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Abstract: This study proposes a method for constructing an optimal sequential test that monitors

changes in the distribution of finite observation sequences with a general dependence structure. This

method allows us to prove that different optimal sequential tests can be constructed for different

performance measures of detection delay times. A formula is presented to calculate the value of

the generalized out-of-control average run length for every optimal sequential test. Moreover, we

show that there is an equivalent optimal control limit that does not depend on the test statistic

directly when the post-change conditional densities (probabilities) of the observation sequences do

not depend on the change time. The detection performance of six sequential tests, including two

optimal sequential tests, are illustrated using numerical simulations and a real-data example.

Key words and phrases: Optimal sequential test, Change-point detection , Dependent observation

sequence.

1. Introduction

One of the basic problems in statistical process control (SPC) is designing an effective
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sequential test (or a control chart), as proposed by Shewhart (1931), to detect possible

changes at some instant (change-point) in the behavior of a series of sequential obser-

vations. The objective is to raise an alarm as soon as a change occurs, while keeping

the rate of false alarms to an acceptable level. Detecting abrupt changes in a stochastic

system quickly without exceeding a specified false alarm rate is an important issue, not

only in industrial quality and process control applications, but also in nonindustrial pro-

cesses (Bersimis et al. (2018)), biology (Siegmund (2013)), clinical trials and public health

(Woodall (2006); Chen and Baron (2014); Rigdon and Fricker (2015)) , econometrics and

financial surveillance (Frisén (2009)), and graph and network data (Akoglu et al. (2015);

Woodall et al. (2017); Hosseini and Noorossana (2018)), among others.

A great variety of sequential tests have been proposed, developed, and applied to

detect changes in the distribution of sequential observations quickly in various fields; see,

for example, Siegmund (1985), Basseville and Nikiforov (1993), Lai (1995), Stoumbos

et al. (2000), Chakraborti et al. (2001), Lai (2001), Bersimis et al. (2007), Montgomery

(2009), Poor and Hadjiliadis (2009), Woodall and Montgomery (2014), Qiu (2014), and

Tartakovsky et al. (2015). This raises two questions: What is the optimal sequential test?

How do we design or construct an optimal sequential test?

First, we recall the main results of the known optimal sequential tests. A sequential

test T ∗ is optimal for detecting changes in the distribution if the average value of some

detection delay time (T −k+1)+ of T ∗, for all possible change times k ≥ 1, is the smallest

of all sequential tests T with a given probability of a false alarm that is no greater than
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a preset level ( or with a given false alarm rate that is no less than a given value), where

x+ = max{0, x}. In the literature, there are four main kinds of optimal sequential tests:

the Shiryaev test, TS(c1) (Shiryaev (1963); Shiryaev (1978, P. 193–200) ); two sum of

the log likelihood ratio (SLR) tests, TSLR1(c2) (Chow et al. (1971, P. 108)) and TSLR2(c3)

(Frisén (2003)); the CUSUM test, TC(c4) (Page (1954); Moustakides (1986)); and the

Shiryaev–Roberts test, T rSR(c5) (Polunchenko and Tartakovsky (2010)). Here the five

positive numbers ci > 0, for 1 ≤ i ≤ 5, denote the five constant control limits or the

threshold limits. Thus, to prove the optimality of these tests, we need to assume there is

an infinite independent or Markov observation sequence (Han et al. (2017)).

In fact, it is not realistic for us to have an infinite observation sequence; that is,

people can only obtain finite observation sequences in reality. For example, consider a

production line that produces one product per minute. If the production line works eight

hours a day, then the number of products or observations per day is N = 480. Our

task is to design or construct an effect test that can detect whether the 480 observations

(usually not independent) are abnormal in real time. However, when we have only N

finite independent observation sequences {Xn, 1 ≤ n ≤ N} (N ≥ 2), none of the five

optimal sequential tests mentioned above are optimal.

Based on the work of Chow, Robbins, and Siegmund (Chow et al. (1971, Chap. 3)),

we develop a method for constructing various optimal sequential tests under different

performance measures of detection delay times in order to detect changes in the probability

distribution of finite observation sequences. Moreover, we determine a formula to calculate
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the value of the generalized out-of-control average run length for each optimal test, and

obtain an equivalent optimal control limit that may not depend on the test statistic

directly.

The rest of this paper is organized as follows. Section 2.1 presents a generalized

Shiryaev measure that evaluates how well a sequential test detects changes in the distri-

bution of finite observation sequences. Section 2.2 constructs the optimal sequential test

and gives the formula for calculating the generalized out-of-control average run length.

The equivalent optimal control limit is presented and proved in Section 3. The detection

performance of two optimal tests is illustrated by the comparison and analysis of numer-

ical simulations for 60 observations in Section 4. Section 5 provides a real example. The

four performance measures and the proofs of the three theorems are given in Appendix

and the online Supplementary Material, respectively.

2. Optimal sequential tests for finite observations

In this section, we first present the performance measure and optimization criterion, and

then construct the optimal sequential tests.

Consider finite observations, X0, X1, X2, ..., XN . Without loss of generality, we as-

sume N ≥ 2. Let τ = k (1 ≤ k ≤ N) be the change-point. Let p0(x0, x1, ..., xN) and

pk(x0, x1, ..., xN) be the pre-change and post-change joint probability densities, respec-

tively. Denote the post-change joint probability distribution and the expectation by Pk

and Ek, respectively, for 1 ≤ k ≤ N . When τ > N , that is, a change never occurs

4
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in the N observations X1, X2, ..., XN , the probability distribution and the expectation

are denoted by P0 and E0, respectively, for all observations X0, X1, X2, ..., XN with the

pre-change joint probability density p0(x0, x1, ..., xN). Moreover, when the observations

Xn, for 0 ≤ n ≤ N, are discrete random variables, the above joint probability densi-

ties and conditional probability densities are considered to be the joint probabilities and

conditional probabilities, respectively.

In order to construct the optimal sequential tests in Section 2.2, we assume that

the likelihood ratio of the post-change conditional probability density to the pre-change

conditional probability density, Λ
(k)
j , satisfies

Λ
(k)
j =

p
(k)
1j (Xj|Xj−1, ..., X0)

p0j(Xj|Xj−1, ..., X0)
<∞ (a.s.P0) (2.1)

and has no atoms with respect to P0, for 1 ≤ k ≤ N and k ≤ j ≤ N , where p0j(xj|xj−1, ..., x0)

for 1 ≤ j ≤ N and p
(k)
1j (xj|xj−1, ..., x0) for 1 ≤ k ≤ N , k ≤ j ≤ N denote the pre-change

and post-change conditional probability densities, respectively, and the notation (k) in

p
(k)
1j denotes that the post-change conditional probability densities p

(k)
1j rely on the change-

point k, for k ≤ j ≤ N . If Λ
(k)
j = Λj, for 1 ≤ k ≤ j ≤ N , then the post-change conditional

densities (probabilities) of the observation sequence do not depend on the change-point.

2.1 Performance measures of sequential tests

Let T ∈ TN be a sequential test, where TN is a set of all sequential tests satisfying

1 ≤ T ≤ N + 1 and {T ≤ n} ∈ Fn = σ{Xj, 0 ≤ j ≤ n}, for 1 ≤ n ≤ N , where

{T = N + 1} denotes the random event {T > N}, which means that the change point

5
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occurs after N observation samples. Thus {T = N + 1} ∈ FN .

Let W = {wj, 1 ≤ j ≤ N + 1} and V = {vj, 1 ≤ j ≤ N + 1} be two series of

nonnegative random variables satisfying wk, vk ∈ Fk−1, for 1 ≤ k ≤ N + 1. Denote the

indicator function by I(.). We may regard the two nonnegative random variables wk and

vk as random weights of the detection delay (T−k)+ and the event I(T ≥ k), respectively,

such that the time of a false alarm is greater than or equal to the change-point k. Here,

wk, vk ∈ Fk−1 means that both weights wk and vk can be determined using the observation

information before the time k, for 1 ≤ k ≤ N . Using the concept of the randomization

probability of the change-point and the definition describing the average detection delay

proposed by Moustakides (2008), we can define a performance measure JM,N(.) for every

given weighted pair M = (W,V ) to evaluate the detection performance of each sequential

test T ∈ TN , as follows:

JM,N(T ) =

∑N+1
k=1 Ek(wk(T − k)+)∑N+1
j=1 E0(vjI(T ≥ j))

=

∑N
k=1 Ek(wk(T − k)+)

E0(
∑T

j=1 vj)
. (2.2)

Here, the denominator comes from T ≤ N + 1 and
∑N+1

j=1 E0(vjI(T ≥ j)) = E0(
∑T

j=1 vj).

Because we only consider the detection delay after the change-point τ = k ≥ 1, the

commonly used detection delay (T − k + 1)+ is replaced with (T − k)+ hereafter. Note

that W and V may not be the randomization probability of the change-point.

According to the definition of JM,N(T ), the smaller JM,N(T ), the better is the de-

tection performance of the test T satisfying
∑N+1

j=1 E0(vjI(T ≥ j)) ≥ γ, for some given

positive constant γ.

Remark 1. The numerator and denominator of JM,N(T ) can be regarded as a gen-

6
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eralized out-of-control average run length (ARL1) and a generalized in-control ARL0,

respectively. Moreover, the measure JM,N(.) can be considered a generalization of the

following Shiryaev measure:

JS(T ) =

∑∞
k=1 ρkEk((T − k)+)∑∞
j=1 ρjE0(I(T ≥ j))

= E(T − τ |T ≥ τ),

for T ≤ N + 1, where ρk = P(τ = k), for k ≥ 1.

It is clear that taking various weighted pairs M = (W,V ) yields different measures

JM,N(.). Next, we list four known measures by taking the appropriate weighted pairs,

Mi = (Wi, Vi), for 1 ≤ i ≤ 4:

JM1,N(T ) =

∑N+1
k=1 ρkEk(T − k)+∑N+1
j=1 ρjP0(T ≥ j)

, JM2,N(T ) =
E1(T − 1)

P0(T ≥ N + 1)
,

JM3,N(T ) =

∑N
k=1 Ek((1− Zk−1)+(T − k)+)

E0(T )
,

JM4,N(T ) =
rE1(T − 1) +

∑N
k=1 Ek((T − k)+)

r + E0(T )
,

where W1 = V1 = {ρk, 1 ≤ k ≤ N + 1}, ρN+1 := 1−
∑N

k=1 ρk, W2 = {w1 = 1, wk = 0, 2 ≤

k ≤ N + 1}, V2 = {vj = 0, 1 ≤ j ≤ N, vN+1 = 1}, W3 = {wj = vj = (1−Zj−1)+, 1 ≤ j ≤

N + 1}, V3 = {vk = 1, 1 ≤ k ≤ N + 1}, W4 = V4 = {w1 = v1 = r, wk = vk = 1, 2 ≤ k ≤

N + 1}, and Zk = max{1, Zk−1}Λk, for 1 ≤ k ≤ N , are the statistics of the CUSUM test

with Z0 = 0 (see Moustakides (1986)). A further four performance measures JMj ,N(.),

for 5 ≤ j ≤ 8, are listed in Appendix, where JM7,N(.) and JM8,N(.) are new measures.

Because the in-control ARL0, E0(T ), is easier to calculate than the generalized in-control
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ARL0, E0(
∑T

j=1(1−Zj−1)+), in JM6,N(T ), we often use JM3,N(T ) instead of the measure

JM6,N(T ).

Note that for an infinite independent observation sequence, the five measures JMi,∞,

for i = 1, 2, 5, 6, 4 and N =∞, have been used by Shiryaev (1978, P. 193–200), Chow et

al. (1971, P. 108), Frisén (2003), Moustakides (1986), and Polunchenko and Tartakovsky

(2010) to prove the optimality of the sequential tests, TS, TSLR1 , TSLR2 , TC , and T rSR,

respectively.

2.2 Optimal sequential tests

For a given weighted pair M = (W,V ), we first define the optimization criterion of the

sequential tests for N observations.

Definition 1. A sequential test T ∗ ∈ TN , with E0(
∑T ∗

k=1 vk) ≥ γ, is optimal under

the measure JM,N(T ) if

inf
T∈TN , E0(

∑T
j=1 vj)≥γ

JM,N(T ) = JM,N(T ∗), (2.3)

where γ satisfies E0(v1) < γ < E0(
∑N+1

j=1 vj).

To construct the optimal sequential test under the measure JM,N(T ) in (2.2) with a

given weighted pair M = (W,V ), we need to present a series of nonnegative test statistics,

Yn, for 0 ≤ n ≤ N + 1, as follows:

Yn =
n∑
k=1

wk

n∏
j=k

Λ
(k)
j (2.4)

for 0 ≤ n ≤ N + 1, where Y0 = 0, YN+1 := YN , W = {wk, 1 ≤ k ≤ N + 1}, and Λ
(k)
j

satisfies (2.1). It can be seen that the statistics Yn, for 1 ≤ n ≤ N, depend not only

8
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on the likelihood ratio {Λ(k)
j }, but also on the weight of the detection delay {wk}. In

particular, if Λ
(k)
j = Λj, for 1 ≤ k ≤ j ≤ N , that is, the post-change conditional densities

(probabilities) of the observation sequences do not depend on the change-point, then

Yn =
n∑
k=1

wk

n∏
j=k

Λj = (Yn−1 + wn)Λn, (2.5)

for 1 ≤ n ≤ N .

Remark 2. Even if (2.5) holds, the test statistic sequence {Yn, 0 ≤ n ≤ N} is not

necessarily a Markov chain. For example, let both the pre-change observation sequence

X1, ..., Xk−1 and the post-change observation sequence Xk, ...XN , be independent and

identically distributed (i.i.d.). Therefore, (2.5) holds, and it is clear that the statistic

{Yn, 0 ≤ n ≤ N} is not a Markov chain when we take w1 = 1, wn = 1
n−1

∑n−1
j=1 e

Xj , for

2 ≤ n ≤ N , in (2.5).

Note that (T − k)+ =
∑N+1

m=k+1 I(T ≥ m), for T ∈ TN and I(T ≥ m) ∈ Fm−1, and the

post-change joint probability density pk(x0, x1, ..., xn) for the change-point k (1 ≤ k ≤ N)

can be written as

pk(x0, x1, ..., xn) = p(x0)

(k−1)∧n∏
j=1

p0j(xj|xj−1, ..., x0)
n∏
j=k

p
(k)
1j (xj|xj−1, ..., x0),

for 1 ≤ n ≤ N , where p(x0) is the probability density (or probability) of X0 at the initial

time k = 0, (k − 1) ∧ n denotes min{k − 1, n},
∏(k−1)∧n

j=1 = 1 for k = 1, and
∏n

j=k = 1 for

9
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n < k. For the nonnegative test statistic Yn in (2.4), we have that

N∑
k=1

Ek(wk(T − k)+)

= E0

( N∑
k=1

N+1∑
m=k+1

wkI(T ≥ m)
m−1∏
j=k

Λ
(k)
j

)
= E0

( N∑
m=1

YmI(T ≥ m+ 1)
)

= E0

( T∑
m=1

Ym−1

)
,

for all T ∈ TN . This equality means that the generalized out-of-control ARL1 (the

numerator of the measure JM,N(T )) is equal to the generalized in-control ARL0, in which

the weight {vm} is replaced by the statistic {Ym−1}. Thus, finding an optimal sequential

test T ∗ under the measure JM,N(T ) in (2.2) is equivalent to constructing an optimal

sequential test T ∗ that satisfies the following equation:

inf
T∈TN , E0(

∑T
j=1 vj)≥γ

{E0

( T∑
m=1

Ym−1

)
} = E0

( T ∗∑
m=1

Ym−1

)
, (2.6)

for E0(
∑T ∗

j=1 vj) = γ, where γ satisfies E0(v1) < γ < E0(
∑N+1

j=1 vj).

Motivated by the Chow–Robbins–Siegmund method of backward induction (Chow et

al. (1971, P. 49)), we present a nonnegative random dynamic control limit {ln(c), for

0 ≤ n ≤ N + 1}, that is defined by the following recursive equations:

lN+1(c) = 0, lN(c) = cvN+1

ln(c) = cvn+1 + E0

(
[ln+1(c)− Yn+1]+|Fn

)
, (2.7)

for 0 ≤ n ≤ N − 1, where c > 0 is a constant and V = {vj, 1 ≤ j ≤ N + 1}. It is

clear that ln(c) ≥ cvn+1 and ln(c) ∈ Fn, for 0 ≤ n ≤ N . The positive number c can be

10
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regarded as an adjustment coefficient for the random dynamic control limit, because ln(c)

is increasing on c ≥ 0 with ln(0) = 0 and limc→∞ ln(c) =∞ for vn+1 > 0.

Now, for a given weighted pair M = (W,V ), we define a sequential test T ∗M(c,N) using

the test statistic Yn, for 1 ≤ n ≤ N + 1, and the control limits ln(c), for 1 ≤ n ≤ N + 1,

as follows:

T ∗M(c,N) = min{1 ≤ n ≤ N + 1 : Yn ≥ ln(c)}. (2.8)

It is easy to check that T ∗M(c,N) ∈ TN .

The following theorem shows that for any given performance measure JM,N in (2.2),

the sequential test T ∗M(c,N) constructed above is optimal.

Theorem 1. Assume that the ratio Λ
(k)
j satisfies (2.1), for 1 ≤ k ≤ N and k ≤ j ≤ N .

Let γ be a positive number satisfying E0(v1) < γ <
∑N+1

j=1 E0(vj). Then:

(i) There exists a positive number cγ such that T ∗M(cγ, N) is optimal in the sense of (2.2)

(or (2.6)) with E0(
∑T ∗M (cγ ,N)

j=1 vj) = γ; that is,

inf
T∈TN , E0(

∑T
j=1 vj)≥γ

JM,N(T ) = JM,N(T ∗M(cγ, N)). (2.9)

(ii) If T ∈ TN satisfies T 6= T ∗M(cγ, N), that is, P0(T 6= T ∗M(cγ, N)) > 0 and E0(
∑T

j=1 vj) =

γ, then

JM,N(T ) > JM,N(T ∗M(cγ, N)). (2.10)

(iii) Moreover,

JM,N(T ∗M(cγ, N)) = cγ

(
1− E0(v1)

γ

)
− E0[l1(cγ)− Y1]+

γ
. (2.11)

11
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Here, the random dynamic control limit {ln(c), 0 ≤ n ≤ N + 1} of the optimal test

T ∗M(c,N) can be called an optimal dynamic control limit.

It follows from (2.9) and (2.11) that the minimum value of the generalized out-of-

control ARL1 ( the numerator of the measure JM,N(T ) ), for all T ∈ TN , can be calculated

using the following formula:

inf
T∈TN , E0(

∑T
j=1 vj)≥γ

N∑
k=1

Ek(wk[T − k]+)

=
N∑
k=1

Ek(wk[T
∗
M(cγ, N)− k]+) (2.12)

= cγ(γ − E0(v1))− E0([l1(cγ)− Y1]+).

As an application of Theorem 1, we have the following corollary.

Corollary 1. The eight sequential tests T ∗Mi
(c,N), for 1 ≤ i ≤ 8, defined in (2.8),

which correspond to the eight weighted pairs Mi, for 1 ≤ i ≤ 8, are optimal under the

measures JMi,N , for 1 ≤ i ≤ 8, respectively.

Note that the optimality of the two tests T ∗M4
(c,N) and T ∗M6

(c,N) with the optimal

dynamic control limits {l(4)
n (c), 0 ≤ n ≤ N + 1} and {l(6)

n (c), 0 ≤ n ≤ N + 1}, respectively,

is not under Lorden’s measure (see Lorden (1971); Moustakides (1986)), but under the

corresponding measures JM4,N and JM6,N , respectively.

3. Optimal control limits

It is clear that the optimal control limit {ln(c), 0 ≤ n ≤ N + 1} of the optimal sequential

test T ∗M(c,N) plays a key role in detecting changes in a distribution.

12
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Because E0([ln+1(c)−Yn+1]+|Fn) and vn+1 are measurable with respect to Fn, it follows

that there are 2N + 1 nonnegative functions hn = hn(c, x0, x1, ..., xn), for 0 ≤ n ≤ N − 1,

and vn = vn(x0, x1, ..., xn−1), for 0 ≤ n ≤ N − 1, such that

hn = hn(c, x0, x1, ..., xn)

= E0([ln+1(c)− Yn+1]+|Xn = xn, Xn−1 = xn−1, ..., X0 = x0),

for 0 ≤ n ≤ N − 1. Therefore, the optimal control limit ln(c) in (2.7) can be written as

ln(c) = cvn+1(x0, X1, ..., Xn) + hn(c, x0, X1, ..., Xn),

for 0 ≤ n ≤ N , where X0 = x0 is a constant. It can be seen that the optimal control limit

{ln(c), 0 ≤ n ≤ N + 1} of the optimal sequential test T ∗M(c,N) is not easy to calculate for

a general dependence observation sequence {Xn, 0 ≤ n ≤ N}.

To reduce the number of observation variables on which the control limit {ln(c), 0 ≤

n ≤ N} depends, we let the observation sequence {Xn, 0 ≤ n ≤ N} be at most a q-order

Markov process, where q = max{i, j}, 0 ≤ q ≤ N ; that is, the pre-change observations

X1, ..., Xk−1 and the post-change observations Xk, ..., XN are i-order and j-order Markov

processes, respectively, with transition probability density functions p0n(xn|xn−1, ..., xn−i)

and p
(k)
1m(xm|xm−1, ..., xm−j), respectively, that satisfy the following Markov property:

p0n(xn|xn−1, ..., xn−i) = p0n(xn|xn−1, ..., xn−i, ..., x0)

p1m(xm|xm−1, ..., xm−j) = p1m(xm|xm−1, ..., xm−j, ..., x0)

= p
(k)
1m(xm|xm−1, ..., xm−j, ..., x0),

13
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for n ≥ i, m ≥ j, and 1 ≤ k ≤ m ≤ N . The first equality of conditional probability

denotes that the current situation xn depends only on what happened in the previous

i periods for pre-change observations; this is an i-order Markov process. Obviously, the

second quality means that the post-change sequence of observations is a j-order Markov

process. The last equation means that the post-change conditional densities of the obser-

vation sequences do not depend on the change-point. Here, a zero-order Markov process

means that the pre-change observations X1, ..., Xk−1 and the post-change observations

Xk, ..., XN are mutually independent. When q = N , we consider that at least one of the

pre-change observations X1, ..., Xk−1 and the post-change observations Xk, ..., XN is not

a Markov process of any order, because we have only N observations. In this case, the

test statistic sequence {Y0, Y1, ..., YN} is not a Markov process of any order.

Theorem 2 shows that the optimal control limit ln(c)(0 ≤ n ≤ N) depends on Yn and

q observation variables if the observation sequence {Xn, 0 ≤ n ≤ N} is at most a q-order

Markov process.

Theorem 2. Let the observation sequence be at most a q-order Markov chain for 0 ≤ q ≤

N . Let An,q := {Xn, ..., Xn−q+1} and Bn,0 := {Xn, ..., X0}. Assume that the post-change

conditional densities of the observation sequences do not depend on the change-point,

and that the weighted pair M = (W,V ) satisfies wn+1 = wn+1(Yn, An,q1) and vn+1 =

vn+1(Yn, An,q2), for 0 ≤ n ≤ N , where 0 ≤ q1, q2 ≤ q, wn+1 = wn+1(Yn) for q1 = 0, and

vn+1 = vn+1(Yn) for q2 = 0. Then:

14
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(i) For 1 ≤ q ≤ N , the optimal control limit {ln(c), 0 ≤ n ≤ N} can be written as

ln(c) = cvn+1(Yn, An,q2)

+ E0

(
[ln+1(c)− (Yn + wn+1(Yn, An,q1))Λn+1]+|Yn, Bn,0

)
for 0 ≤ n ≤ q − 1, and as

ln(c) = cvn+1(Yn, An,q2)

+ E0

(
[ln+1(c)− (Yn + wn+1(Yn, An,q1))Λn+1]+|Yn, An,q

)
for q ≤ n ≤ N , where we replace Xn−q1+1 or Xn−q2+1 with X0, as long as n− q1 + 1 < 0

or n− q2 + 1 < 0, respectively.

(ii) For q = 0, we have

ln(c) = cvn+1(Yn) + E0

(
[ln+1(c, Yn+1)− (Yn + wn+1(Yn))Λn+1]+|Yn

)
,

for 0 ≤ n ≤ N .

Note that the optimal control limit ln(c) depends not only on An,q, but also on the test

statistic Yn, for 1 ≤ n ≤ N . Can we find a control limit l̃n(c) that has the same property

as ln(c), but that does not directly depend on the test statistic Yn, for 1 ≤ n ≤ N ? To

answer this question, we first define an equivalent control limit.

Definition 2. Let the observation sequence {l̃n(c), 1 ≤ n ≤ N} be a control limit of

a sequential test T̃ ∈ TN , where T̃ = min{1 ≤ n ≤ N + 1 : Yn ≥ l̃n(c)}. If T̃ is equal to

the optimal sequential test T ∗M(c,N) ( a.s. P0 ), then we call the control limit {l̃n(c)} an

equivalent control limit of the optimal sequential test T ∗M(c,N).

The following theorem answers the above question.
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Theorem 3. Let the observation sequence and the weighted pair M = (W,V ) satisfy the

conditions of Theorem 2. Let an,q := {xn, ..., xn−q+1} and bn,0 := {xn, ..., x0}. Assuming

that q1 = q2 = q, y + wn+1(y, an,q) and vn+1(y, an,q) are continuous nondecreasing and

non-increasing on y ≥ 0, respectively, for given an,q, 0 ≤ n ≤ N . Then,

(i) For 1 ≤ q ≤ N , there is an equivalent control limit l̃n(c) of the optimal sequential

test T ∗M(c,N) that does not depend directly on the statistic Yn, for 1 ≤ n ≤ N , such that

l̃n(c) = yn(c, Bn,0) for 0 ≤ n ≤ q − 1, and l̃n(c) = yn(c, An,q) for q ≤ n ≤ N , where

the nonnegative functions yn = yn(c, bn,0) for 0 ≤ n ≤ p − 1 and yn = yn(c, an,q) for

q ≤ n ≤ N satisfy

yn = cvn+1(yn, bn,0)

+ E0

(
[ln+1(c)− (yn + wn+1(yn, bn,0))Λn+1]+|Yn = yn, Bn,0 = bn,0

)
,

for 0 ≤ n ≤ q − 1, and

yn = cvn+1(yn, an,q)

+ E0

(
[ln+1(c)− (yn + wn+1(yn, an,q))Λn+1]+|Yn = yn, An,q = an,q

)
,

for q ≤ n ≤ N .

(ii) Let q = 0. There is a series of nonnegative nonrandom numbers, yn, for 1 ≤ n ≤ N,

such that the equivalent control limit l̃n(c) = yn and yn satisfies

yn = cvn+1(yn) + E0

(
[ln+1(c)− (yn + wn+1(yn))Λn+1]+|Yn = yn

)
, (3.1)

for 1 ≤ n ≤ N .
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Remark 3. Using a similar method to the proof of Theorem 3, we can prove that

the results of Theorem 3 are still true for 0 ≤ q1, q2 ≤ q ≤ N .

It is clear that the weighted pairs Mi, for 1 ≤ i ≤ 6, satisfy the conditions of Theorem

3. As an application of Theorem 3, we have the following corollary.

Corollary 2. Let the observation sequence be at most a q-order Markov chain for

0 ≤ q ≤ N , and let the post-change conditional densities of the observation sequences

not depend on the change-point. Then, the six optimal sequential tests T ∗Mi
(c,N)m for

1 ≤ i ≤ 6, have equivalent control limits. In particular, when q = 0, the equivalent control

limits consist of a series of dynamic nonrandom numbers.

None of the equivalent control limits of the optimal sequential tests T ∗Mi
(c,N), for

1 ≤ i ≤ 5, are constants when q = 0. This means that T ∗M1
(c,N) 6= TS,N(c1), T ∗M2

(c,N) 6=

TSLR1,N(c2), T ∗M3
(c,N) 6= TC,N(c4), T ∗M4

(c,N) 6= T rSR,N(c5), and T ∗M5
(c,N) 6= TSLR2,N(c3),

because the control limits ci, for 1 ≤ i ≤ 5, are constants, where TS,N(c1) = min{TS(c1), N+

1}, TSLR1,N(c2) = min{TSLR1(c2), N+1}, TSLR2,N(c3) = min{TSLR2(c3), N+1}, TC,N(c4) =

min{TC(c4), N + 1}, and T rSR,N(c5) = min{T rSR(c5), N + 1}.

Thus, from (ii) of Theorem 1, we obtain the following corollary.

Corollary 3. The optimal sequential tests T ∗Mi
(c,N), for 1 ≤ i ≤ 5, are strictly

superior to the tests TS,N(c1), TSLR1,N(c2), TC,N(c4), T rSR,N(c5), and TSLR2,N(c3) under

the measures JMi,N , for 1 ≤ i ≤ 5, respectively, when they all have the same (generalized)

in-control ARL0.

Remark 4. Sections 4.1 and 4.2 illustrate that the CUSUM and Shiryaev–Roberts
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tests with appropriate dynamic control limits can be superior to the CUSUM test TC,N

under Lorden’s measure and the Shiryaev–Roberts test T rSR,N under Pollak’s measure

(see Pollak (1985)), respectively, for finite independent observations. Thus, the reason

why the optimal sequential tests TS(c1), TSLR1(c2), TSLR2(c3), TC(c4), and T rSR(c5) for a

sequence of infinite independent observations are no longer optimal for finite independent

observation sequences is that their control limits ck, for 1 ≤ k ≤ 5, are all constants.

Next, in the following example, we illustrate how to find an equivalent control limit by

analyzing the optimal control limit of the optimal sequential test T ∗M2
(c,N). In particular,

for some special pre-change and post-changes probability densities, we can get the closed-

form optimal control limit.

Example Let {X0, 1 ≤ k ≤ 60} be an i.i.d observation sequence with the pre-change

probability density p0 and the post-change probability density p1; that is, both the pre-

change observations X1, ..., Xk−1 and the post-change observations Xk, ..., XN are i.i.d

with the probability densities p0 and p1, respectively. Take W2 = {w1 = 1, wk = 0, 2 ≤

k ≤ N + 1} and V2 = {vk = 0, 1 ≤ k ≤ N, vN+1 = 1}. We know that {Yn =
∏n

j=1 Λj, 1 ≤

n ≤ N} is a Markov process and Λn = p1(Xn)/p0(Xn) and Yn are mutually independent

with Λn+1, for 0 ≤ n ≤ N − 1. Because q = 0, it follows from (2.7) and (ii) of Theorem 3

that the optimal control limit {ln(c, y) : 1 ≤ n ≤ N} of T ∗M2
(c,N) can be written as

lN+1(c, y) = 0, lN(c, y) = c > 0

ln(c, y) = E0

(
[ln+1(c, Yn+1)− Yn+1]+|Yn = y

)
= E0

(
[ln+1(c, yΛn+1)− yΛn+1]+

)
, (3.2)

18

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0333



for 1 ≤ n ≤ N − 1, where lN(c, YN) = c. It is clear that the function lN−1(c, y) is

strictly monotonically decreasing on y ≥ 0. Hence, ln(c, y) is also strictly monotonically

decreasing on y ≥ 0, for 1 ≤ n ≤ N − 2. This means that for each n (1 ≤ n ≤ N − 1),

there is a unique positive number yn such that yn = ln(c, yn), for c > 0. Thus, Yn ≥ yn

if and only if Yn ≥ ln(c, Yn), for 1 ≤ n ≤ N − 1. In other words, the equivalent control

limits {l̃n(c), 1 ≤ n ≤ N} of the optimal sequential test T ∗M2
(c,N) are a series of positive

numbers {yn, 1 ≤ n ≤ N}; that is, l̃n(c) = yn, where yN = c > 0 and yn satisfies

l̃n(c) = yn = ln(c, yn), for 1 ≤ n ≤ N − 1.

Now, we consider the power law distributions that can occur in a diverse range of

phenomena. Let p0(x) = α/x1+α and p1(x) = β/x1+β, for x ≥ 1, be the pre-change and

post-change probability densities, respectively. Therefore, the likelihood ratio satisfies

Λn = 1/axr, where β > α > 0, r = β − α, and a = α/β. Let a ≥ (N − 1)/N . Solving the

recursive equations in (3.2) above, we obtain the optimal control limit {ln(c, y) : 1 ≤ n ≤

N} of T ∗M2
(c,N), which has the closed form lN(c, y) = c > 0 and

ln(c, y) =


c− (N − n)y if y ≤ ac/(N − n)

c(1− a)
(

ac
(N−n)y

)β/r
if y > ac/(N − n),

for 1 ≤ n ≤ N−1. Thus, the equivalent optimal control limits {l̃n(c), 1 ≤ n ≤ N} can be

written as l̃n(c) = cn = c/(N − n + 1), for 1 ≤ n ≤ N , where {cn} satisfies cn = ln(c, cn)

and cn ≤ ac/(N − n), for 1 ≤ n ≤ N .
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4. Comparison and analysis of simulation results

Consider an observation sequence with N = 60. Let the change time τ be unknown. By

comparing the simulation results in Sections 4.1 and 4.2, we illustrate that the CUSUM

test TC and the Shiryaev–Roberts test T rSR with a specially designed deterministic ini-

tial point r for an exponential model are no longer optimal under Lorden’s and Pollak’s

measures, respectively, for 60 finite independent observations. The detection performance

(the generalized out-of-control ARL1) of six sequential tests, T ∗M3
(c, 60), T ∗M4

(c, 60), TC ,

TE, T
−1/60
C , and T

1/60
C , for independent and dependent observation sequences, are com-

pared in Sections 4.3 and 4.4, respectively, where TE denotes the exponentially weighted

moving average (EWMA) test introduced by Roberts (1959), which, like the CUSUM test

TC , is very popular in statistical process control (see Han and Tsung (2004); Saleh et al.

(2015); Hosseini and Noorossana (2018)). Both T
−1/60
C and T

1/60
C are defined by replacing

the constant control limit of the CUSUM test TC with two straight lines, c−k = c(1−k/60)

and c+
k = c(1 + k/60), respectively, for 1 ≤ k ≤ 60. All numerical simulation results in

this section were obtained using 105 repetitions.

4.1 Comparison of simulation values of JL(min{T,N + 1})

Let {Xk, 1 ≤ k ≤ 60} be an i.i.d observation sequence with a pre-change normal dis-

tribution of N(0, 1) and a post-change normal distribution of N(0.2, 1). That is, the

likelihood ratio Λk of the pre-change and post-change probability densities p0(x) and

p1(x), respectively, can be written as Λk = e0.2(Xk−0.1), for 1 ≤ k ≤ 60. We compare the
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performance of the two CUSUM tests TC(c, 60) and TDC in detecting the mean shift from

µ0 = 0 to µ1 = 0.2 under Lorden’s measure JL(min{T,N + 1}) with ARL0=40, where

TC(c4, 60) = min{TC(c4), 61} and

TDC = min{1 ≤ k ≤ N + 1 : Zk ≥ lk},

with the dynamic control limits

lk =


2.53 if 1 ≤ k ≤ 40

2.53 + 0.506 ∗ (k − 40) if 40 < k ≤ 60,

and l61 = 0, where Z61 := Y60, Zk, for 0 ≤ k ≤ 60, are the CUSUM test statistics;

that is, Z0 = 0 and Zk = max{1, Zk−1}Λk, for 1 ≤ k ≤ 60. It can be calculated that

E0(TDC) = 40.02.

Taking the constant control limit c4 = 2.6601, we have E0(TC(c4, 60)) = 40.01. Note

that

essup{Ek((TC(c4, 60)− k)+|Fk−1)} = Ek((TC(c4, 60)− k)+|Zk−1 ≤ 1),

for 1 ≤ k ≤ 60. Both the simulation values of the detection delay Ek((TC(c4, 60) −

k)+|Zk−1 ≤ 1) and Ek((TDC − k)+|Zk−1 ≤ 1) are decreasing for k = 1, 2, ..., 60; that

is, both can arrive at the maximum values at the change-point k = 1. Because both

E1(TDC − 1) = 22.951 and E1(TC(c, 60)− 1) = 23.425 are the maximum values, it follows

that

JL(TDC) = max
1≤k≤60

{Ek((TDC − k)+|Zk−1 ≤ 1)} = E1(TDC − 1)

< JL(TC(c, 60)) = max
1≤k≤60

{Ek((TC(c, 60)− k)+|Zk−1 ≤ 1)} = E1(TC(c, 60)− 1).
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This means that the CUSUM chart TC is not optimal under Lorden’s measure JL(min{T,N+

1}) restricted in 60 i.i.d. observations.

4.2 Comparison of simulation values of JP (min{T,N + 1})

Let {Xk, 1 ≤ k ≤ 60} be an i.i.d observation sequence with a pre-change exponential densi-

ty of f0(x) = e−xI(x ≥ 0) and a post-change exponential density of f1(x) = 2e−2xI(x ≥ 0).

The likelihood ratio is Λk = 2e−Xk , for 1 ≤ k ≤ 60. Polunchenko and Tartakovsky (2010)

proved that the control chart T rSR(c) with a specially designed deterministic initial point

r for an exponential model is optimal under Pollak’s measure JP (T ), for 1 < γ < 2.2188.

Let T rSR(c5, 60) = min{T rSR(c5), 61}. Taking c5 = 1.6645 and r =
√

2.6645 − 1, we have

ARL0 = E0(T rSR(c5, 60)) = 2. It follows from JP (min{T,N + 1}) = max1≤k≤60{Ek(T −

k)+/P0(T ≥ k)} that

JP (T rSR(c5, 60)) = E1(T rSR(c5, 60)− 1) = 1.3165.

However, if we define a sequential test as T rSR({lk}, 60) with dynamic control limit lk,

lk =


1.238 + 0.1238k if 1 ≤ k ≤ 10

0 if 10 < k ≤ 60,

we obtain

JP (T rSR({lk}, 60)) = E1(T rSR({lk}, 60)− 1) = 1.2743,

with ARL0 = E0(T rSR({lk}, 60)) = 2.0012. Thus,

JP (T rSR({lk}, 60)) < JP (T rSR(c5, 60)).
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This means that the control chart T rSR(c5) is not optimal under Pollak’s measure JP (min{T,N+

1}) restricted in 60 i.i.d. observations.

4.3 Comparison of the generalized out-of-control ARL1 for independent ob-

servations

Let {Xk, 1 ≤ k ≤ 60} be an i.i.d. observation sequence with a pre-change normal distri-

bution of N(0, 1) and a post-change normal distribution of N(1, 1). The likelihood ratio

is Λk = eXk−1/2, for 1 ≤ k ≤ 60. Let T ∗3 = T ∗M3
(c, 60), and T ∗4 = T ∗M4

(c, 60), and let the

smoothing parameter in the statistics of the EWMA test TE be 0.1. By Corollary 2, we

know that the equivalent control limits of the optimal sequential tests T ∗3 and T ∗4 consist

of a series of nonrandom positive numbers. Fig. 1 shows the constant control limit of TC

(black dots) and the equivalent dynamic control limit of T ∗3 (white dots).

Figure 1: Control limits for TC and T ∗3 with ARL0 ≈ 40
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We use two generalized out-of-control ARL1s, GARL3 and GARL4, to evaluate the

detection performance of the sequential tests, where

GARL3(T ) = E0(T )JM3,N(T ) =
N∑
k=1

Ek((1− Yk−1)+(T − k)+)

GARL4(T ) = E0(T )JM4,N(T ) =
N∑
k=1

Ek((T − k)+),

where r = 0 in JM4,N(T ). Obviously, for any two sequential tests T ′, T ∈ TN with

E0(T ′) = E0(T ), we have GARLj(T
′) ≥ GARLj(T ) if and only if JMj ,N(T ′) ≥ JMj ,N(T ),

for j = 3, 4.

The simulation results of GARL3 and GARL4 for the six tests T ∗3 , T ∗4 , TC , TE, T
−1/60
C ,

and T
1/60
C with the same ARL0 ≈ 20, 40, 50 are listed in Table 1, where the values of

ARL0, the constant control limits of TC and TE, and the adjustment coefficients of T ∗3 ,

T ∗4 , T
−1/60
C , and T

1/60
C are listed in parentheses. Table 1 shows that both T ∗3 and T ∗4 have

the best detection performance; that is, T ∗3 and T ∗4 have the smallest GARL3 and GARL4

(in bold), respectively, in the six tests with the same ARL0 ≈ 20, 40, 50. This is consistent

with the result of Corollary 3: tests T ∗3 and T ∗4 are optimal under measures JM3,N(T ) and

JM4,N(T ), respectively.
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Table 1. Simulation values of GARL3 and GARL4 with the same ARL0 for indepen-

dent observations

ARL0 Sequential Tests

T ∗
3 T ∗

4 TC TE T
−1/60
C T

1/60
C

GARL3 17.59 19.62 18.97 19.98 19.28 19.34

GARL4 44.75 42.10 45.13 48.02 46.50 47.57

c (1.3011) (0.12216) (4.4823) (1.2250) (6.3900) (3.629)
20

ARL0 (20.06) (20.01) (20.07) (20.08) (20.08) (20.07)

GARL3 49.26 55.17 54.44 59.97 54.96 55.99

GARL4 145.65 139.18 148.07 164.28 148.76 155.80

c (2.0251) (5.5996) (11.4423) (1.4064) (22.1500) (8.7815)
40

ARL0 (40.06) (40.02) (40.06) (40.04) (40.01) (40.02)

GARL3 80.95 84.27 83.45 95.52 83.85 85.63

GARL4 232.52 229.26 240.52 273.29 238.82 248.57

c (2.9518) (0.2656) (22.8821) (1.5269) (52.2500) (17.2478)
50

ARL0 (50.05) (50.02) (50.04) (50.08) (50.00) (50.05)

4.4 Comparison of the generalized out-of-control ARL1 for a Markov obser-

vation sequence

Let {Xk, 1 ≤ k ≤ 60} be a dependent observation sequence satisfying

Xk =


ρ0Xk−1 + εk if 1 ≤ k ≤ τ,

ρ1Xk−1 + εk if k ≥ τ,

where X0 = 0, {εk, 1 ≤ k ≤ 60} is i.i.d with a normal distribution, that is, εk ∼ N(0, 1)

for 1 ≤ k ≤ 60, ρ0 = 0.5, and ρ1 = 0.1. That is, the correlation coefficient changes from
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0.5 to 0.1. Obviously, {Xk, 1 ≤ k ≤ 60} is a one-order Markov process. The pre-change

and post-change transition probability densities p0(x, y) and p1(x, y), respectively, and

the likelihood ratio Λk can be written as

p0(x, y) =
1√
2π
e−

(y−ρ0x)
2

2 , p1(x, y) =
1√
2π
e−

(y−ρ1x)
2

2

Λk =
p1(Xk−1, Xk)

p0(Xk−1, Xk)
= exp{[(ρ1 − ρ0)Xk−1][Xk − (ρ1 + ρ0)Xk−1/2]}.

It can be seen that the changes in the variance and covariance of Xk and Xk−1 occur after

the change-point τ = k. Here, the change-point is unknown.

Because {Xk, 1 ≤ k ≤ 60} is a one-order Markov process, it follows from (i) of Theorem

3 that we need to calculate the equivalent control limits l̃k = yk(c,Xk), for 1 ≤ k ≤ 59,

to get the corresponding optimal tests T ∗3 and T ∗4 .

We also use the two generalized out-of-control ARL1s, GARL3 and GARL4, to evaluate

the detection performance of the six sequential tests T ∗3 , T ∗4 , TC , TE with the smoothing

parameter 0.1, T
−1/60
C , and T

1/60
C . The simulation results of GARL3 and GARL4 for the

six tests with the same ARL0=20, 40, 50 are listed in Table 2. The ARL0 values, the

constant control limits of TC and TE, and the adjustment coefficients of T ∗3 , T ∗4 , T
−1/60
C ,

and T
1/60
C are listed in parentheses. Table 2 shows that tests T ∗3 and T ∗4 have the best

detection performance; that is, T ∗3 and T ∗4 have the smallest GARL3 and GARL4 values

(in bold), respectively, of the six tests with the same ARL0 ≈ 20, 40, 50. This is consistent

with the result of Corollary 3: sequential tests T ∗3 and T ∗4 are optimal under measures

JM3,N(T ) and JM4,N(T ), respectively.
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Note that although the monitoring performance of T ∗3 and T ∗4 is better than that

of TC , TE, T
−1/60
C , and T

1/60
C under the measures JM3,N(T ) and JM4,N(T ), the constant

control limits of TC , TE, and T
−1/60
C are easier to determine than those of T ∗3 and T ∗4 .

Table 2. Simulation values of GARL3 and GARL4 with the same ARL0 for a one-order Markov

observation sequence

Sequential Tests

ARL0 ARL1 T ∗
3 T ∗

4 TC TE T
−1/60
C T

1/60
C

GARL3 21.55 23.26 22.04 67.46 22.72 23.09

GARL4 135.25 115.43 139.64 551.78 130.92 156.09

c (2.075) (12.016) (2.3482) (0.3150) (3.4500) (1.8901)
20

ARL0 (20.14) (20.05) (19.97) (20.09) (20.01) (20.09)

GARL3 57.86 59.80 59.71 148.09 60.60 60.30

GARL4 467.17 409.76 474.64 1261.20 450.68 490.42

c (3.865) (22.8550) (4.7828) (0.5895) (10.3500) (3.478)
40

ARL0 (40.84) (40.72) (40.76) (40.07) (40.02) (40.03)

GARL3 80.42 84.15 83.32 180.06 87.25 87.57

GARL4 688.52 638.15 705.62 1579.13 722.63 758.57

c (5.575) (32.89) (7.528) (0.755) (23.15) (5.667)
50

ARL0 (49.26) (49.77) (49.28) (49.82) (49.94) (50.04)

Remark 5. We now discuss how to choose appropriate performance measures. If the

distribution of the change-point τ is known, ρk = P (τ = k), it is better to use the measure

JM1,N(T ). If τ = 1, we use the measure JM2,N(T ). If the change-point τ is unknown, we

27

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0333



should use the measures JM3,N(T ) or JM4,N(T ). Because

GARL3(T ) = E0(T )JM3,N(T ) =
N∑
k=1

Ek((1− Yk−1)+(T − k)+)

≤
N∑
k=1

Ek((T − k)+) = E0(T )JM4,N(T ) = GARL4(T ),

where r = 0 in JM4,N(T ), we recommend using the measure JM3,N(T ) to evaluate the

detection performance when the change-point is unknown.

5. A real-data example

Performance monitoring is important for any industry or enterprise to make appropriate

evaluations of the past operating cycle and to plan for the next. Sequential tests, or

control charts, are commonly used in business to monitor operating indicators, such as

customer attrition rates, sales margins, and order numbers.

Consider a real example. The data set is drawn from an actual process of a new

e-commerce company providing a retail service. More information can be found in Yu

et al. (2018). The parameter being monitored is the daily order quantity in a district in

Shanghai. The data period ranges from July 2008 (i.e., when the site first went online)

to August 2008, and the data include the order date and user ID. In order to develop

customers, new e-commerce companies have offered attractive discounts. However, they

cannot sustain these online discounts on a continuous, unlimited, and cost-free basis.

They need to observe whether there has been a change in the order volume after a limited

period. The aim is to detect any upward shifts in the mean, because these would signal
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improvements in operating performance.

Because the change-point is unknown, we use the measure JM3,N(T ) to evaluate the

detection performance of each sequential test. The detection performance of the four

sequential tests, T ∗3 , TC , T
1/60
C , and T

−1/60
C , based on the measure JM3,N(T ), are illustrated

using this real-data example. The data analysis proceeds in several steps:

• Step 1: Exploratory data analysis

Fig.2 shows the daily order numbers throughout the observation period. The num-

ber of orders increases at about the end of July. The goal here is to detect any

upward shifts.

2017-7-1 2017-7-11 2017-7-21 2017-7-31 2017-8-10 2017-8-20 2017-8-30
Time

0

2

4

6

Or
de

r q
ua

nt
ity

Data from 01/07/2008 to 31/08/2008

Figure 2: Exploratory data analysis

• Step 2: The test of its Markov property

Daily order volume data is somewhat correlated. First, we cluster the order quanti-

ties ({Dn, n = 0, 1, · · · , 61}) into three states, denoted as Xn ∈ {0, 1, 2}, as follows:
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Xn =


0, Dn ≤ 1;

1, 2 ≤ Dn ≤ 3;

2, Dn ≥ 4.

(5.1)

The estimations of the in-control and out-of-control transition probability matrices

are

P0 =


0.8636 0.0909 0.0455

0.4 0.4 0.2

0.3333 0.3333 0.3334

 (5.2)

and

P1 =


0.4667 0.4667 0.0666

0.625 0.125 0.25

0.2857 0.1429 0.5714

 , (5.3)

respectively, based on data from the previous month and the later month, respec-

tively. The χ2 statistic is applied to test the Markov property, which the results

show is satisfied by both processes.

• Step 3: Detection

We employ the above four sequential tests with ARL0 = 45 to detect the obser-

vations X1, X2, · · · , X60. The parameter c in the control charts of the four tests is

shown in Table 3.
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Table 3.Parameter c in the control limit of four sequential tests

Test c ARL0 Change Point

T ∗
6 2.64 45.1168 33

TC 12.90 45.1979 34

T
1/60
C 32.99 45.1326 34

T
−1/60
C 10.40 45.1453 34

Figure 3 illustrates the monitoring process in four different tests, and we can find that

T ∗3 alerts at the 33rd daily record, while the other three tests signal at the 34th record.

The reason that the three tests alert at the same day is that there is a relatively bigger

change around the 33th day.

The proposed T ∗3 scheme performs more sensitively under the measure JM3,N(T ).

6. Conclusion

By presenting the generalized Shiryaev measures of detection delay JM,N(.), the statistic

Yn, for 0 ≤ n ≤ N + 1, the control limit ln(c), for 0 ≤ n ≤ N + 1, and the sequential test

T ∗M(c,N), for N finite observations, we obtain the following main results. (i) For different

measures JM,N(.) of detection delay, we can construct different optimal sequential tests

T ∗M(c,N) under the corresponding measures for a general finite observation sequence. (ii)

A formula is presented to calculate the value of the generalized out-of-control ARL1 for

every optimal test T ∗M(c,N) that is the minimum value of the generalized out-of-control

ARL1 of all tests T ∈ TN . (iii) When the post-change conditional densities (probabilities)

of the observation sequences do not depend on the change-point, there is an equivalent
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Figure 3: Testing results for Markov observation sequence

control limit that does not depend directly on the statistic of the optimal test T ∗M(c,N) for

a q-order Markov process. Specifically, the equivalent control limit can consist of a series

of nonnegative nonrandom numbers when the observations are mutually independent.

In this study, both the pre-change and post-change joint probability densities are

assumed to be known. In fact, we usually do not know the post-change joint probability

density before it is detected. However, the potential change domain (including the size

and the form of the boundary) and its probability may be determined by engineering
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knowledge and practical experience. In other words, although the actual post-change joint

probability density p(θ, k) := pθ,k(x0, x1, ..., xk, ..., xN) is unknown, that is, the parameter

θ is unknown at the change time k, we may assume that there is a known probability

distribution Qk(.) for the known parameter set Θk, such that the probability of the post-

change joint probability density at change-point k being pθ,k is dQk(θ), for 1 ≤ k ≤ N ,

where pθ,k 6= pθ′,k if and only if θ 6= θ′. If we have no prior knowledge of the possible

parameter θ (corresponding to a possible post-change probability density pθ,k) at the

change-point k, it is natural to assume that the probability distribution Qk may be an

equal probability distribution or uniform distribution on Θk; that is, Qk(θ = θi) = 1/m

(1 ≤ i ≤ m < ∞) for θi ∈ Θk or dQ(θ)/dθ = 1/M(Θ), where dQ/dθ denotes the

probability density and M(Θ) is the measure (length, area, volume, etc.) of the bounded

set Θ. Note that the parameter θ may not be the characteristic numbers (the mean,

variance, etc.) of the probability distribution. Hence, we can define a new joint probability

density

pk := pk(x0, x1, ..., xk, ..., xN)

as follows:

pk(x0, x1, ..., xN) =

∫
Θk

pθ,k(x0, x1, ..., xN)dQk(θ),

for 1 ≤ k ≤ N . The density function pk can be considered a known post-change joint

probability density at the change-point k, for 1 ≤ k ≤ N .

33

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0333



REFERENCES

Supplementary Material

The proofs of Theorems 1, 2, and 3 are shown in the online Supplementary Material.
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APPENDIX 1: Four performance measures

It is clear that taking various weighted pairs M = (W,V ), we can get various measures JM,N (.). Take four

weighed pairs Mi = (Wi, Vi), 5 ≤ i ≤ 8, we can get the folowing performance measures

JM5,N (T ) =
E1(T − 1)∑N+1

j=1 ρjP0(T ≥ j)
, JM6,N (T ) =

∑N
k=1 Ek((1− Zk−1)+(T − k)+)

E0(
∑T
j=1(1− Zj−1)+)

,

JM7,N (T ) =
E1((T − 1)) +

∑N+1
k=2 Ek(eXk−1(1 + eXk−1)−1(T − k)+)

1 + E0(
∑T
k=2 e

Xk−1(1 + eXk−1)−1)
,

JM8,N (T ) =
E1((T − 1)) +

∑N
k=2 Ek( 1

k−1

∑k−1
j=1 e

Xj (T − k)+)

E0(T )
,

where W5 = {w1 = 1, wk = 0, 2 ≤ k ≤ N + 1}, V5 = {vk = ρk, 1 ≤ k ≤ N + 1}, ρN+1 := 1 −
∑N
k=1,

W6 = V6 = {wj = vj = (1−Zj−1)+, 1 ≤ j ≤ N + 1}, and Zk = max{1, Zk−1}Λk for 1 ≤ k ≤ N , are the statistics

of the CUSUM test with Z0 = 0. Here, both W7 = V7 = {wk = vk = eXk−1/(1 + eXk−1), 1 ≤ k ≤ N + 1} and

W8 = V8 = {wk = vk = 1
k−1

∑k−1
j=1 e

Xj , 1 ≤ k ≤ N + 1} in the two new measures JM7,N (T ) and JM8,N (T ), can

describe some kind of possibility of the changes of the observation values at change-point k − 1 and the average

of the changes of the observation values before the change-point k ≥ 2, respectively.
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