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Abstract: In semi-supervised learning, a training sample comprises both labeled and unlabeled2

instances from each class under consideration. In practice, an important, yet challenging issue is3

the detection of novel classes that may be absent from the training sample. Here, we focus on the4

binary situation in which labeled instances come from the positive class, and unlabeled instances5

come from both classes. In particular, we propose a semi-supervised large-margin classifier to6

learn the negative (novel) class based on pseudo-data generated iteratively using an estimated7

model. Numerically, we employ an efficient algorithm to implement the proposed method using8

the hinge loss and ψ-loss functions. Theoretically, we derive a learning theory for the new classifier9

in order to quantify the misclassification error. Finally, a numerical analysis demonstrates that10

the proposed method compares favorably with its competitors on simulated examples, and is11

highly competitive on benchmark examples.12

Key words and phrases: Biased SVM, Iterative algorithm, Large-margins, PU learning.13
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1 Introduction14

In semi-supervised learning, a large amount of labeled and unlabeled data are ob-15

served together in order to enhance the predictive accuracy of a classifier (Vapnik, 1998;16

Chapelle and Zien, 2005; Wang and Shen, 2007; Wang, Shen, and Pan, 2009). For most17

existing methods, instances from all classes are required. Therefore, these methods can-18

not detect a novel class if it is absent from the training sample. This sort of problem19

arises in many applications, such as text classification (Liu et al., 2002; Denis, Gilleron,20

and Tommasi, 2002), where relevant documents are retrieved without labor-intensively21

labeling irrelevant documents, and disease gene prediction (Calvo et al., 2007), where22

disease genes are identified in the presence of positive instances, but not negative ones. In23

this study, we consider the situation in which labeled instances come from one (positive)24

class, and unlabeled instances come from both classes. By minimizing the generaliza-25

tion error, we construct a semi-supervised learner capable of detecting the novel class.26

In fact, any classification can be cast into the novel-class-detection framework with la-27

beled instances from only one class and a large number of unlabeled instances from both28

classes.29

We now briefly review the pertinent literature. In terms of text classification, vari-30

ants of one-class support vector machines (SVMs) have been proposed to estimate the31

support of positive data without using unlabeled samples (Tax and Duin, 1999; Manevitz32

and Yousef, 2001; Schölkopf et al., 2001; Pierre Geurts, 2011). The naive Bayes approach33
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1. INTRODUCTION3

has been applied to the positive and unlabeled classification problem. Here, examples34

include the positive naive Bayes approach (Denis, Gilleron, and Tommasi, 2002) and the35

positive tree-augmented naive Bayes approach (Calvo, Larrañaga and Lozano, 2007).36

However, either they perform poorly when a large number of unlabeled instances are37

discarded (Liu et al., 2003), or the computation cost becomes high, with limited im-38

provement. Two-step algorithms have also been developed to solve the problem. The39

first step extracts a fraction of the reliable negative instances from the unlabeled sample,40

and then the second step trains classifiers based on the positive and reliable negative41

instances. These two steps are repeated iteratively until no reliable negative instances42

can be identified in the unlabeled sample. Examples of such algorithms include spy-EM43

(Liu et al., 2002), positive example-based learning (Yu, Han, and Chang, 2002), and the44

SVM with a Rocchio extraction (Li and Liu, 2003). Note that a scheme maximizing the45

number of negative classified instances among unlabeled samples, while classifying pos-46

itive samples correctly, leads to good overall performance (Liu et al., 2002). Moreover,47

by adjusting the misclassification costs of the two classes due to asymmetry, weighted48

methods are obtained. Here, examples include the weighted logistic regression (Lee and49

Liu, 2003), biased SVM (BSVM) (Liu et al., 2003), and re-weighting method (Elkan50

and Noto, 2008). Liu et al. (2003) demonstrate experimentally that the BSVM out-51

performs various two-step algorithms. Recently, bagging tactics have been employed,52

yielding comparative performance (Mordelet and Vert, 2014). Global and local learning53
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from positive and unlabeled examples adapts the intrinsic geometric information in the54

training data set. A biased least square SVM (BLSSVM) has also been proposed (Ke et55

al., 2018). The learning theory on the risk estimator for positive and unlabeled instances56

is partially established and examined in, for example, Kiryo et al. (2017), Natarajan et57

al. (2018), and Tanielian and Vasile (2019).58

To detect the negative (novel) class, we propose a semi-supervised large-margin59

classifier that combines the benefits of large margins and the BSVM method (Liu et al.,60

2003), and iteratively generates pseudo-samples for training. The proposed classifier in-61

corporates the predicted values of unlabeled instances appropriately, and then iteratively62

trains a biased model based on the pseudo-training samples, with original labeled in-63

stances remaining unchanged at each iteration step. Additionally, the proposed method64

adjusts the weights adaptively to tackle the imbalance issue, if there is any, yielding a65

more accurate classification. This iterative scheme usually leads to an improvement at66

each iteration, thereby outperforming its counterparts without a weight adjustment. To67

implement the proposed large-margin classifier using the hinge loss and ψ-loss functions,68

we employ an inexact alternating direction method of multipliers (IADMM) algorithm69

(Wang et al., 2013), which decouples variables for efficient computation.70

Our numerical analysis indicates that the newly proposed method compares fa-71

vorably with the state-of-the-art BSVM and bagging SVM (BASVM) in terms of the72

generalization error (Mordelet and Vert, 2014). More importantly, the proposed method73
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2. METHODOLOGY5

achieves nearly the performance of the classifiers with complete data, indicating that the74

re-weighting scheme does lead to an overall improvement. Theoretically, we establish a75

novel learning theory for the ψ-loss, providing insight into the connection between the76

performance of the proposed method and the sample size, tuning parameter, and loss77

function in semi-supervised learning. In particular, the theory confirms the simulation78

results.79

The rest of paper is organized as follows. Section 2 presents a general weighted large-80

margin classification model and the proposed method. Section 3 develops an algorithm81

based on the IADMM for implementation. Section 4 introduces a new tuning criterion82

with only positive labeled data and unlabeled data. In Section 5, the proposed method is83

compared against its strong competitors on two simulated examples and two benchmark84

examples. In Section 6, we investigate the theoretical properties of the proposed method.85

Section 7 discusses the proposed method and the underlying problem. All technical86

proofs are deferred to the appendix.87

2 Methodology88

2.1 Weighted Large-Margin Classification89

Given a training sample (xi, yi)
n
i=1 with yi ∈ {1,−1}, for 1 ≤ i ≤ n, the objective90

function of the weighted large-margin classification (Osuna, Freund, and Girosi, 1997)91
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is92

min
f∈F

C+

∑
yi=1

L(yif(xi)) + C−
∑
yj=−1

L(yjf(xj)) + J(f), (2.1)

where F is the candidate set of decision functions, L(·) is the margin loss function of the93

functional margin z = yf(x), J(·) is a regularization term that controls the complexity94

of the decision function f , and C+ and C− are nonnegative tuning parameters controlling95

the trade-off between the fits for the positive and negative classes, respectively, and the96

complexity of the decision function. A margin loss L(z) is called a large margin if it is97

decreasing in the variable z; that is, a large margin loss penalizes small margins, push-98

ing correctly specified instances away from the classification boundary. Given a decision99

function f , the corresponding classification rule is sign(f(x)). For linear classification100

problems, F = {f(x) = b0 + bTx ≡ (1,xT )b̄}, where b̄ = (b0,b
T )T , and the commonly101

used regularizer is J(f) = ‖b‖2/2, the reciprocal of the geometric margin. For nonlinear102

classification, F = {f(x) = b0 +
∑n

i=1 biK(x,xi)} and J(f) =
∑

1≤i,j≤n biK(xi,xj)bj/2,103

where K(·, ·) is a reproducing kernel, see Gu (2000) and Wahba (1990) for the reproduc-104

ing kernel Hilbert spaces. Moreover, different large-margin loss functions lead to different105

learning machines. In this study, we consider a linear classification with the hinge loss106

L(z) = (1−z)+ (Cortes and Vapnik, 1995) and the ψ-loss ψ(z) = min(1, (1−z)+) (Shen107

et al., 2003). The hinge loss is the most commonly used loss function in classification108

problems, owing to its good performance and convexity. However, the hinge loss is not109

robust to outliers, because of unboundedness. Hence, a bounded loss function, ψ-loss, is110
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2. METHODOLOGY7

also used as an alternative. The numerical analysis in Section 5 shows that our proposed111

method with ψ-loss outperforms that with the hinge loss. Our proposed method can112

also adapt to other loss functions as well.113

2.2 Proposed Method114

In light of the preceding discussion, we propose the following cost function based on115

(2.1):116

S(f,y) = C
( 1

n+

∑
yi=1

L(yif(xi)) +
1

n−

∑
yj=−1

L(yjf(xj))
)

+ J(f), (2.2)

where n+ and n− are the numbers of instances of positive and negative classes, respec-117

tively, in the training sample. This weighting scheme assigns a large weight to the small118

class and a small weight to the large class, which mitigates the imbalance and misclas-119

sification. Note that the tuning parameter C can be rescaled to one by introducing120

another tuning parameter λ into J(f), controlling the level of the penalty.121

The motivation for our proposed approach comes from model (2.1). The BSVM122

(Liu et al. (2003)) fits (2.1) based on a pseudo-training sample consisting of the original123

positive instances and unlabeled observations treated as pseudo-negative instances. Ob-124

viously, such a scheme is biased owing to mislabeling of unlabeled data. However, some125

correctly labeled negative instances, together with the original positive instances, are126

useful for estimating the decision boundary using (2.2). In addition, incorrectly labeled127

positive instances have little impact on the decision boundary, given the missing-at-128
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random assumption (Assumption A1 in Section 6). As a result, the classifier sign(f̂ (1))129

based on (2.2) yields a better decision boundary than that of the classifier sign(f̂ (0)),130

which labels all unlabeled instances as negative. Furthermore, the subsequent refitting131

by the classifier sign(f̂ (2)) trained based on the original positives and the predicted labels132

of unlabeled data given by classifier sign(f̂ (1)) leads to a more accurate classification.133

This is confirmed by Theorem 3. This iterative train-and-refit procedure continues until134

a certain termination criterion is met when no further improvement is possible.135

For the following analysis, we denote the observations (xi, yi)
nl
i=1 in the training set136

as the labeled data, where yi = 1, for 1 ≤ i ≤ nl, and (xj)
n
j=nl+1 as the unlabeled data.137

We summarize the iteration scheme below.138

Algorithm 1139

For k = 0, 1, . . . ,140

Step 1 (Initialization): Train f̂ (0) using xi and yi = I(1 ≤ i ≤ nl)−I(nl+1 ≤ i ≤ n),141

for i = 1, . . . , n. Specify a precision ε > 0, and set up the initial pseudo-training sample142

using the initial classifier sign(f̂ (0)): y0
j = sign(f̂ (0)(xj)), for nl + 1 ≤ j ≤ n, and143

y0
i = yi = 1, for 1 ≤ i ≤ nl.144

Step 2 (Iteration): Given the pseudo-sample (xi, y
k
i )ni=1, compute the classifier f̂ (k+1)

145

by minimizing S(f,yk), where yk = (yk1 , · · · , ykn)T . Reclassify the data as yk+1
i = yi, for146

1 ≤ i ≤ nl, and yk+1
j = sign(f̂ (k+1)(xj)), for nl + 1 ≤ j ≤ n.147

Step 3 (Termination): If S(f̂ (k+1),yk+1) > S(f̂ (k+1),yk), terminate; otherwise, re-148
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2. METHODOLOGY9

peat steps 2 and 3 until |S(f̂ (k+1),yk+1)−S(f̂ (k),yk)| ≤ ε|S(f̂ (k),yk)|. The final classifier149

f̂C is f̂ (K), where K is the number of iterations.150

Note that in Algorithm 1, the minimization of S(f,y) with the hinge loss in Step151

2 appears to be a special case of the minimization problem with the ψ-loss introduced152

in Section 3. This iterative scheme bears the properties described in Theorems 1 and 2153

below.154

Theorem 1. (Monotonicity) S(f̂ (k),yk) is a decreasing function in k. Hence, the itera-155

tive algorithm converges as k →∞. That is, for any given precision ε > 0, the algorithm156

terminates in a finite number of steps.157

Theorem 2. Suppose that P (
∑

Y ki =1 Xi/n
k
+ 6=

∑
Y kj =−1 Xj/n

k
−) > 0; for the ψ-loss func-158

tion, suppose further that an additional condition P (
∑

Y ki =1 Xi/n
k
+ 6= 0,

∑
Y kj =−1 Xj/n

k
− 6=159

0) > 0 holds. Then, P (b̂k+1 6= 0) > 0, for any constant C > 0.160

Theorem 2 claims that as long as the covariates’ sample mean vector of the positive161

class is not equal to that of the negative class, and both are away from the zero vector in162

the kth iteration, the coefficient vector is estimated as nonzero with a positive probability163

in the (k + 1)th iteration, such that the decision function f(x) = b0 + bTx can be164

identified. Furthermore, the negative class that is absent from the training data set is165

recovered with a positive probability.166
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3 Nonconvex Minimization, Difference Convex Pro-167

gramming, and the IADMM168

Often, when the hinge loss is used with J(f) = ‖b‖2/2, the objective function (2.2) is169

convex. However, when the hinge loss is replaced by the ψ-loss, the objective function170

becomes nonconvex. In what follows, we develop an efficient algorithm for the nonconvex171

minimization. The objective function (2.2) with the ψ-loss becomes172

min
b̄

1

2
‖b‖2 +

n∑
i=1

Cyiψ(yif(xi)), (3.1)

where x̄i = (1,xTi )T , b̄ = (b0,b
T )T , f(xi) = x̄Ti b̄, and ψ(z) = min((1− z)+, 1).173

To solve the above minimization, we employ a difference convex algorithm (An and174

Tao, 1997) and the IADMM (Wang et al., 2013). First, we decompose the loss function175

ψ = ψ1 +ψ2, where ψ1(z) = (1−z)+, which is the hinge loss, and ψ2(z) = z1(z < 0), and176

replace ψ2 with its majorization. Specifically, given them-step solution b̄m, we substitute177

〈Oψ2(b̄m), b̄〉 for ψ2(b̄) after ignoring the constant term. Next, in the (m+ 1)-step, we178

solve the following sub-problem:179

min
b̄

1

2
‖b‖2 +

n∑
i=1

Cyi

(
(1− yif(xi))+ + yif(xi)1(yif

m(xi) < 0)
)
, (3.2)

where 1(·) is the indicator function. After introducing the slack variables ξi and ηi, (3.2)180
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AND THE IADMM11

becomes181

min
b̄,ξ,η

1

2
‖b‖2 +

n∑
i=1

Cyi

(
ξi + yix̄

T
i b̄1(yix̄

T
i b̄m < 0)

)
, subject to

1− yix̄Ti b̄ = ξi − ηi, ξi ≥ 0, ηi ≥ 0, i = 1, . . . , n.

(3.3)

The corresponding augmented Lagrangian of (3.3) L(b̄, ξ,η,u) is

1

2
‖b‖2 +

n∑
i=1

Cyi

(
ξi + yix̄

T
i b̄1(yix̄

T
i b̄m < 0)

)
+ ρ

n∑
i=1

(yix̄
T
i b̄− 1 + ξi − ηi + ui)

2,

where u = (ui)
n
i=1 denotes the vectorized Lagrangian multipliers. Given b̄t, ξt,ηt, and ut,

we solve the following sub-problems iteratively using the alternating direction method

of multipliers (ADMM, Boyd et al. (2011)):

b̄t+1 = argmin
b̄

1

2
‖b‖2 +

n∑
i=1

Cyiyix̄
T
i b̄1(yix̄

T
i b̄m < 0)

+
ρ

2

n∑
i=1

(yix̄
T
i b̄− 1 + ξti − ηti + uti)

2, (3.4)

(ξt+1
i , ηt+1

i ) = argmin
ξi≥0,ηi≥0

n∑
i=1

Cyiξi +
ρ

2

n∑
i=1

(yix̄
T
i b̄t+1 − 1 + ξi − ηi + uti)

2, (3.5)

ut+1
i =uti + yix̄

T
i b̄t+1 − 1 + ξt+1

i − ηt+1
i . (3.6)

The whole iteration procedure completes using a certain termination rule, specified be-182

low. Specifically, to solve (3.4), we employ the IADMM, which updates (3.4) by lineariz-183

ing its last two terms and adding a proximal term ‖b̄− b̄t‖2
2. This yields184

b̄t+1 = argmin
b̄

1

2
‖b‖2 +

ζ

2
‖b̄− b̄t‖2 + ρb̄T v̄t, (3.7)

where ζ > 0 is a prespecified constant, and v̄t = (v0,v
T )T =

∑n
i=1(yix̄

T
i b̄− 1 + ξi− ηi +185
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ui − Cyi1(yix̄
T
i b̄m < 0)/ρ)yix̄i. The analytic solution of (3.7) is186

bt+1
0 = bt0 −

ρ

ζ
vt0, bt+1 =

ζbt − ρvt

1 + ζ
. (3.8)

Similarly, problem (3.5) has the following closed-form solution:187

ξt+1
i = max(−yix̄Ti b̄t+1 + 1− uti −

Cyi
ρ
, 0), ηt+1

i = max(yix̄
T
i b̄t+1 − 1 + uti, 0). (3.9)

To give a stopping rule, let A = (y1x̄1, · · · , ynx̄n)T , and define

rt+1 =Ab̄t+1 − 1 + ξt+1 − ηt+1, st+1 = ρAT (ξt+1 − ηt+1 − ξt + ηt),

εpri =
√
nε+ εmax{‖Ab̄t+1‖2, ‖ξt+1 − ηt+1‖2, 1}, εdual =

√
pε+ ερ‖ATut+1‖2,

where ε > 0 is the tolerance. The iteration for (3.2) terminates when ‖rt+1‖2 < εpri188

and ‖st+1‖2 < εdual, or it reaches the maximum number of iterations. The computation189

strategy for solving (3.1) is summarized in the next algorithm.190

Algorithm 2191

Step 1 (Initialization): Specify b̄0, ξ0,η0,u0, ρ, and ζ.192

Step 2 (IADMM iteration): Given b̄m, solve (3.2) to yield b̄m+1 using the IADMM193

iteration by updating (3.6), (3.8), and (3.9) iteratively until ‖rt+1‖2 < εpri and ‖st+1‖2 <194

εdual, or it reaches the maximum number of iterations MADMM.195

Step 3 (DCA iteration): Repeat Step 2 until ‖b̄m − b̄m+1‖/‖b̄m‖ < ε or it reaches196

the maximum number of iterations MDCA.197

With the hinge loss function, the minimization of S(f,y) can be solved using the198

preceding algorithm without the ψ2 part in Step 2, followed by Step 3. The solution to199
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4. TUNING WITHOUT NEGATIVE INSTANCES13

(2.2) with the hinge loss can serve as the initial value for the algorithm with the ψ-loss.200

Importantly, an iterative improvement of the ψ-learning solution is often seen over the201

corresponding SVM solution. In terms of convergence, Algorithm 2 converges rapidly,202

owing to the finite-step termination property of the DC algorithm and the IADMM.203

4 Tuning Without Negative Instances204

In classification, tuning parameters are usually selected using cross-validation by mini-

mizing the classification error over a tuning set of data with complete label information.

However, in our problem, negative instances are unavailable for the tuning set, which

makes the cross-validation scheme infeasible. To overcome this difficulty, Lee and Liu

(2003) propose the criterion r2/Pr(sign(f(X)) = 1), which is proportional to the square

of the geometric mean of the precision and the recall of retrieving the positive class. This

criterion tries to mimic the behavior of an F-score, the harmonic mean of the precision

and the recall. However, when a classifier’s performance is evaluated using the classifica-

tion error, this criterion may not be relevant, because it has no direct relationship with

the error. Consequently, to target the classification error, we propose a new criterion for

selecting the tuning parameters, as follows. Note that the classification error Err(f) =

Pr(sign(f(X)) 6= Y ) = 1 − Pr(sign(f(X)) = −1, Y = −1) − Pr(sign(f(X)) = 1, Y = 1)

Statistica Sinica: Preprint 
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14 Xin Liu, Qingle Zheng, Xiaotong Shen and Shaoli Wang

can be rewritten as

Pr(sign(f(X)) = 1) + 2Pr(Y = 1)Pr(sign(f(X)) = −1|Y = 1)− Pr(Y = 1).

Therefore, because Pr(Y = 1) at the population level does not contain the tuning

parameter, minimizing the classification error with respect to this parameter is equivalent

to minimizing

Pr(sign(f(X)) = 1) + 2Pr(Y = 1)Pr(sign(f(X)) = −1|Y = 1)

=
(
wPr(sign(f(X)) = 1) + (1− w)Pr(sign(f(X)) = −1|Y = 1)

)
∗
(
1 + 2Pr(Y = 1)

)
∝ Err∗(f),

where w = 1/
(
1 + 2Pr(Y = 1)

)
, and205

Err∗(f) =
(
wPr(sign(f(X)) = 1) + (1− w)Pr(sign(f(X)) = −1|Y = 1)

)
. (4.1)

It is clear that Pr(sign(f(X)) = −1|Y = 1) decreases as Pr(sign(f(X) = 1)) increases,206

and vice versa. Thus, by estimating Pr(sign(f(X)) = 1) and Pr(sign(f(X)) = −1|Y =207

1) using a tuning sample that contains instances with the positive class, the tuning208

parameter can be selected by minimizing the proposed criterion Err∗(f) in (4.1) em-209

pirically, provided that we have knowledge of Pr(Y = 1) and w. In real applications,210

the value of Pr(Y = 1) may either come from prior information, such as the prevalence211

of a disease in the whole population, or be estimated empirically using the percentage212

of positively labeled instances in the training set. However, the latter approach tends213

to underestimate the probability, because positive instances in the unlabeled data are214
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5. NUMERICAL EXAMPLES15

treated as unlabeled instances. Our simulation shows that this criterion performs well215

for tuning.216

5 Numerical Examples217

This section compares the proposed method with two strong competitors using simu-218

lations: the BSVM (Liu et al., 2003) and the BASVM (Mordelet and Vert, 2014). We219

denote the ψ-learning version of tbe BSVM as BPSI, and denote our iterative methods220

with the hinge loss and the ψ-loss as ISVM and IPSI, respectively. All methods are221

computed using R 3.5.0.222

For the simulations, the test error (the classification error on the test set), averaged223

over 100 independent replications, is used to evaluate the performance of a method. We224

define the amount of improvement of an iterative classifier over its biased counterpart225

in terms of the Bayesian regret:226

(T (biased)− T (Bayes))− (T (iterative)− T (Bayes))

T (biased)− T (Bayes)
, (5.1)

where T (·) and T (Bayes) represent the test error of a method and the Bayes error,227

respectively. For real examples, because the Bayes rule is unknown, we define the amount228

of improvement as229

T (biased)− T (iterative)

T (biased)
, (5.2)

which may underestimate the amount of improvement compared to (5.1).230
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5.1 Simulated and Real-Data Examples231

Two simulated and two real-data examples are examined, in which unlabeled instances232

are generated by dropping the labels of some instances. Examples 1 and 2 are simulated233

following the set up of Wang and Shen (2007), where the two Bayes errors are 0.1587 and234

0.089, respectively. The two real examples, HEART and SPAM, are available in the UCI235

Machine Learning Repository (Lichman, 2013). Here, HEART focuses on heart disease236

classification, based on 13 numeric-valued clinical attributes, and SPAM discriminates237

spam from normal e-mails based on 57 frequency attributes.238

To generate the one-class situation, in two real examples, each class is treated as239

a novel/negative class once, with the other treated as a positive class. Two cases with240

different sizes of positively labeled and unlabeled samples are considered. In the first241

case, the data are split randomly into three parts, with five positively labeled and 95242

unlabeled instances for training, and 100 labeled instances for tuning; the remaining 800243

instances in Examples 1 and 2 and the 97 in HEART are used for testing. In the second244

case, the data are divided randomly into three parts, with 10 positively labeled instances245

and 90 unlabeled instances for training, and 100 labeled instances for tuning; again, the246

remaining 800 in Examples 1 and 2 and the 97 in HEART are used for testing. For247

SPAM, the sizes of the training and tuning samples increase to 200, and the remaining248

4201 instances are used for testing. Note that all 100 instances in the tuning set for the249

two cases are considered labeled, which allows us to select the tuning parameters of250
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5. NUMERICAL EXAMPLES17

different methods using a usual criterion, such as the generalization error on the tuning251

set.252

For tuning, the generalization error, defined as GE(f) = P (Y 6= sign(f(X))), is253

minimized with respect to the tuning parameters over a set of grid points within the254

tuning domain. More specifically, for the BSVM and BPSI, there are two tuning pa-255

rameters, C+ and C−; for the BASVM, there are four tuning parameters, C+, C−, the256

size of the bootstrap samples K, and the number of bootstraps T ; for the BLSSVM,257

there are four tuning parameters, C+, C−, a radial basis function kernel parameter σ,258

and a parameter λ in the regularization term for local discrepancies in the labels. For259

our iterative methods ISVM and IPSI, there is only one parameter C.260

The search set of C and C− is {10−4+j/10; j = 0, . . . , 80}, and that of w = C−/(C+ +261

C−) is {0.01, . . . , 0.15}. For the BASVM, to reduce the computational cost, we tune262

the parameter C and the other parameters using the default setting of Mordelet and263

Vert (2014); that is, w = n+/(n+ + n−), the size of the bootstrap samples K = nl, and264

the number of bootstraps T = 35 if K ≤ 20; otherwise, T = 11. For σ and λ in the265

BLSSVM, both vary in the set {2j; j = −6,−5, . . . , 6}, as suggested in the setting of Ke266

et al. (2018).267

For testing, a classification model with estimated tuning parameters is evaluated268

over a test set. The averaged test error based on 100 replications is reported in Table 1.269

Table 1 about here270
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As indicated in Table 1, ISVM and IPSI outperform their counterparts BSVM and271

BPSI in all cases. In particular, in the simulated examples, the amounts of improvement272

of ISVM and IPSI over BSVM and BPSI range from 1.43% to 34.91%, respectively. In273

the real examples, the amounts of improvement of the iterative method over its biased274

counterpart range from 7.35% to 23.46%. This shows that an iterative improvement275

does occur with the proposed method over its biased counterpart. Compared with276

the BSVM, the BASVM performs relatively poorly in most cases, indicating that the277

suggested criterion does not work well in our examples. Note that the improvements of278

our proposed method over the BSVM in cases 1 and 2 for Example 2 in Tables 1 and 2279

are both significant, considering 500 repetitions at a 5% significance level. To ensure a280

fair comparison with other data sets, we still use 100 repetitions. The proposed method281

with the ψ-loss, BPSI, performs better than its SVM counterpart, BSVM, in most cases,282

primarily because of the difference in the loss functions.283

5.2 Performance with the Proposed Tuning Criterion284

When the tuning data set contains only unlabeled data, the generalization error is not285

applicable directly, as described above. Therefore, this section examines the performance286

of the four methods using the tuning criterion proposed in (4.1) in Section 4, in the287

absence of labeled instances from a novel class. Specifically, the data are divided288

randomly into three parts in case 1, with five labeled positive instances and 95 unlabeled289
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instances for training, five labeled positive instances and 95 unlabeled instances for290

tuning, and the remaining instances used for testing in Examples 1 and 2 and HEART. In291

case 2, the data are divided randomly into three parts, with 10 labeled positive instances292

and 90 unlabeled instances for training, 10 labeled positive instances and 90 unlabeled293

instances for tuning, and the remaining instances used for testing in Examples 1 and294

2 and HEART. For SPAM, the sizes of the training and tuning samples are doubled,295

and the remaining 4201 instances are used for testing in both cases. For the proposed296

tuning criterion in (4.1), w is specified by its definition, where Pr(sign(f(X) = 1) is297

replaced by 0.5, owing to the prior information that the generated data are balanced.298

Then, the tuning criterion is minimized over the tuning set, and the tuning parameters299

with the smallest criterion value are selected. Finally, we test the fitted model using300

the selected tuning parameters over the testing set. The averaged test errors based on301

100 replications are reported in Table 2. We also set Pr(sign(f(X) = 1) as the sample302

proportion of the labeled class, finding that the performance of the classifiers was similar.303

The result is omitted to conserve space.304

As suggested by Table 2, the ISVM and IPSI outperform the BSVM and BPSI in305

all cases. The amounts of improvement range from 7.36% to 46.12%. Compared with306

Table 1, the performance of the biased methods deteriorates after tuning. Interestingly,307

although the BASVM underperforms against the BSVM in Table 1, it outperforms the308

BSVM after tuning. One possible explanation is that a higher tuning error is anticipated309
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because the BASVM involves more tuning parameters than those of the other methods.310

Overall, a comparison of Tables 1 and 2 shows that the tuning criterion performs well311

in terms of selecting the tuning parameters, leading to good accuracy of classification.312

Table 2 about here313

6 Statistical Learning Theory314

6.1 Theory315

In binary classification, the Bayes classifier is defined as f̄B = sign(P (Y = 1|X =316

x) − 1/2), which is a global minimizer of the generalization error GE(f) = P (Y 6=317

sign(f(X))). Let sign(f̂C) be the corresponding classifier defined by the ψ-loss in Algo-318

rithm 1. In what follows, we establish an error bound in terms of the Bayesian regret319

e(f̂C , f̄B) = GE(f̂C) − GE(f̄B) ≥ 0, which is the difference between the generalization320

errors of our classifier and the Bayes rule. In particular, we establish a probability error321

bound for e(f̂C , f̄B) as a function of the complexity of the candidate decision function set322

F , the sample size of the labeled data nl, the sample size of the unlabeled data nu, the323

tuning parameter λ = (nC)−1, the error of the initial classifier δ
(0)
n , the sample propor-324

tion of negative instances rn, and the maximum iteration step K. Moreover,we also show325

that, in the absence of labeled negative instances, the proposed method is still able to326

recover the performance of supervised ψ-learning based on complete data in terms of the327
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rate of convergence under certain assumptions. Let Z = (X, Y ), V (f,Z) = ψ(Y f(X))328

and eV (f, f̄B) = E(V (f,Z) − V (f̄B,Z)), the Bayesian regret under the loss V (f,Z),329

which is ψ(Y f(X)). Furthermore, we assume the following conditions hold.330

Assumption A1: (Distribution) Let P (x, y) denote the joint distribution of (X, Y ).331

Then, (xi)
nl
i=1 are drawn independently from the conditional distribution PX|Y=1(x, y),332

and (xi)
n
i=nl+1 are drawn independently from the marginal distribution PX(x, y).333

Assumption A2: (Approximation) For a positive sequence ηn → 0 as n → ∞, there334

exists f ∗ ∈ F , such that eV (f ∗, f̄B) ≤ ηn.335

Assumption A3: (Smoothness) There exist positive constants α, β, ζ, and ai, for i =

0, 1, 2, such that for any sufficiently small δ > 0,

sup
{f∈F :eV (f,f̄B)≤δ}

e(f, f̄B) ≤ a0δ
α, (6.1)

sup
{f∈F :eV (f,f̄B)≤δ}

‖sign(f)− sign(f̄B)‖1 ≤ a1δ
β, (6.2)

sup
{f∈F :eV (f,f̄B)≤δ}

Var(V (f,Z)− V (f̄B,Z)) ≤ a2δ
ζ . (6.3)

Remark. Assumption A2 is also used by Shen et al. (2003), and it ensures that336

the Bayes rule f̄B can be well approximated by decision functions in F . Assumption337

A3 measures the local behavior of e(f, f̄B), ‖sign(f) − sign(f̄B)‖1, and Var(V (f,Z) −338

V (f̄B,Z)) within a neighborhood of f̄B. A similar assumption is used in Wang, Shen,339

and Pan (2009).340

To describe Assumption A4, we introduce the L2-metric entropy with bracketing341
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for the function class F . Given any ε > 0, {(f li , fui )}Ii=1 satisfying ‖f li − fui ‖2 ≤ ε, for342

i = 1, . . . , I, is called an ε-bracketing function set of F if for any f ∈ F , there exists i343

such that f li ≤ f ≤ fui . Then, the L2-metric entropy with bracketing for the function344

class F is defined as the smallest log(I), and is denoted by HB(ε,F). Using the above345

notation, Assumption A4 is formally given in the following.346

Assumption A4: (Complexity) For some constants ai > 0, for i = 3, 4, 5, and εn > 0,347

sup
k≥2

φ(εn, k) ≤ a5n
1/2, (6.4)

where φ(ε, k) =
∫ a1/23 Nmin(1,ζ)/2

a4N
H

1/2
B (u,F(k))du/N , F(k) = {V (f, z) − V (f ∗, z) : f ∈348

F , J(f) ≤ k}, N = N(ε, λ, k) = min(ε2 + λ(k/2− 1)J∗, 1), and J∗ = max(1, J(f ∗)).349

Refer to Shen et al. (2003) for more details on Assumption 4. Combining the tech-350

nical assumptions from A1 to A4, the following results are established.351

Theorem 3. Under Assumptions A1-A4 and δ2
n = min(max(ε2

n, 4ηn), 1) ≥ 4λJ∗, there

exist some positive constants a6 and a7, such that

P
(
e(f̂C , f̄B) ≥ a0 max(δ2α

n , (ρn(δ(0)
n )2)αmax(1,BK)

)
≤P
(
eV (f̂ (0), f̄B) ≥ ρn(δ(0)

n )2
)

+ 24K exp(−a6nl(λJ
∗)2−min(1,ζ))+

24K exp
(
− a7nu

(
rn − a1ρ

β
n(ρn(δ(0)

n )2)βmin(1,BK)
)
(λJ∗)2−min(1,ζ)

)
+Kρ−βn ,

where B = 2βζ
1+max(0,1−β)

, K is the finite number of iterations of Algorithm 1 at termina-352

tion, ρn > 0 is a real number, and rn denotes the sample proportion of truly negative353

instances.354
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Theorem 3 establishes a finite-sample probability bound for e(f̂C , f̄B). The pa-355

rameter B measures the level of difficulty of the underlying problem, with smaller B356

indicating more difficulty. Note that B is proportional to β and ζ in Assumption A3.357

As nl, nu →∞, we obtain the convergence rate of the IPSI, which is determined by the358

error rate of the corresponding supervised ψ-learning with complete data, error rate of359

the initial classifier, and maximum iteration steps K.360

Corollary 1. Under the assumptions of Theorem 3, as nl, nu →∞,

|e(f̂C , f̄B)| =Op

(
max

(
δ2α
n , (ρn(δ(0)

n )2)αmax(1,BK)
))

and

E|e(f̂C , f̄B)| =O
(

max
(
δ2α
n , (ρn(δ(0)

n )2)αmax(1,BK)
))
,

provided that the initial classifier satisfying P
(
eV (f̂ (0), f̄B) ≥ ρn(δ

(0)
n )2

)
→ 0, with ρn →361

∞ and ρn(δ
(0)
n )2 → 0, a1ρ

β
n(ρn(δ

(0)
n )2)βmin(1,BK) < rn, and the tuning parameter λ is362

selected such that nl(λJ
∗)2−min(1,ζ) and nu

(
rn − a1ρ

β
n(ρn(δ

(0)
n )2)βmin(1,BK)

)
(λJ∗)2−min(1,ζ)

363

are bounded away from zero.364

The parameterB describes two cases. WhenB > 1, the IPSI reaches the convergence365

rate of its supervised counterpart with complete data (Shen et al. (2003)). However, this366

is not guaranteed when B ≤ 1.367
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6.2 A Theoretical Example368

We apply Theorem 3 to a specific learning example to obtain an error rate for the369

proposed method IPSI in terms of the Bayesian regret. Consider a linear classification370

problem in which the unlabeled data X = (X1, X2)T form a sample from a marginal371

density q(x) = 1
2
(1 + θ1)|x|θ1 , for −1 ≤ x ≤ 1, with θ1 > 0. Given x = (x1, x2)T , the372

conditional distribution of the positive label is P (Y = 1|x) = 1
2
sign(x1)|x1|θ2 + 1

2
with373

θ2 > 0, where the parameters θ1 and θ2 describe the shape of the marginal density near374

the origin and the shape of the conditional class probability around 0.5, respectively.375

The labeled data are a random sample from P (x|Y = 1). Note that fB = x1.376

Assumption A1 is easily satisfied. We now verify Assumptions A2-A4. For simplicity,377

we restrict F to F1 = {f(x) = (1, x1)w : w ∈ R2} because X1 and X2 are independent.378

For assumption A2, let f ∗ = nfB. Then, we have eV (f ∗, f̄B) ≤ P (|nfB(X1)| ≤ 1) ≤379

1+θ1
n

= ηn. Because eV (f, f̄B) ≥ e(f, f̄B), (6.1) in Assumption A3 holds for α = 1.380

Direct calculations yield that there exist constants c1, c2 > 0 such that for f ∈ F1,381

eV (f, f̄B) ≥ e(f, f̄B) = c1(− d0
1+d1

)1+θ1+θ2 and E|sign(f) − sign(f̄B)| = c2(− d0
1+d1

)1+θ1 ,382

with wf = wfB + (d0, d1)T , which implies that β = 1+θ1
1+θ1+θ2

in (6.2). To check (6.3), by383

the triangle inequality, Var(V (f,Z) − V (f̄B,Z)) ≤ E|V (f,Z) − V (f̄B,Z)| ≤ ∆1 + ∆2,384

where ∆1 = E|l(f,Z) − V (f̄B,Z)| ≤ E|sign(f) − sign(f̄B)| ≤ c3eV (f, f̄B)
1+θ1

1+θ1+θ2 ,∆2 =385

E(V (f,Z) − l(f,Z)) = E(V (f,Z) − V (f̄B,Z)) + E(l(f̄B,Z) − l(f,Z)) ≤ 2eV (f, f̄B),386

and c3 is a constant. Hence, (6.3) holds with ζ = 1+θ1
1+θ1+θ2

. For (6.4), let φ1(ε, k) =387
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a3(log(1/N1/2))1/2/N1/2. By Lemma 6 of Wang and Shen (2007), solving (6.4) yields388

εn = (logn/n)1/2 when C/J∗ ∼ δ−2
n n−1 ∼ (logn)−1. Therefore, B = 2(1+θ1)2

(1+θ1+2θ2)(1+θ1+θ2)
.389

Applying Theorem 3 yields E|e(f̂C , f̄B)| = O(max(n−1logn, (ρn(δ
(0)
n )2)max(1,BK))). When390

B > 1 or, equivalently, 1 + θ1 >
3+
√

17
2

θ2, the rate is O(n−1logn) for sufficiently large K,391

and is O(ρn(δ
(0)
n )2) otherwise.392

It is clear that our proposed method achieves a fast rate n−1logn when θ1 is larger393

than θ2, indicating that the marginal density q(x) is low around the origin. This is in394

accordance with the low density separation condition of Chapelle and Zien (2005) for395

semi-supervised learning.396

7 Discussion397

This study develops a large-margin semi-supervised classifier for detecting a novel class398

with labeled instances from only one class. In particular, the proposed method achieves399

higher prediction accuracy. The numerical analysis illustrates that our method is highly400

competitive against the state-of-the-art BSVM and BASVM. The theoretical results401

show that it can recover the performance of its supervised counterpart with complete402

data. Note that the proposed method involves only one tuning parameter, as opposed403

to the two tuning parameters for the BSVM, reducing the cost of tuning numerically.404

Finally, a generalization of the proposed method to multiclass learning may require405
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further investigation.406
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Appendix413

A. Proofs414

Proof of Theorem 1: Note that S(f̂ (k+1),yk+1) ≤ S(f̂ (k+1),yk) and f̂ (k+1) minimizes415

the objective S(f,yk). Then S(f̂ (k+1),yk+1) ≤ S(f̂ (k),yk). That is, S(f̂ (k),yk) is de-416

creasing in k. Therefore, Algorithm 1 converges as k → ∞ and terminates finitely for417

any given precision ε. This completes the proof.418

419

Proof of Theorem 2: Let b̂k+1
0 = argminb0 S((b0,0p); Y

k), then it suffices to show that420

P (∂S((b̂k+1
0 ,0p))/∂b 6= 0p) > 0. It is easy to see that b̂k+1

0 can be any constant in [−1, 1].421

Furthermore, ∂S((b̂k+1
0 ,0p))/∂b =

∑
Y ki =1 ∂L(b̂k+1

0 )Xi/n
k
+ −

∑
Y kj =−1 ∂L(−b̂k+1

0 )Xj/n
k
−,422

where ∂ represents the partial sub-gradient. For the hinge loss L(z) = (1 − z)+,423
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∂S((b̂k+1
0 ,0p))/∂b 6= 0p is equivalent to

∑
Y ki =1 Xi/n

k
+ 6=

∑
Y kj =−1 Xj/n

k
−. For the ψ-424

loss, we need
∑

Y ki =1 Xi/n
k
+ 6= 0 and

∑
Y kj =−1 Xj/n

k
− 6= 0 additionally. Therefore, under425

the conditions of Theorem 2, P (b̂k+1 6= 0p) > 0.426

427

Proof of Theorem 3: Firstly, we bound the probability of the ratio of incorrectly

classified unlabeled instances using sign(f̂ (k)) by the tail probability of eV (f̂ (k), f̄B).

Denote by Df = {sign(f̂ (k)(Xj)) 6= sign(f̄B(Xj)), nl + 1 ≤ j ≤ n} the set of incorrectly

classified instances and nf = #Df . By Markov’s inequality, the fact that E(
nf
n

) =

nu
n
E‖sign(f̂ (k))− sign(f̄B)‖1, and (6.2), we obtain

P
(nf
n
≥ a1(ρ2

n(δ(k)
n )2)β

)
≤P
(
‖sign(f̂ (k))− sign(f̄B)‖1 ≥ a1(ρn(δ(k)

n )2)β
)

+ P
(nf
n
≥ ρβn‖sign(f̂ (k))− sign(f̄B)‖1

)
≤P
(
eV (f̂ (k), f̄B) ≥ ρn(δ(k)

n )2
)

+ ρ−βn . (A.1)

Then we will establish the connection between P
(
eV (f̂ (k+1), f̄B) ≥ ρn(δ

(k+1)
n )2

)
and428

P
(
eV (f̂ (k), f̄B) ≥ ρn(δ

(k)
n )2

)
, where ρn(δ

(k+1)
n )2 = (ρn(δ

(k)
n )2)B and B = 2βζ

1+max(0,1−β)
. For429

simplicity, let δ2
k = ρn(δ

(k)
n )2. Moreover, Zj = (Xj, Yj) with Yj = sign(f̂ (k)(Xj)), nl + 1 ≤430

j ≤ n. Define a scaled empirical process Enk+(V (f ∗,Z)−V (f,Z)) = 1
nk+

∑
Yi=1

(
V (f ∗,Zi)−431

V (f,Zi)− E(V (f ∗,Zi)− V (f,Zi))
)
.432
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By the definition of f̂ (k) and (A.1), we have

P
(
eV (f̂ (k+1), f̄B) ≥ ρn(δ(k+1)

n )2
)

≤P
(nf
n
≥ a1(ρ2

n(δ(k)
n )2)β

)
+ P ∗

(
sup
Nk

1

nk+

∑
Yi=1

(
V (f ∗,Zi)− V (f,Zi)

)
+

1

nk−

∑
Yj=−1

(
V (f ∗,Zj)− V (f,Zj)

)
+ λ(J(f ∗)− J(f)) ≥ 0,

nf
n
≤ a1(ρ2

n(δ(k)
n )2)β

)

≤P
(
eV (f̂ (k), f̄B) ≥ ρn(δ(k)

n )2
)

+ ρ−βn + I1 + I2, (A.2)

where Nk = {f ∈ F : eV (f, f̄B) ≥ δ2
k+1}, I1 = P ∗

(
supNk

1
nk+

∑
Yi=1(Ṽ (f ∗,Zi) −433

Ṽ (f,Zi)) ≥ 0,
nf
n
≤ a1(ρ2

n(δ
(k)
n )2)β

)
, I2 = P ∗

(
supNk

1
nk−

∑
Yj=−1(V (f ∗,Zj) − V (f,Zj)) ≥434

0,
nf
n
≤ a1(ρ2

n(δ
(k)
n )2)β

)
, and Ṽ (f,Z) = V (f,Z) + λJ(f).435

To bound I1, we partition Nk into a sequence of sets As,t with As,t = {f ∈ F :436

2s−1δ2
k+1 ≤ eV (f, f̄B) < 2sδ2

k+1, 2
t−1J∗ ≤ J(f) < 2tJ∗} and As,0 = {f ∈ F : 2s−1δ2

k+1 ≤437

eV (f, f̄B) < 2sδ2
k+1, J(f) < J∗}; s, t = 1, 2, . . . Thus it suffices to bound I1 and I2438

separately over each As,t. To bound I1, we need to bound the first and second moments439

of Ṽ (f,Z) − Ṽ (f ∗,Z)|Y = 1 over each As,t. Without loss of generality, assume that440

eV |Y (f, f̄B) ≥ c1eV (f, f̄B), δ2
k ≥ δ2

n, J(f ∗) ≥ 1, and thereby J∗ = max(J(f ∗), 1) = J(f ∗).441

For the first moment, since δ2
k+1 ≥ 4λJ(f ∗), we obtain

inf
As,t

E(Ṽ (f,Z)− Ṽ (f ∗,Z)|Y = 1) ≥ (c12s−1 − 1/4)δ2
k+1 + λ(2t−1 − 1)J(f ∗) = M(s, t),

inf
As,0

E(Ṽ (f,Z)− Ṽ (f ∗,Z)|Y = 1) ≥ (c12s−1 − 1/2)δ2
k+1 = M(s, 0),

where s, t = 1, 2, . . .442
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For the second moment, note that Var(V (f,Z) − V (f ∗,Z)) ≤ 2(Var(V (f,Z) −

V (f̄B,Z)) + Var(V (f ∗,Z)− V (f̄B,Z))). By Assumption A3,

sup
As,t

Var(Ṽ (f,Z)−Ṽ (f ∗,Z)|Y = 1) ≤ sup
As,t

Var(V (f,Z)− V (f ∗,Z))

1− r
≤ 4a2

1− r
M(s, t)ζ = ν(s, t)2,

where r is the population proportion of truly negative instances and s = 1, 2, · · · , t =443

0, 1, . . .444

Note that I1 ≤ I3 + I4, where I3 =
∑∞

s,t=1 P
∗( supAs,t Enk+(V (f ∗,Z) − V (f,Z)) ≥

M(s, t)
)

and I4 =
∑∞

s=1 P
∗( supAs,0 Enk+(V (f ∗,Z) − V (f,Z)) ≥ M(s, t)

)
. By Assump-

tion A4, a direct application of the Theorem 3 of Shen and Wong (1994) with M =√
nk+M(s, t), ν = ν(s, t)2, ε = 1/2, T = 2 leads to that

I3 ≤
∞∑

s,t=1

3 exp
(
−

(1− ε)nk+M(s, t)2

2(4ν(s, t)2 + 2M(s, t)/3)

)
≤

∞∑
s,t=1

3 exp
(
− a6nlM(s, t)2−min(1,ζ)

)
≤

∞∑
s,t=1

3 exp
(
− a6nl

(
(c12s−1 − 1/4)δ2

k+1 + λ(2t−1 − 1)J(f ∗)
)2−min(1,ζ)

)
≤3 exp

(
− a6nl(λJ

∗)2−min(1,ζ)
)
/
(
1− exp(−a6nl(λJ

∗)2−min(1,ζ))
)2
,

where a6 > 0 is a constant.445

Similarly, I4 ≤ 3 exp
(
−a6nl(λJ

∗)2−min(1,ζ)
)
/
(
1−exp(−a6nl(λJ

∗)2−min(1,ζ))
)2

. There-446

fore, by combining the bounds of I3 and I4, we have that447

I1 ≤ 6 exp
(
− a6nl(λJ

∗)2−min(1,ζ)
)
/
(
1− exp(−a6nl(λJ

∗)2−min(1,ζ))
)2
.

For simplicity, assume exp
(
− a6nl(λJ

∗)2−min(1,ζ)
)
≤ 1/2. Hence I1 ≤ 24 exp

(
−448
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a6nl(λJ
∗)2−min(1,ζ)

)
. Similarly, I2 ≤ 24 exp

(
− a7nu(rn − a1(ρ2

n(δ
(k)
n )2)β)(λJ∗)2−min(1,ζ)

)
,449

where rn is the sample proportion of truly negative instances.450

By substituting the upper bounds of I1 and I2 into (A.2), P
(
eV (f̂ (k+1), f̄B) ≥

ρn(δ
(k+1)
n )2

)
≤ P

(
eV (f̂ (k), f̄B) ≥ ρn(δ

(k)
n )2

)
+ ρ−βn + 24 exp(−a6nl(λJ

∗)2−min(1,ζ)) +

24 exp(−a7nu(rn − a1(ρ2
n(δ

(k)
n )2)β)(λJ∗)2−min(1,ζ)). Iterating this inequality yields that

P
(
eV (f̂ (K), f̄B) ≥ (ρn(δ(0)

n )2)max(1,BK)
)

≤P
(
eV (f̂ (0), f̄B) ≥ ρn(δ(0)

n )2
)

+ 24K exp
(
− a6nl(λJ

∗)2−min(1,ζ)
)
+

24K exp
(
− a7nu(rn − a1ρ

β
n(ρn(δ(0)

n )2)βmin(1,BK))(λJ∗)2−min(1,ζ)
)

+Kρ−βn .

Then Theorem 3 follows from Assumption A3 and δ2
k ≥ max(ε2

n, 4ηn) = δ2
n for any k.451

Proof of Corollary 1: It follows from Theorem 3 immediately.452
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Table 1: Averaged test errors tuned using the generalization error based on the tuning sample with
all labels known, as well as the corresponding standard errors (in parentheses), over 100 independent
replications. In Case 1, nu = 19nl, nl = 5 in Eg. 1, Eg. 2, and HEART, nl = 10 in SPAM. In Case
2, nu = 9nl, nl = 10 in Eg. 1, Eg. 2, and HEART, nl = 20 in SPAM. The amount of improvement is
defined in (5.1) and (5.2).

Data Example 1 Example 2 HEART HEART SPAM SPAM
(n, dim) (1000, 2) (1000, 2) (297, 13) (297, 13) (4601, 57) (4601, 57)
Novelty -1 -1 absent present no yes

Case 1

BASVM .2237(.0072) .1914(.0074) .2545(.0084) .2807(.0076) .1762(.0048) .2629(.0054)
BSVM .1974(.0053) .1543(.0056) .2544(.0077) .2642(.0076) .1904(.0047) .2391(.0051)

BLSSVM .1913(.0051) .1519(.0052) .2395(.0071) .2477(.0077) .1881(.0042) .2287(.0052)
ISVM .1871(.0047) .1488(.0072) .2053(.0069) .2044(.0063) .1512(.0045) .2055(.0077)

Improv. 24.10% 7.86% 16.19% 20.51% 18.83% 12.61%

BPSI .1958(.0042) .1507(.0064) .2175(.0073) .2189(.0064) .1669(.0045) .1850(.0051)
IPSI .1879(.0047) .1474(.0072) .1949(.0078) .2028(.0077) .1331(.0028) .1529(.0044)

Improv. 21.31% 5.33% 10.38% 7.35% 20.25% 17.38%

Case 2

BASVM .1921(.0039) .1497(.0048) .2161(.0047) .2505(.0056) .1345(.0017) .2178(.0041)
BSVM .1812(.0030) .1275(.0028) .2172(.0049) .2267(.0056) .1517(.0022) .1904(.0041)

BLSSVM .1803(.0030) .1276(.0029) .2037(.0046) .2102(.0053) .1466(.0023) .1755(.0042)
ISVM .1742(.0023) .1269(.0033) .1863(.0041) .1819(.0038) .1289(.0015) .1387(.0022)

Improv. 28.62% 1.43% 12.18% 17.24% 14.36% 23.46%

BPSI .1834(.0031) .1327(.0030) .2093(.0045) .1990(.0045) .1465(.0021) .1489(.0026)
IPSI .1748(.0024) .1277(.0033) .1816(.0039) .1810(.0037) .1290(.0015) .1376(.0021)

Improv. 34.91% 11.39% 13.2% 9.02% 11.94% 7.58%
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Table 2: Averaged test errors tuned using our criterion in Section 4 based on the tuning sample with
labeled positive instances, and unlabeled instances, as well as the corresponding standard errors (in
parentheses), over 100 independent replications. In Case 1, nu = 19nl, nl = 5 in Eg. 1, Eg. 2, and
HEART, nl = 10 in SPAM. In Case 2, nu = 9nl, nl = 10 in Eg. 1, Eg. 2, and HEART, nl = 20 in
SPAM. The amount of improvement is defined in (5.1) and (5.2).

Data Example 1 Example 2 HEART HEART SPAM SPAM
(n, dim) (1000, 2) (1000, 2) (297, 13) (297, 13) (4601, 57) (4601, 57)
Novelty -1 -1 absent present no yes

Case 1

BASVM .2163(.0065) .2034(.0072) .2762(.0078) .2919(.0082) .1762(.0043) .2696(.0052)
BSVM .2362(.0071) .2123(.0085) .3007(.0091) .3178(.0089) .2158(.0061) .3117(.0090)

BLSSVM .2213(.0068) .2011(.0076) .2812(.0086) .2912(.0086) .1962(.0058) .2888(.0083)
ISVM .1916(.0057) .1712(.0080) .2251(.0088) .2481(.0083) .1574(.0048) .2390(.0083)

Improv. 46.12% 27.13% 20.02% 18.54% 25.78% 24.12%

BPSI .2041(.0055) .1712(.0075) .2538(.0086) .2419(.0080) .1736(.0049) .2254(.0070)
IPSI .1818(.0055) .1627(.0082) .2201(.0082) .2383(.0081) .1377(.0030) .1693(.0059)

Improv. 27.22% 7.36% 15.13% 2.99% 22.84% 24.71%

Case 2

BASVM .1941(.0041) .1614(.0049) .2285(.0055) .2613(.0065) .1389(.0024) .2202(.0045)
BSVM .2001(.0044) .1489(.0042) .2476(.0062) .2696(.0076) .1702(.0036) .2621(.0081)

BLSSVM .1912(.0044) .1453(.0041) .2372(.0058) .2402(.0071) .1588(.0040) .2284(.0076)
ISVM .1752(.0026) .1321(.0035) .2009(.0049) .1963(.0045) .1281(.0015) .1497(.0041)

Improv. 40.24% 23.06% 15.14% 24.24% 21.98% 36.24%

BPSI .1891(.0030) .1351(.0037) .2202(.0047) .2100(.0060) .1512(.0025) .1586(.0040)
IPSI .1722(.0023) .1287(.0032) .1988(.0051) .1989(.0050) .1265(.0014) .1413(.0031)

Improv. 40.62% 13.29% 9.80% 7.03% 15.75% 9.02%
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