient than cross-validation. The details are given

in Section 4.

4. Simulations

In this section, we study the numerical performance of our estimators. We

use the objective function (2.2) with M = 5 quantiles, τ1 = 1/6, τ2 =

2/6, . . . , and τ5 = 5/6, and study two different group structures, namely,
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complete and incomplete grouping. Complete grouping means that pa-

rameters of the same predictor can only be either all zero or all nonzero,

while in the incomplete case, a group may contain both zero and nonzero

parameters.

In both cases, the number of experiments is K = 2, and the sam-

ple size and the number of predictors are (n, p) = (100, 100), (100, 200),

or (200, 1000). The nonzero parameters are drawn independently from a

uniform distribution on [0.05, 1]. For K = 1, 2, we generate independent

random vectors X ′ki, for i = 1, . . . , n, from a p-dimensional multivariate

normal distribution with mean zero and a covariance matrix with (i, j)th

component of 0.5|i−j|, for 1 ≤ i, j ≤ p. The predictors Xki for the differ-

ent scenarios described below are transformations of X ′ki. For i = 1, . . . , n,

the error terms (ξ1i, ξ2i)
T are drawn independently from a bivariate normal

distribution with mean zero, or from a bivariate t-distribution with three

degrees of freedom. The covariance matrix of (ξ1i, ξ2i) is Σ, with entries

Σ11 = Σ22 = 1 and Σ12 = Σ21 = 0.7.

To minimize the objective function (2.2) with a fixed λn = λ, we use an

algorithm developed by Peng and Wang (2015) for penalized quantile re-

gression, modified for our scenario with multiple quantiles and experiments.

We first apply the “Majorize-Minimization” algorithm with an initial value

θ̂(0) = 0. Let θ̂(r − 1) denote the result from the (r − 1)th iteration. Ac-
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cording to Section 3.1 of Peng and Wang (2015), the objective function

(2.2) is majorized by

`n(θ) +
∑p

j=1Ω′λ(‖θ̂(j)(r − 1)‖1+)‖θ(j)‖1 =
∑K

k=1

∑M
m=1Q

(k,m)

θ̂(r−1)
(θkm) (4.1)

at the rth iteration. Here, Ω′λ(·) is the derivative of Ωλ(·) with Ω′λ(x0+) =

limx↓x0 Ω′λ(x), and

Q
(k,m)

θ̂(r−1)
(θkm) = n−1

∑n
i=1ρm(Yki −XT

kiθkm) +∑p
j=1Ω′λ(‖θ̂(j)(r − 1)‖1+)|θkmj|.

The minimization of the majorizing function (4.1) can therefore be done by

minimizing Q
(k,m)

θ̂(r−1)
(θkm) (k = 1, . . . , K;m = 1, . . . ,M) separately for each

(k,m) using the “coordinate descent algorithm,” which involves calculating

weighted medians using the “quicksort” algorithm. A detailed description

can be found in Section 3.2 of Peng and Wang (2015). We update θ̂(r− 1)

by

θ̂(r) = arg minθ
∑K

k=1

∑M
m=1Q

(k,m)

θ̂(r−1)
(θkm),

and repeat this process until convergence. This yields the minimizer θ̂λ,km =

(θ̂λ,km1, . . . , θ̂λ,kmp)
T (k = 1, . . . , K;m = 1, . . . ,M) of (2.2), with λn = λ.

The tuning parameter is chosen from a grid Λ. For λ ∈ Λ, let Dλ = {j :
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1 ≤ j ≤ p,
∑K

k=1

∑M
m=1 |θ̂λ,kmj| > 0}. For the final estimator, we use

λ̂ = arg minλ∈Λ

[
log {

∑K
k=1

∑M
m=1

∑n
i=1ρm(Yki −XT

kiθ̂λ,km)}

+ (2n)−1|Dλ|(logn)T
]
, (4.2)

which minimizes the MQBIC. This approach adapts criterion (2.10) in Lee

et al. (2014) to multiple quantile levels and experiments. They recom-

mends T = C log p and their simulation results show that this type of in-

formation criterion tends to underfit models slightly. As such, we consider

T = (log p)/3 or (log p)/6, and examine how this affects the performance of

the method.

In each scenario, we record the following three indices:

1. Positive selection rate (PSR): the proportion of selected predictors

that affect any quantile of any response. Then, formally, PSR =

|Â ∩ A|/|A| with A = {j : 1 ≤ j ≤ p, ‖θ∗(j)‖ > 0} and Â = {j : 1 ≤

j ≤ p, ‖θ̂(j)‖ > 0}.

2. False discovery rate (FDR): the proportion of selected predictors that

affect no response, that is, |Â ∩ Ac|/|Ac|.

3. Absolute error (AE): the absolute estimation error (KM)−1‖θ̂−θ∗‖1.

Our DI approach is compared with the following three methods:

22

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0361



(a) Combined analysis based on the τth quantile (CA-τ). This method

considers only one quantile τ . The data from the K experiments are

analyzed separately, then the K sets of selected predictors are merged.

We find that in most cases, the CA-τ method selects more unimportant

predictors than does our DI approach. Hence, the FDRs will rise even

further when the results from different quantile levels are combined.

(b) Sparse canonical correlation analysis (SCCA) by Witten and Tibshirani

(2009). To adapt this method for DI problems, we determine the sparse

vectors

{ŵ1, ŵ2} = arg max{w1,w2}
∑n

i=1w
T
1 X̃iỸ

T
i w2

that satisfy

‖w1‖ ≤ 1, ‖w2‖ ≤ 1, ‖w1‖1 ≤ c1, ‖w2‖ ≤ c2,

where c1 and c2 are some approriate tuning parameters and

X̃i = (XT
1i, X

T
2i, . . . , X

T
Ki)

T, Ỹi = (Y1i, Y2i, . . . , YKi)
T (i = 1, . . . , n).

Then, we view the predictors corresponding to the nonzero components

of ŵ1 as the selected ones. Details of the implementation can be found

in Witten and Tibshirani (2009). This approach does not generate

estimators for the regression parameters, which explains why we have

no values for the absolute errors (AE) in the tables below.
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(c) The DI method based on the least squares regression and the SCAD

penalty (DI-LS), proposed by Gao and Carroll (2017), which we ex-

plained in the introduction. This method minimizes an objective func-

tion similar to (2.2), but withM = 1 and `n(·) replaced by the quadratic

loss function, and the SCAD penalty is applied to ‖θ(j)‖ (j = 1, . . . , pn).

When calculating absolute errors, the target parameter is the vector θ̃k

that satisfies E(Yk | Xk) = XT
k θ̃k (k = 1, . . . , K).

The value of T only plays a role in minimizing the MQBIC. Hence, it only

affects our DI and the CA-τ methods in the following tables. The tuning

parameters in SCCA and DI-LS are selected using 10-fold cross-validation.

Tables 2 and 3 show the simulation results for a scenario with normal

errors and a complete group structure. The nonzero parameters are α∗11,

α∗16, α∗1(12), α
∗
1(15), α

∗
1(20) and α∗21, α∗26, α∗2(12), α

∗
2(15), α

∗
2(20). Let Φ(·) be

the distribution function of a standard normal variable. For k = 1, 2 and

i = 1, . . . , n, the predictors in Table 2 are Xki3 = Φ(X ′ki3) and Xkij = X ′kij

(j 6= 3), while those in Table 3 are Xki3 = Φ(X ′ki3) and Xkij = I(X ′kij > 0)

(j = 20, . . . , 25), and Xkij = X ′kij otherwise. The binary predictors in Table

3 violate the transnormal assumption in Fan et al. (2016). The responses

are Yki = XT
kiα
∗
k + 0.7ξkiXki3. Our DI method achieves the highest PSRs
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Table 2: Positive selection rates, false discovery rates, and absolute errors
of our data-integration method and the competing approaches for models
with normal errors and a complete group structure. Here, DI denotes the
data-integration method based on multiple quantiles, CA-τ the combined
analysis with one quantile τ = 2/6 or 3/6, SCCA the sparse canonical
correlation analysis, DI-LS the data-integration method based on the least
squares regression; PSR is the positive selection rate, FDR the false discov-

ery rate, and AE the absolute error (KM)−1‖θ̂ − θ∗‖1. The parameter T
in criterion (4.2) equals (log p)/3 or (log p)/6. The sample and model sizes
are (a) (n, p) = (100, 100), (b) (100, 200) or, (c) (200, 1000).

T = (log p)/3 T = (log p)/6

(a) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 98.3 (5.0) 1.1 (1.5) 0.3 (0.1) 99.0 (4.0) 1.9 (2.4) 0.2 (0.1)

CA-(2/6) 83.3 (7.5) 2.4 (2.2) 0.6 (0.1) 92.3 (8.7) 19.2 (16.2) 0.8 (0.3)

CA-(3/6) 81.7 (5.0) 1.4 (1.4) 0.3 (0.1) 83.3 (4.1) 6.9 (8.7) 0.3 (0.2)

SCCA 53.5 (15.0) 4.4 (3.7) –

DI-LS 85.0 (6.5) 5.9 (5.0) 0.3 (0.1)

(b) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 98.2 (5.2) 0.7 (0.7) 0.3 (0.1) 98.3 (5.0) 1.1 (1.3) 0.3 (0.1)

CA-(2/6) 78.0 (8.2) 0.8 (0.7) 0.7 (0.1) 89.3 (8.7) 28.1 (18.2) 1.5 (0.7)

CA-(3/6) 79.2 (7.3) 0.7 (0.7) 0.3 (0.1) 88.7 (7.1) 12.2 (15.4) 0.6 (0.5)

SCCA 56.3 (10.3) 2.3 (1.2) –

DI-LS 83.3 (5.8) 4.8 (3.9) 0.3 (0.1)

(c) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 99.7 (2.3) 0.1 (0.1) 0.1 (0.1) 99.8 (1.7) 0.4 (0.8) 0.1 (0.1)

CA-(2/6) 82.3 (6.2) 0.7 (1.1) 0.5 (0.1) 84.5 (4.9) 3.0 (3.3) 0.5 (0.1)

CA-(3/6) 82.3 (4.0) 0.4 (0.7) 0.2 (0.1) 82.8 (2.9) 1.7 (1.6) 0.2 (0.1)

SCCA 80.0 (14.2) 6.6 (0.7) –

DI-LS 83.5 (2.9) 1.3 (1.4) 0.2 (0.1)
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Table 3: We consider the same scenario as Table 2, but now the predictors
Xkij = I(X ′kij > 0) (k = 1, 2; i = 1, . . . , n; j = 20, . . . , 25).

T = (log p)/3 T = (log p)/6

(a) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 93.0 (7.4) 1.8 (1.6) 0.3 (0.2) 98.0 (5.9) 2.5 (2.4) 0.3 (0.2)

CA-(2/6) 82.0 (5.7) 5.0 (3.4) 0.8 (0.2) 84.7 (5.6) 18.2 (13.9) 0.9 (0.3)

CA-(3/6) 81.2 (5.7) 2.4 (1.5) 0.4 (0.1) 83.0 (3.3) 6.1 (7.5) 0.3 (0.2)

SCCA 51.8 (19.2) 4.2 (4.9) –

DI-LS 84.3 (6.2) 6.2 (5.5) 0.3 (0.1)

(b) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 87.8 (13.9) 0.9 (1.3) 0.4 (0.3) 94.5 (6.9) 1.9 (2.0) 0.4 (0.2)

CA-(2/6) 78.7 (9.2) 2.7 (1.7) 0.9 (0.3) 82.7 (4.7) 27.6 (16.1) 1.6 (0.7)

CA-(3/6) 80.2 (6.6) 1.1 (1.0) 0.4 (0.1) 83.0 (5.8) 11.2 (15.7) 0.6 (0.6)

SCCA 59.5 (13.2) 3.0 (2.1) –

DI-LS 83.0 (5.8) 4.2 (3.4) 0.4 (0.1)

(c) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 97.5 (6.9) 0.2 (0.2) 0.2 (0.2) 98.8 (4.3) 0.4 (0.5) 0.2 (0.1)

CA-(2/6) 81.8 (4.8) 2.8 (2.4) 0.7 (0.1) 82.3 (4.0) 4.2 (3.7) 0.7 (0.1)

CA-(3/6) 82.0 (4.5) 0.9 (1.5) 0.2 (0.1) 83.0 (2.3) 1.5 (1.4) 0.2 (0.1)

SCCA 86.0 (12.9) 6.8 (0.7) –

DI-LS 83.5 (1.7) 1.3 (1.5) 0.3 (0.1)
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and the lowest FDRs. It also has the smallest AEs. Apparently, the CA-

(3/6) and the DI-LS methods are fairly likely to miss predictors that are

relevant at some quantile levels: for the first approach, only the conditional

median is modeled, and for the second one, only the conditional mean.

Our DI method, however, works well since it takes the heterogeneity into

account and works with multiple quantile levels simultaneously. Another

interesting observation in Table 3 is that T = (log p)/3 tends to underfit

models compared to T = (log p)/6.

In Tables 4 and 5, we present the simulation results for the same scenario

as in Table 2, but now the predictors have an incomplete group structure.

The error variables in the two tables have a normal distribution (Table 4)

and a t-distribution with three degrees of freedom (Table 5). The nonzero

parameters are α∗14, α∗16, α∗19, α∗1(12), α
∗
1(15), α

∗
1(20) and α∗21, α∗26, α∗2(12), α

∗
2(15),

α∗2(20), α
∗
2(25). For i = 1, . . . , n, the predictors in the first experiment are

X1i1 = Φ(X ′1i1) and X1ij = X ′1ij, for j 6= 1. The predictors in the second

experiment are X2i3 = Φ(X ′2i3) and X2ij = X ′2ij, for j 6= 3. The responses

are Y1i = XT
1iα
∗
1 + 0.7ξ1iX1i1 and Y2i = XT

2iα
∗
2 + 0.7ξ2iX2i3. Inspecting

the quantities in the two tables, we see that our DI method again has

higher PSRs and lower FDRs. Furthermore, it produces similar or smaller

AEs to those of its competitors. We still observe that, in both tables,

criterion (4.2) using T = (log p)/6 selects larger models than those selected
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Table 4: We consider the same scenario as Table 2, but now the predictors
have an incomplete group structure.

T = (log p)/3 T = (log p)/6

(a) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 97.2 (5.6) 1.8 (1.7) 0.4 (0.1) 98.0 (4.3) 2.4 (2.1) 0.3 (0.2)

CA-(2/6) 86.0 (6.8) 3.4 (3.0) 0.7 (0.1) 92.2 (7.3) 23.7 (16.5) 0.9 (0.3)

CA-(3/6) 84.6 (5.4) 2.2 (1.9) 0.4 (0.1) 87.2 (4.8) 7.6 (8.6) 0.4 (0.2)

SCCA 45.0 (12.5) 5.6 (4.4) –

DI-LS 88.6 (5.3) 7.1 (5.4) 0.4 (0.1)

(b) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 91.3 (9.7) 0.8 (0.9) 0.4 (0.1) 96.6 (6.5) 2.0 (2.0) 0.4 (0.1)

CA-(2/6) 82.9 (6.0) 1.4 (1.2) 0.8 (0.1) 92.0 (7.1) 32.6 (18.3) 1.7 (0.7)

CA-(3/6) 83.8 (6.2) 1.1 (1.0) 0.4 (0.1) 87.1 (7.3) 13.7 (16.5) 0.8 (0.6)

SCCA 45.7 (12.1) 2.7 (2.6) –

DI-LS 87.4 (4.9) 5.0 (3.3) 0.4 (0.1)

(c) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 98.2 (4.1) 0.2 (0.4) 0.2 (0.1) 98.2 (4.1) 0.4 (0.6) 0.2 (0.1)

CA-(2/6) 85.2 (5.3) 1.1 (1.5) 0.6 (0.1) 87.1 (5.2) 3.6 (4.1) 0.6 (0.1)

CA-(3/6) 85.8 (5.0) 0.9 (1.1) 0.3 (0.1) 87.7 (3.5) 2.4 (1.9) 0.2 (0.1)

SCCA 67.1 (10.2) 6.3 (0.8) –

DI-LS 87.9 (3.6) 1.2 (1.4) 0.3 (0.1)
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Table 5: We consider the scenario from Table 4 with an incomplete group
structure, but now the random errors follow a bivariate t-distribution with
three degrees of freedom.

T = (log p)/3 T = (log p)/6

(a) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 93.7 (6.9) 1.4 (1.4) 0.5 (0.1) 94.9 (6.0) 2.0 (2.2) 0.4 (0.1)

CA-(2/6) 83.0 (6.8) 2.6 (2.6) 0.8 (0.1) 88.7 (8.0) 12.9 (13.0) 0.8 (0.3)

CA-(3/6) 81.2 (5.8) 1.7 (1.8) 0.5 (0.1) 84.8 (5.6) 5.4 (5.6) 0.4 (0.2)

SCCA 44.0 (13.9) 5.8 (6.3) –

DI-LS 83.3 (7.2) 9.9 (4.9) 0.7 (0.3)

(b) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 89.7 (9.9) 0.7 (0.8) 0.5 (0.2) 94.1 (7.3) 1.7 (1.7) 0.5 (0.1)

CA-(2/6) 80.7 (6.6) 1.4 (1.5) 0.9 (0.2) 85.0 (8.4) 12.7 (15.7) 1.3 (0.8)

CA-(3/6) 81.3 (6.5) 0.9 (0.8) 0.5 (0.1) 83.7 (6.4) 4.8 (9.7) 0.6 (0.5)

SCCA 43.2 (10.5) 2.7 (3.3) –

DI-LS 83.6 (7.7) 7.7 (4.0) 0.9 (0.4)

(c) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 96.2 (5.3) 0.1 (0.3) 0.3 (0.1) 96.3 (5.3) 0.3 (0.4) 0.3 (0.1)

CA-(2/6) 83.0 (6.0) 1.0 (1.5) 0.7 (0.1) 85.9 (6.3) 3.1 (3.4) 0.6 (0.1)

CA-(3/6) 83.4 (5.6) 0.6 (0.8) 0.3 (0.1) 85.4 (5.2) 1.6 (1.4) 0.3 (0.1)

SCCA 64.2 (9.3) 6.1 (0.8) –

DI-LS 84.7 (5.9) 2.6 (1.6) 0.7 (0.3)
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using T = (log p)/3. In Table 5 with t-distributed error variables, the

absolute errors of the DI-LS approach based on a least squares regression

are significantly larger than those of our DI method, which corroborates the

robustness of the quantile regression when the distribution of the errors is

heavy tailed.

5. Examples

5.1 Multiple experiments

In this section, we apply our method to data from a liver toxicity study

(Bushel et al., 2007), which are available in the R package mixOmics (Ro-

hart et al., 2017). In the study, two groups of 32 male rats were exposed

to non-toxic (50 or 150 mg/kg) and toxic (1,500 or 2,000 mg/kg) doses of

acetaminophen (paracetamol), respectively. There is a data set for each

group, which contains the rats’ expression profiles of 3,116 genes and lev-

els of cholesterol. Owing to the different experimental environments, the

two data sets have different measurements. We want to identify the genes

that significantly affect the response, namely, the level of cholesterol on a

logarithmic scale, based on aggregating the two data sets. To preprocess

the data, the genes are sorted by the absolute values of their correlation

coefficients with the response in each set. The top 200 genes in each set are
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included in the analysis as covariates. We observe that the absolute values

of their realizations are all below 2.05, which indicates that Assumption 1

is satisfied.

To fit sparse models, we minimize the objective function (2.2) using

all data. We consider quantiles τm = m/10 for m = 1, . . . , 9, and use two

different penalties, the SCAD penalty and the minimax concave penalty

(MCP). The tuning parameters of the penalties are chosen using formula

(4.2), that is, as minimizers of the MQBIC, with T = log p/6. In addition,

we take an approach based on random partitions: we divide each data set

randomly into two parts, a training set of size 24, and a validation set of

size 8. This is repeated 50 times. The training set is used to select the

parameters and obtain the parameter estimates, as before, by minimizing

(2.2), with λ chosen using (4.2). The prediction errors

∑K
k=1

∑M
m=1

∑n
i=1ρm(Yki −XT

kiθ̂km − b̂km) (5.1)

defined by the loss function are calculated based on the estimates from the

training sets and the data X, Y from the validation sets. Here, b̂km is the

estimated intercept in the conditional quantile Qτm(Xk).

For comparison, we also consider a combined analysis (CA), the SCCA

method, and the DI-LS method described in Section 4. The CA method in

this section now considers nine quantiles τ1 = 1/10, . . . , τ9 = 9/10 instead
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of one single quantile, as in Section 4. The data sets and the quantiles are

treated separately, after which the results are combined. The prediction

errors for the SCCA and DI-LS are calculated using

∑K
k=1

∑n
i=1M |Yki −X

T
kiθ̂
′
k − b̂′k|/2. (5.2)

Recall that the scale factor M is the number of quantiles used by both the

DI and the CA. Here, it is used to make the prediction errors comparable

with those of the DI and CA in (5.1), which sum K ×M × n quantile loss

functions. For the SCCA method, θ̂′k and b̂′k represent the slope vector and

the intercept, respectively, obtained from the unpenalized least absolute

deviations regression of Yk on the selected subvector of Xk (k = 1, . . . , K).

For the DI-LS method the estimates are generated directly from the penal-

ized least squares regression. We record the sizes of the models that are

fitted using the full data sets, as well as the simulated means and stan-

dard deviations of the model sizes and prediction errors otained from the

50 replications.

Table 6 shows the results of analyzing the liver toxicity data. When

using the full data sets, our DI method with the SCAD penalty and the

MCP penalty selects the same two covariates, which are also chosen by the

combined analysis with either of the two penalties. Interestingly, the models

fitted by SCCA or DI-LS do not include these two covariates. This difference
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Table 6: Analysis of the liver toxicity data. The sizes of the selected subset
models (column 2) are based on all data, the average sizes and prediction
errors (column 3 and 4) are based on the data using random partitions. The
standard deviations are in parentheses. DI denotes the data-integration
method based on multiple quantiles, CA the combined analysis, SCCA the
sparse canonical correlation analysis, DI-LS the data-integration method
based on the least squares regression, SCAD the smoothly clipped absolute
deviation, and MCP the minimax concave penalty.

All Data Random Partition

Model Size Model Size Prediction error

DI with SCAD 2 3.30 (1.54) 1.19 (1.06)

DI with MCP 2 2.60 (1.09) 1.24 (1.33)

CA with SCAD 13 13.92 (3.84) 1.54 (1.26)

CA with MCP 11 14.86 (3.88) 1.40 (0.98)

SCCA 15 13.58 (1.75) 4.10 (1.37)

DI-LS 8 8.28 (3.77) 3.07 (1.59)
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suggests heterogeneity in the data, because both the SCCA and the DI-

LS method tend to ignore covariates that affect responses only at certain

quantile levels, but not globally. Using the random partition approach, our

DI method generates models that are, on average, more sparse than those

obtained from the competitors, with lower prediction errors.

5.2 Multiple responses

As a second application, now with a multivariate response vector, we ana-

lyze data sets of financial market indices from the R package FusionLearn

(Gao et al., 2019). These data contain three correlated indices: the VIX

index, the S&P 500 index, and the Dow Jones index. The VIX and the

S&P 500 are negatively correlated, and the S&P 500 and the Dow Jones

are positively correlated (Gao and Carroll, 2017). The covariates are 46 ma-

jor international equity indices, North American bond indices, and major

commodity indices. In the analysis, the transformation log(Vt /Vy)×100 of

each index is used, where Vt and Vy denote the current and previous days’

values, respectively. The training data set consists of 232 records of three

years’ market performances, with three-day spacing between the values. As

shown in Gao and Carroll (2017), the values are not autocorrelated at a 5%

significance level.

As before, we minimize the objective function (2.2) to select the covari-
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Table 7: Analysis of the financial market indices. The figures are the pre-
diction errors and the sizes of the selected submodels. The full model size
is p = 46. DI denotes the data-integration method based on multiple quan-
tiles, CA the combined analysis, UR is unpenalized regression, SCCA the
sparse canonical correlation analysis, DI-LS the data-integration method
based on the least squares regression, SCAD denotes smoothly clipped ab-
solute deviation, and MCP minimax concave penalty.

Model Size Prediction errors

VIX Dow Jones S&P 500

DI with SCAD 4 10052.8 523.4 307.2

DI with MCP 4 10020.6 522.4 309.2

CA with SCAD 20 10150.4 637.3 400.1

CA with MCP 20 10125.1 637.9 396.1

UR 46 13408.5 644.0 663.4

SCCA 6 12998.1 658.1 513.4

DI-LS 13 13996.3 720.5 499.5

35

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0361



ates and estimate the parameters. The quantiles in (2.2) are τm = m/20,

for m = 1, 2, . . . , 19. We again use the SCAD penalty and the MCP, and

determine their tuning parameters using criterion (4.2). The SCAD penalty

selects four covariates, which are the same as those selected by the MCP

penalty. The competing methods are the combined analysis with the two

penalties and the unpenalized regression. The latter includes all 46 covari-

ates in the model and generates estimators by minimizing the loss function

(2.1) without a penalty term. We use the five fitted models for predictions

based on a (different) validation data set with 464 records. The prediction

errors for the three indices, that is,
∑M

m=1

∑n
i=1 ρm(Yki − XT

kiθ̂km − b̂km),

for k = 1, 2, 3, and the model sizes are recorded in Table 7. There, we

also list the results for the SCCA and the DI-LS approach. The prediction

errors for these two methods are
∑n

i=1M |Yki −XT
kiθ̂
′
k − b̂′k|/2, with θ̂′k and

b̂′k (k = 1, 2, 3), as in (5.2).

Our DI method with the SCAD penalty and the MCP outperforms the

other five approaches, whereas the DI with the SCAD penalty and the DI

with the MCP yield similar prediction errors. Apart from that, our DI

method selects models that are considerably smaller than those from the

competitors, that is, it achieves more sparsity. As in Section 5.1, the two

DI approaches and the two CA methods choose the same four predictors,

whereas the SCCA selects only one, and the DI-LS selects none of them.
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This again indicates heterogeity in the data, that is, some predictors affect

the responses only locally. The two empirical data examples in Sections 5.1

and 5.2 clearly demonstrate the advantages of our method, especially its

ability to handle complex data.

6. Conclusion

To the best of our knowledge, this is the first time that a quantile regression

approach has been applied to a DI scenario with high-dimensional data. By

considering multiple quantiles simultaneously, we obtain a global picture of

the relationship between the predictors and the responses. A penalized

estimator and an information criterion, which aggregate information from

multiple experiments, have been developed to select variables and to esti-

mate the model parameters. Our method copes with heterogeneity in the

data. It successfully exploits the group structure in the parameter set across

quantiles and experiments so that influential predictors can be identified.

In practice, the quality and relevance of data may vary from one source

to another. Therefore, a weighted version of the loss function (2.1),

`(w)
n (θ) = n−1

∑K
k=1wk

∑M
m=1

∑n
i=1ρm(Yki −XT

kiθkm),

with weight vector w = (w1, . . . , wK)T, may improve our estimator, which

uses uniform weights. It would be worthwhile specifying and constructing
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such weights for data from different experiments.

The nonconvex penalty function associated with the L1-norm has differ-

ent properties to those of the penalty function associated with the L2-norm

employed by Gao and Carroll (2017), which forces parameters in the same

group to be all zero or all nonzero. When the least squares approach is

used, Jiang and Huang (2015) show that the penalty associated with the

L1-norm can be applied if the group structure is incomplete, that is, both

zero and nonzero parameters exist in the same group. This capacity is

called a “bi-level selection” property. Here, we focus on groups of param-

eters to identify predictors that have an impact on one or more responses

at some quantile levels. In the simulations of Section 4, we saw that the

SCAD penalty with the L1-norm actually performs well at the group level,

even if the group structure is incomplete. The theoretical properties of the

L1-norm in the quantile regression setting still need to be investigated in

greater detail.

Supplementary Material

• The proofs of the theoretical results and additional simulation results

are provided in the online Supplementary Material.

• All the programs of Section 4 and 5 are available at https://github.

com/guorongdai/data_integration.

• The data in Section 5.1 are from the R package FusionLearn, and the
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data in Section 5.2 are from the R package mixOmics.
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