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Abstract:

Conventional likelihood-based information criteria for model selection rely on the assumed

distribution of the data. However, for complex data, specifying this underlying distribution

turns out to be challenging, and existing criteria may be limited and not sufficiently gen-

eral to handle various model-selection problems. Here, we propose a robust and consistent

model-selection criterion based on the empirical likelihood function, which is data driven.

In particular, this framework adopts plug-in estimators that can be achieved by solving

external estimating equations not limited to the empirical likelihood. This avoids poten-

tial computational-convergence issues and allows for versatile applications, such as gen-

eralized linear models, generalized estimating equations, and penalized regressions. The
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A Robust Information Criterion For Model Selection 2

proposed criterion is derived initially from the asymptotic expansion of the marginal like-

lihood under a variable-selection framework, but more importantly, the consistent model-

selection property is established in a general context. Extensive simulation studies confirm

that the proposed model-selection criterion outperforms traditional criteria. Finally, an ap-

plication to the Atherosclerosis Risk in Communities Study illustrates the practical value

of the proposed framework.

Key words and phrases: Consistency, Empirical likelihood, Model selection.

1. Introduction

Model selection is a common problem in various disciplines, including vari-

able selection in the mean structure, correlation structure selection for longi-

tudinal data analysis, and tuning-parameter selection in penalized regression,

among others. Currently, commonly used approaches for model selection rely

on several likelihood-based information criteria, such as the Akaike information

criterion (AIC) (Akaike, 1997), Bayesian information criterion (BIC) (Schwarz,

1978), and generalized information criteria (GIC) (Konishi and Kitagawa, 1996).

However, these information criteria depend critically on the parametric distribu-

tion assumption, and have limited applications in model selection problems that

are more complicated than variable selection (Chen and Lazar, 2012). More im-

portantly, a distribution misspecification has a negative impact on the selection

performance and is inevitably encountered in practice. For instance, in some

survey studies, variables such as Beck’s depression index or caffeine/alcohol
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use can be highly skewed or over-dispersed because of sampling bias. Thus, it

is usually difficult to identify a well-defined distribution. However, these com-

plex data play critical roles in capturing the fundamental principles underlying

natural, social, and engineering processes. As a result, approaches that are more

advanced and rigorous must be adopted for valid inference.

To avoid the distribution specification, but still borrow the likelihood prop-

erties, a data-driven approach based on the empirical likelihood (EL) has been

developed (Owen, 1988; Qin and Lawless, 1994), and is used widely for data

analysis and statistical inference (Owen, 2001). However, few studies have ex-

amined EL-based information criteria for model selection. Kolaczyk (1995) pro-

posed the empirical information criterion (EIC) based on the Kullback–Leibler

distance between discrete empirical distributions, but it suffered from a severe

lack of convergence. To alleviate this computational issue, Variyath et al. (2010)

advocated an empirical AIC and an empirical BIC based on the adjusted EL

by incorporating an extra parameter (Chen et al., 2008). However, only vari-

able selection in the mean structure was considered, and they still required EL

estimators. Several other EL-based criteria have been proposed for particular

situations, but without theoretical justification (Tang and Leng, 2010; Chen and

Lazar, 2012; Chang et al., 2018; Chen et al., 2019). To the best of our knowledge,

few studies have investigated EL-based information criteria that are broadly ap-
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plicable to general model selection.

Here, we consider a general model selection context with a collection of

candidate models M1,M2, . . . ,Mk, with the true model included. Under the

Bayesian paradigm with a noninformative prior, the main focus is the marginal

likelihood, which is given as

P (D|M) =

∫
P (D|γ,M)P (γ|M)dγ ∝

∫
P (D|γ)dγ, (1.1)

where D denotes the full data, γ are the parameters in the candidate model M ,

and P (D|γ) is the likelihood function L(γ|D). When L(γ|D) is fully specified,

the well-known criterion BIC = −2 logL(γ̂|D) + p log n has been derived by

selecting the model corresponding to the largest marginal probability in (1.1).

However, there are some restrictions: (i) the distribution must be prespecified

for the likelihood L; and (ii) the estimator γ̂ must be the maximum likelihood

estimator. Herein, we present a robust EL-based consistent information criterion

(ELCIC) that targets model selection under general contexts, and is not limited

to variable selection. In particular, the robustness exhibits the distribution-free

property and flexibility in wide application to general model selection problems.

Consistency is defined as capturing the true model with probability tending to

one, a separate research topic that has attracted considerable attention (Chen and
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Chen, 2008; Variyath et al., 2010; Kim and Jeon, 2016). The likelihood part

of the ELCIC is purely data-driven based on the EL. We relax the procedure

for parameter estimation by using plug-in estimators to calculate this criterion,

under which the consistency property still holds under mild conditions.

The rest of this paper is organized as follows. In Section 2, to demonstrate

the formulation of our proposed criterion, we provide its theoretical deriva-

tion under the variable selection framework by expanding asymptotically the

marginal probability (1.1). We then investigate the consistency property of our

proposed criterion under more general model selection settings with mild condi-

tions, the most important aspect herein. In Section 3, we consider three specific

cases for illustration and evaluate the finite-sample performance using simula-

tion studies. In Section 4, we apply our proposal to a real-data example. Finally,

in Section 5, we discuss several promising extensions as future work.

2. Methodology

2.1 Empirical Likelihood

Inspired by the empirical distribution, Owen (1988) introduced an EL approach

for constructing likelihood-based confidence intervals. The full data are denoted

by D = {Di}ni=1 with Di = (XT
i ,Y

T
i )T, which are assumed to be independent

and identically distributed (i.i.d.) when a regular regression is considered. Given
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2.1 Empirical Likelihood 6

some estimating equations g(Di,γ) satisfyingEg(Di,γ) = 0, for i = 1, . . . , n,

the empirical likelihood ratio (ELR) is defined by

RF = sup
γ,p1,...,pn

{
n∏
i=1

npi; pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pig
(
Di,γ

)
= 0

}
. (2.1)

Unlike with the traditional likelihood, the observations here use point-mass

probabilities. Thus, the information from the data is borrowed automatically

and efficiently from the constraints in (2.1) (Qin and Lawless, 1994), which

is a desired property, and shows its considerable potential for model selection.

Given the estimator denoted by γ̂, discussed further in subsequent sections, the

negative logarithm of the ELR is calculated easily using Lagrange multipliers

(Owen, 2001); that is,

l = − logRF (λ̂, γ̂) =
n∑
i=1

log{1 + λ̂Tg(Di, γ̂)}, (2.2)

where the parameter estimate λ̂ is obtained using the Newton–Raphson method

to solve

1

n

n∑
i=1

g
(
Di, γ̂

)
1 + λTg

(
Di, γ̂

) = 0. (2.3)
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2.2 Derivation of the ELCIC under Variable-Selection Framework 7

2.2 Derivation of the ELCIC under Variable-Selection Framework

Before introducing our proposed model selection criterion and discussing its

consistency, we obtain some insights into its formulation by considering variable

selection in a regression framework. Here, γ is the parameter vector in the mean

structure only. To implement EL-based selection, we should specify a full set

of estimating equations (Kolaczyk, 1995; Variyath et al., 2010; Chen and Lazar,

2012). For any i = 1, 2, . . . , n, we define

g(Di,γ) =

g1(Di, γ̃)

g2(Di, γ̃)

 , (2.4)

where γ̃ = (γT,0T)T so that its dimension matches that of the prespecified full

covariate matrix Xi, and g1(Di, γ̃) and g2(Di, γ̃) correspond to the estimating

equations for the parameters with and without involvement, respectively, in a

candidate model. In variable selection, we denote the cardinality of γ̃ as L, and

that of γ from a candidate model as p, with 0 < p ≤ L < ∞. Note that (2.4) is

constructed only to implement the variable selection.

As discussed previously, computational issues will be encountered when

maximizing (2.1) to obtain the EL-based estimator, denoted by γ̂EL. To ensure

the existence of solutions, the convex hull of the estimating equations should
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2.2 Derivation of the ELCIC under Variable-Selection Framework 8

contain zero (Qin and Lawless, 1994; Chen et al., 2008), which is not guaran-

teed in practice. To overcome these computational issues and make the criterion

more versatile, we consider plug-in estimators instead. In the variable selection

framework, these are obtained by solving some external estimating equations∑n
i=1 g1(Di,γ) = 0 in (2.4) to bypass the complex and unstable estimation

procedure from (2.1). Given the plug-in estimators, denoted as γ̂EE , and the

corresponding Lagrange-multiplier estimator λ̂EE , the negative logarithm of the

EL ratio in (2.2) can be achieved. Instead of using the likelihood under a pre-

specified distribution to maximize the marginal likelihood (1.1), we employ the

ELR for L(γ|D), given as

L(γ|D) = RF (λ,γ) =
n∏
i=1

{1 + λTg(Di,γ)}−1. (2.5)

Next, we provide two conditions to facilitate the asymptotic expansion of

P (D|M). Note that we use ‖·‖ to denote the Euclidean norm, and |·| to denote

the determinant of a matrix. Furthermore, to simplify the notation, we drop the

subscript for D based on the i.i.d. property, and evaluate all expectations at the

true parameter values under the correctly specified models.

Condition 1. (Regularities) Given the correctly specified model with the true

parameter γ0 satisfying E
{
g(D,γ0)

}
= 0, E

{
g(D,γ0)g

T(D,γ0)
}

is positive
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2.2 Derivation of the ELCIC under Variable-Selection Framework 9

definite and {∂2g(D,γ)}/(∂γT∂γ) is continuous in the neighborhood of γ0.

Furthermore, we assume that ‖{∂g(D,γ)}/(∂γT)‖, ‖{∂2g(D,γ)}/(∂γT∂γ)‖,

and ‖g(D,γ)‖3 are bounded by some integrable function around γ0.

Condition 2. (Efficiency) For the estimating equations g1 and g2 defined in

(2.4), and given the correctly specified model with the true parameter γ̃0 =

(γT
0 ,0

T)T,

E
{∂g1(D, γ̃0)

∂γT

}
= −E

{
g1(D, γ̃0)g

T

1 (D, γ̃0)
}
,

E
{∂g2(D, γ̃0)

∂γT

}
= −E

{
g1(D, γ̃0)g

T

2 (D, γ̃0)
}
.

Condition 1 includes several regular moment conditions to ensure a valid

EL-based inference (Qin and Lawless, 1994). To simplify the formula for our

proposed criterion, Condition 2 imposes some constraints on the estimating

equations g1 and g2 in (2.4), which are related to the estimator efficiency. Note

that Condition 2 contains a family of estimating equations that lead to asymptot-

ically efficient estimators. For instance, if the score function is used, then Con-

dition 2 is definitely satisfied by the property of the Fisher information under

regular conditions (Pierce, 1982); if g comprises generalized estimating equa-

tions (GEEs) with a correctly specified correlation structure (Liang and Zeger,

1986), then Condition 2 holds as well. However, Condition 2 is not required
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2.2 Derivation of the ELCIC under Variable-Selection Framework 10

in the proof of model selection consistency, which is discussed further in next

section.

Theorem 1. Under Conditions 1 and 2, given γ̂EE obtained from the estimating

equations g1 in (2.4) and the rank of E[{∂g(D,γ0)}/(∂γT)] being p, the same

as the dimensionality of γ̂EE , and by applying the Laplace approximation and

setting a noninformative prior to γ, we have

−2 logP (D|M) = −2 logRF (λ̂EE, γ̂EE) + p log n+ C̃ + op(1),

where C̃ = log(Σ21Σ
−1
11 Σ12)−p log(2π)−2 log(Ã), with Σ11 = E

{
g(D,γ0)g

T(D,γ0)
}

;

Σ12 = E
[
∂g(D,γ0)/∂γ

T
]
, Σ21 = ΣT

12; Ã =
∫

exp{(1/2)δT
1 (nΣ11)δ1}ρδ1(δ1)dδ1;

and ρδ1(·) is some prior function of the random variable δ1, defined in the Sup-

plementary Material.

Based on Theorem 1, our proposed ELCIC is defined as

ELCIC = −2 logRF (λ̂EE, γ̂EE) + p log n. (2.6)

Note that the proposed ELCIC is free of prior specification, a desired property for

a well-defined model selection criterion, with finite values guaranteed, regard-

less of the fact that Ã in Theorem 1 might be infinite for some prior functions.
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2.3 Model-Selection Consistency of the ELCIC 11

Theorem 1 is derived under the framework of variable selection based on the

Laplace approximation, with some extra constraints on the estimating equations,

as specified in Condition 2. However, we show in Section 2.3 that the ELCIC

is consistent (i.e., it captures the true model with probability approaching one),

and so those conditions can be relaxed. Note that this consistency property holds

under any general estimating equations, not just those defined in (2.4). In Sec-

tion 2.3, we explore rigorously the consistency of our ELCIC.

2.3 Model-Selection Consistency of the ELCIC

In this section, we focus on the consistency of our proposal for general model

selection, not limited to variable selection. Under this general context, let us re-

define g(D,γ) as some full estimating equations in (2.1) satisfying Condition 1.

Here, the p-by-1 parameter vector γ includes all the parameters in the estimat-

ing equations g(D,γ), such as those in the mean structure, the coefficients in

the correlation matrix, or any other nuisance parameters. Note that we do not

assume that g(D,γ) correspond to the estimating equations for all the parame-

ters in γ. We further relax the assumption that the plug-in estimators γ̂EE can

be derived from other external estimating equations, not necessarily specific to

(2.4), but with some mild conditions satisfied (i.e., Condition 5). In Section 3.1,

we discuss more concrete examples of specifying the function g(D,γ).

Statistica Sinica: Preprint 
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2.3 Model-Selection Consistency of the ELCIC 12

Theorem 2. Under Condition 1 and the candidate model M specified correctly

with the true value of γ as γ0, define Qn = (1/n)
∑n

i=1 g(Di,γ0) +Σ12(γ̂EE −

γ0) with plug-in estimators satisfying γ̂EE−γ0 = Op(n
−1/2). Then, the negative

logarithm of the likelihood is

l =
1

2
(n1/2QT

n)Σ−1
11 (n1/2Qn) + op(1). (2.7)

Theorem 2 provides insight into the order of l when the model is specified

correctly, which is a crucial component in the derivation of the consistency of

our proposed criterion. As a by-product of Theorem 2, Corollary 1 provides the

asymptotic distribution of 2l in the variable selection framework.

Corollary 1. Given the same conditions as those in Theorem 2, g and g1 defined

in (2.4) in the case of variable selection, and γ̃0 = (γT
0 ,0

T)T, γ̂EE satisfies

γ̂EE − γ0 = −
{
E
(∂g1(D, γ̃0)

∂γT

)}−1
1

n

n∑
i=1

g1(Di, γ̃0) + op(n
− 1

2 ). (2.8)

Then, we have that 2l converges in distribution to
∑L̃

j=1 Λjχ
2
1, where Λ1, . . . ,ΛL̃

are nonzero eigenvalues of the matrix Ω = Σ
1/2
11 ΣT

∗Σ−1
11 Σ∗Σ

1/2
11 , with L̃ =

rank(Ω) and Σ∗ = IL×L −
(
Σ12{E(∂g1(D, γ̃0)/∂γ

T
)
}−1,0L×(L−p)

)
.

Condition 3. (Regularity for Misspecified Model) Let γ∗ 6= γ0. Then, for any

Statistica Sinica: Preprint 
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γ in the neighborhood of γ∗, we have that E‖g(D,γ)‖2+δ < ∞, with some

δ > 0.

Condition 4. (Identifiability) For any γ in the neighborhood of γ∗ 6= γ0, we

have the condition that ‖Eg(D,γ)‖ > 0.

Condition 3 extends the regularities in Condition 1 when the candidate model

M is misspecified. We require the (2 + δ)th moment of the estimating equations

to be finite. Condition 4 is the identifiability assumption, which further im-

plies that the model is identifiable if only the correctly specified model satisfies

Eg(D,γ0) = 0. This is also the key to model selection.

Theorem 3. Under Conditions 1, 3, and 4, for any γ in the neighborhood of

γ∗ 6= γ0, we have n1−c‖ḡn‖2 log(n)l−1 = Op(1), where ḡn = (1/n)
∑n

i=1 g(Di,γ),

for 1
2
< c < 1.

Theorem 3 ensures that if the candidate model is misspecified, then the neg-

ative log likelihood l tends to infinity with order of at least log n. Together with

Theorems 2 and 3 and the following Condition 5, we are ready to present our

main result.

Condition 5. (Well-behaved Estimator) Denote V = Cov
(
(1/n)

∑n
i=1 g(Di,γ0)

+Σ12(γ̂EE−γ0)
)
, with γ̂EE−γ0 = Op(n

−1/2). Then, given the correctly spec-

ified candidate model, we have that tr(Σ−1
11 V) <∞.
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2.3 Model-Selection Consistency of the ELCIC 14

Condition 5 is a mild condition requiring well-behaved plug-in estimators.

On the one hand, if this plug-in estimator γ̂EE is from Corollary 1, then tr(Σ−1
11 V) <

∞ in Condition 5 is equivalent to asking for finite eigenvalues of Ω defined in

Theorem 2. On the other hand, if g(D,γ) are the estimating equations for γ and

the estimator γ̂EL is obtained from maximizing the ELR in (2.1), then we have

that tr(Σ−1
11 V) = L− p, which satisfies Condition 5.

Theorem 4. Under Conditions 1, 3–5 and given the true model denoted by M0,

we have P
[

min{ELCIC(M) : M 6= M0} > ELCIC(M0)
]
→ 1 as n→∞.

The proof strategy is based on standard large-sample theory, but important

findings from Theorem 4 reveal the underlying merits and implications of the

ELCIC for general model selection. First, the theorem holds under very mild

conditions, in particular, involving neither Condition 2 nor the Laplace approxi-

mation. Moreover, the proof does not rely on a very specific form of the full es-

timating equations, not necessarily limited to the estimating equations g(Di,γ)

in (2.4). This implies that the ELCIC has potential for various model selection

problems, and not just variable selection. Second, the plug-in estimators are

subject to few restrictions other than Condition 5. In practice, common esti-

mation procedures could be applied, such as the least squares, score functions,

GEEs, or loss functions, thereby making the ELCIC more flexible and versatile.

Note that the parameters γ are not limited to the primary parameters of interest

Statistica Sinica: Preprint 
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in the candidate model. They can also include other nuisance parameters, such

as the correlation coefficients in the GEE method for longitudinal data, and the

parameters in logistic regressions for observing probabilities in the method of

inverse probability weights. Therefore, the consistency property in Theorem 4

allows the ELCIC to deal with a broad range of model selection problems, as

exemplified by the three case studies presented in Section 3.

3. Case Studies and Numerical Results

3.1 Full Estimating Equations

We discuss how to specify the full estimating equations g(Di,γ) for the ELCIC

in three cases. To avoid confusion, we denote the parameter vector in the mean

structure as β, and the overall parameter vector in the estimating equations as γ.

Case 1: Generalized Linear Models (GLMs). Nelder and Wedderburn

(1972) introduced the GLM concept to unify the theories for different models in

categorical analysis. In this case, the full estimating equations g in (2.1) can be

defined simply as the score functions, that is

g(Di,β) = Xi(Yi − µi(β̃)), (3.1)

where µi(β̃) with β̃ = (βT,0T)T is the conditional expectation of Yi modeled by

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0254



3.1 Full Estimating Equations 16

f(XT
i β̃), with some prespecified canonical link function f . Given that (3.1) is

valid only when the mean structure is specified correctly, without requiring the

second moment, the ELCIC under the full estimating equations (3.1) can handle

the variance structure being misspecified, such as over-dispersion, which is often

encountered in count data analysis. Only variable selection is of research interest

in this case.

Case 2: Generalized Estimating Equations (GEE). We now extend our

focus to model selection for longitudinal data. Liang and Zeger (1986) intro-

duced the marginal model to conduct statistical inference without specifying

the joint distribution of longitudinal data. Note that a correctly specified mean

structure is always key for estimation consistency, and in the GEE approach, the

efficiency is improved by identifying the correct “working” correlation structure.

In this case, we specify the full estimating equations properly so that the ELCIC

can select the marginal mean and the correlation structures simultaneously. In

contrast, the main existing criteria, such as the quasi-likelihood criterion (QIC)

(Pan, 2001), cannot handle joint selection.

To achieve our goal and for simplicity, we assume a balanced design with

T observations for each subject. For subject i, the marginal mean is denoted by

µi and the variance–covariance matrix by Vi. The over-dispersion parameter is

denoted by φ (assumed known, but can also be estimated consistently) and the

Statistica Sinica: Preprint 
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3.1 Full Estimating Equations 17

correlation-coefficient vector by ρc = (ρc1, . . . , ρ
c
T−1)

T. Here, the superscript c

indicates the type of correlation structure. For instance, under a stationary struc-

ture, we have ρSTA = (ρSTA1 , . . . , ρSTAT−1 )T. Thus, the full estimating equations in

(2.1) are defined as

g
(
Di,β,ρ

c
)

=

HT
i V

−1
i

(
Yi − µi(β̃)

)
Ui(β̃)− h(ρc)φ

 , (3.2)

where β̃ is defined as (βT,0T)T, Hi denotes the first derivative ofµi with respect

to β̃, and Ui(β̃) =
(
Ui1(β̃), Ui2(β̃), . . . , Ui(T−1)(β̃)

)T, with

Uim(β̃) =
T−m∑
j=1

eij(β̃)ei,j+m(β̃), for m = 1, . . . , T − 1. (3.3)

In addition, eij represents the standardized residual term (yij − µij)/
√
νij , for

i = 1, . . . , n and j = 1, . . . , T . Finally, h(ρc) is defined as
(
ρc1
(
T−1−p/n

)
, . . . ,

ρcT−1(1− p/n)
)T.

Note that β̃ is proposed to achieve variable selection in a marginal mean

structure, and a stationary correlation structure is used based on (3.3) to select

the correlation structure. Thus, the ELCIC can select marginal mean and corre-

lation structures simultaneously, because the expectation of the full estimating

equations (3.2) is zero only when both structures are specified correctly. Note
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3.1 Full Estimating Equations 18

too that Chen and Lazar (2012) proposed the ELBIC to select a “working” cor-

relation structure alone, under which the full estimating equations comprise a

subset of our proposed ones in (3.2). Accordingly, the ELCIC unifies the selec-

tion procedure by allowing for both marginal mean and correlation structures.

The theorems in the Supplementary Material provide a theoretical justification

for this criterion, something that is currently lacking in the literature to date.

Case 3: Penalized Generalized Estimating Equations (PGEE). Penalized

regression is among the most popular research topics of the past two decades

(Tibshirani, 1996; Fan and Li, 2001). It uses penalties to shrink the effect of

unnecessary features toward zero by identifying a proper tuning parameter. In

this case, we focus mainly on selecting the tuning parameter, for which there

are two common approaches, namely cross-validation (CV) and some BIC-type

methods (Chen and Chen, 2008). As is well known, CV leads to a high rate

of false positives, whereas BIC-type methods are less time consuming and tend

to have lower rates of false positives. However, BIC-type criteria cannot be

applied to semiparametric or nonparametric contexts. Here, we consider the

PGEE proposed by Wang et al. (2012), for which the BIC is no longer suitable,

but the ELCIC can be easily embedded.

The PGEE is a combination of the GEE and the first derivative of the

smoothly clipped absolute deviation (SCAD) penalty, thereby facilitating spar-
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3.1 Full Estimating Equations 19

sity in the marginal mean structure. Wang et al. (2012) investigated the selection

consistency and asymptotic normality with a diverging number of covariates.

Here, we consider only cases with a fixed number of covariates, and use the full

estimating equations g(Di,γ) in (3.2) to implement model selection. Note again

that the consistency of the ELCIC does not require that the estimating equations

for β̂EE be contained in g(Di,γ), which justifies theoretically the application

of the ELCIC to cases of penalized regression. Moreover, based on the selec-

tion consistency and asymptotic normality in Wang et al. (2012), there exists a

tuning parameter that identifies true zeros correctly with probability tending to

one, and that makes the nonzero part of the estimators converge to the true one

with orderOp(n
− 1

2 ) under fixed p. Therefore, we can apply the ELCIC to locate

this “optimal” tuning parameter. Furthermore, using the same rationale as that

in Case 2, the full estimating equations g(Di,γ) in (3.2) facilitate joint selec-

tion of marginal mean and “working” correlation structures, something that is

unfeasible based on CV.

As well as the three traditional cases presented above, the ELCIC can deal

with complicated scenarios to which the existing criteria might apply either

poorly or not at all, such as variable selection for the augmented inverse prob-

ability weighting (AIPW) method, which is commonly used for missing-data

analysis (Robins et al., 1994), with extensive work in longitudinal data, sur-
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vival analysis, and causal inference (Bang and Robins, 2005; Seaman and Copas,

2009; Scharfstein et al., 1999; Long et al., 1997). In the Supplementary Material,

we discuss such cases in detail while evaluating our proposal numerically.

3.2 Numerical Results

Here, we report on simulation studies conducted under the three cases in Section

3.1, and in each case, we compare the ELCIC with popular existing criteria to

show that the former is robust. Given the limited space available here, the Sup-

plementary Material provides additional simulation studies for variable selection

under the AIPW framework.

Case 1. The main goal in this case is to determine how variable selection is

affected by a distribution misspecification. We narrow our focus to the Poisson

regression, a special GLM case. The true mean structure is

log(µi) = β0 + XT

i β for i = 1, . . . , n,

where β0 = 0.5 and β = (0.5, 0.5, 0)T. Furthermore, Xi is a covariate vector

from a three-dimensional multivariate normal distribution MVN(0,V), where

the variance–covariance matrix V is an AR1 matrix with unit variance and a

correlation coefficient of 0.5. To account for the variance in the Poisson distri-
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bution being misspecified, we apply a negative binomial as the true distribution

with k = 2 or 8 failures. However, we use the AIC, GIC, and BIC for variable

selection under the assumption of the Poisson distribution, and apply the ELCIC

under the full estimating equations g specified in (3.1). The correct specification

of the Poisson distribution is also considered as a benchmark. We generate 500

Monte Carlo data sets with sample size n = 100, 200, or 400, and we report the

selection rates for each candidate model for comparison. Table 1 shows that if

the variance structure is specified correctly, then the ELCIC is comparable to the

BIC, but performs slightly less well, which is understandable, given that that BIC

incorporates all the likelihood information needed for the data. However, if the

variance structure is misspecified, then the situation is reversed, and the ELCIC

is much more robust than the AIC or BIC with an increasing sample size n. The

ELCIC offers more advantages when the data have higher over-dispersion, and

unlike the ELCIC; the consistency property does not hold for the AIC or GIC.

Moreover, although the GIC somehow relaxes the distribution assumption and is

more robust than the AIC, it is more sensitive to the distribution misspecification

than is the ELCIC, even under a relatively large sample size.

Case 2. We apply the ELCIC to the GEE framework, and compare it with

the popular QIC. Suppose that the true underlying correlation structure is ex-

changeable (EXC) with correlation coefficient ρ = 0.5. We assume count out-
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comes with the true marginal mean defined as

log(µij) = β0 + xi1β1 + xij2β2 for i = 1, . . . , n, j = 1, . . . , T,

where xi1 is the subject-level (cluster-level) covariate generated from a uniform

distribution U[0, 1], and xij2 = j − 1 is a time-dependent covariate. A redun-

dant covariate Xij3 is generated from a standard normal distribution N(0, 1).

The number of observations (i.e., cluster size) is T = 3, and the true parame-

ters are β = (−1, 1, 0.5)T. As discussed previously, the ELCIC with the full

estimating equations (3.2) can select the marginal mean and correlation struc-

tures simultaneously. However, the QIC is insufficiently powerful to implement

joint selection, Therefore, we instead use the correlation information criterion

(CIC) (Hin and Wang, 2009) to identify the correlation structure under the full

marginal mean structure and then implement the QIC to select the variables in

the marginal mean under the selected correlation structure. We also compare

the performance with that of QIC/b, which is the QIC, but with the BIC penalty.

We generate 500 Monte Carlo data sets with sample size n = 100 or 300 and

observation times T = 3 or 5, and summarize the selection rates for each com-

bination of marginal mean and correlation structures in Table 2. As can be seen,

the two-stage selection procedures based on the CIC and QIC (QIC/b) are less
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powerful, particularly for T = 3, given that the second stage of the variable se-

lection relies heavily on the first stage for the correlation structure selection. In

contrast, the ELCIC maintains a much higher selection rate across the various

scenarios, thereby exhibiting more robustness for model selection in the frame-

work of longitudinal data. See Section 5 for a detailed discussion. To show the

flexibility of the ELCIC in terms of handling nuisance parameters, we also im-

plement the variable selection by using the first part of the estimating equations

in (3.2) as g(Di,γ), thereby regarding the correlation coefficients as nuisance

parameters. As shown by the results in the Supplementary Material, we observe

a higher selection rate than that of the QIC.

Case 3. We simulate data from the model Yi = XT
i β+ εi, for i = 1, . . . , n,

with β = (0.5, 0.5, 0.5, 0, 0, 0, 0)T. Note that Xi is a T × 7 matrix from a

multivariate normal distribution MVN(0,V), where T = 3 and the variance-

covariance matrix V is an AR1 matrix with unit variance and a correlation coef-

ficient of 0.5. The random errors {εi} are generated from a multivariate normal

distribution with zero mean and an exchangeable covariance matrix with σ2 = 1

and ρ = 0.5. We generate 500 Monte Carlo data sets with sample size n = 100

or 200, and record the following evaluation measures: consistency, false-positive

rate, overall variable selection rate, overall variable over-selection rate, correla-

tion structure selection rate, joint selection rate, and variable over-selection rate
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with the true correlation structure selected. Both ELCIC1 and ELCIC2 use the

full estimating equations (3.2), where ELCIC1 is calculated under the true cor-

relation structure ρEXC to compare with CV for variable selection, and ELCIC2

is used to jointly select the marginal mean and correlation structures. In Table 3,

ELCIC1 generally gives substantially lower false-positive rates and higher vari-

able selection rates than those of the CV-based method, and ELCIC2 performs

the simultaneous selection satisfactorily when CV is not applicable.

4. Real-Data Example

We apply our method to the Atherosclerosis Risk in Communities Study (ARIC),

designed originally to investigate the causes and clinical outcomes of atheroscle-

rosis and trends in the rates of hospitalized myocardial infarction and coronary

heart diseases. Our outcome is platelet count, which has been studied in the lit-

erature and shown to be an essential factor in coronary heart diseases (Renaud

and De Lorgeril, 1992). The objective of this application is to investigate the

temporal pattern of platelet count, and to identify potential risk factors among

various baseline variables, such as age (year), gender (female or male), diabetes

(1=yes; 0=no), smoker (1=yes; 0=no), body mass index (kg), total cholesterol

(mmol/L), total triglycerides (mmol/L), and the time-dependent visit variable

(coded as 0,1,2,3). We select Washington County to identify a total of 1,463
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white patients at approximately three-year intervals (1987–1989, 1990–1992,

1993–1995, and 1996–1998) who were diagnosed with hypertension at the first

examination. Note that there were 441 dropouts during the follow-up. To illus-

trate the application of our proposal, we assume missing completely at random,

for simplicity; for more-sophisticated manipulation of missing data, see Chen et

al. (2019). We apply the full estimating equations (3.2) with the GEE in Case

2 to construct the ELCIC and facilitate the joint selection of the marginal mean

and correlation structures. The results are summarized in Table 4 in the Supple-

mentary Material, and indicate that both the QIC and the ELCIC recommend the

marginal mean , including time, gender, age, diabetes, and cholesterol, with the

AR1 correlation structure as the optimal model. Note that the variables selected

by the ELCIC match the significant ones when we fit the full model (Model 1).

The same marginal mean model is identified by the PGEE procedure from Case

3 using the same covariate pool.

5. Discussion

Because of complex features and data structures, existing approaches for analy-

sis and inference based on specifying a distribution may not work well. In this

work, we present a data-driven information criterion framework for model selec-

tion under different contexts. By further relaxing the estimation procedure, our
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ELCIC overcomes the limitation of classic EL-based criteria. More importantly,

it can be extended easily, depending on the model selection needs in practice, to

situations in which no existing information criteria would theoretically fit well,

such as Case 3 and the extra cases shown in the Supplementary Material. Further

discussion about the conditions in the theorems and the theoretical limitations of

the existing GIC are provided in the Supplementary Material.

Several extensions of the ELCIC are open to research, including its exten-

sion to (ultra) high-dimensional cases. Prompted by those who reviewed this pa-

per, we have begun to investigate this framework by means of a literature search

and empirical simulation studies, which show that the ELCIC outperforms alter-

native criteria; see the Supplementary Material for more details. Furthermore,

robust model prediction criteria would be of independent research interest, and

an informative degree of freedom instead of p could be used to borrow more

information. However, this would increase the criterion complexity and case

specificity and, hence, reduce its flexibility in practice. As shown in our work,

the ELCIC has indicated its potential and robustness for exploring statistical is-

sues related to model selection with highly complex and diverse data.

Supplementary Material

The online Supplementary Material provides (i) detailed proofs of Theo-

rems 1–4 and Corollary 1, (ii) results from additional simulation studies, includ-
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ing cases for variable selection under the AIPW estimator framework and the

ultrahigh-dimensional setup, (iii) discussions about the conditions in the theo-

rems and the limitations of the existing GICs, and (iv) the results for the real-data

application using the ARIC study.
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Table 1: Performance of ELCIC compared with the AIC and BIC for the sce-
narios under a Poisson distribution with potential over-dispersed outcomes. 500
Monte Carlo data are generated with sample size n = 100, 200. The model with
{x1, x2} is the true one. NB: Negative binomial with k as number of failures.

n Distribution Criteria
Candidate Models

x1 x2 x3 x1, x2 x1, x3 x2, x3 x1, x2, x3

100 POISSON AIC 0 0 0 0.852 0 0 0.148
GIC 0 0 0 0.798 0 0 0.202
BIC 0 0 0 0.980 0 0 0.020
ELCIC 0 0 0 0.95 0 0 0.050

NB k = 8 AIC 0 0 0 0.786 0.002 0 0.212
GIC 0 0 0 0.792 0 0 0.206
BIC 0 0 0 0.926 0.002 0 0.072
ELCIC 0.002 0.002 0 0.940 0.002 0 0.054

NB k = 2 AIC 0.002 0.002 0 0.592 0.006 0.002 0.396
GIC 0.004 0.008 0 0.714 0.012 0.006 0.256
BIC 0.004 0.008 0 0.774 0.012 0.002 0.200
ELCIC 0.022 0.052 0 0.850 0.018 0.002 0.056

200 POISSON AIC 0 0 0 0.830 0 0 0.170
GIC 0 0 0 0.800 0 0 0.200
BIC 0 0 0 0.978 0 0 0.002
ELCIC 0 0 0 0.962 0 0 0.038

NB k = 8 AIC 0 0 0 0.718 0 0 0.282
GIC 0 0 0 0.776 0 0 0.224
BIC 0 0 0 0.916 0 0 0.084
ELCIC 0 0 0 0.952 0 0 0.048

NB k = 2 AIC 0 0 0 0.562 0.002 0 0.436
GIC 0 0 0 0.764 0.002 0 0.234
BIC 0 0 0 0.814 0.002 0 0.184
ELCIC 0.002 0 0 0.946 0.004 0 0.048

n = 400 POISSON AIC 0 0 0 0.848 0 0 0.152
GIC 0 0 0 0.810 0 0 0.190
BIC 0 0 0 0.990 0 0 0.010
ELCIC 0 0 0 0.990 0 0 0.010

NB k = 8 AIC 0 0 0 0.746 0 0 0.254
GIC 0 0 0 0.820 0 0 0.180
BIC 0 0 0 0.938 0 0 0.062
ELCIC 0 0 0 0.968 0 0.002 0.030

NB k = 2 AIC 0 0 0 0.576 0 0 0.424
GIC 0 0 0 0.772 0 0 0.228
BIC 0 0 0 0.804 0 0 0.196
ELCIC 0 0 0 0.980 0 0 0.020
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Table 2: Performance of ELCIC compared with QIC for the scenarios under
longitudinal count data. 500 Monte Carlo data sets are generated with sample
size n = 100, 300 and number of observations within-subject T = 3, 5. The
model with {x1, x2} and an exchangeable (EXC) correlation structure with the
correlation coefficient ρ = 0.5 is the true model. AR1: auto-correlation 1; IND:
independence; QIC/b: QIC with the BIC penalty.

Set-ups Criteria Candidate Models
x1, x2, x3 x1, x2 x1, x3 x2, x3 x1 x3

n = 100 ELCIC EXC 0.040 0.844 0 0.002 0 0
T = 3 AR1 0.008 0.106 0 0 0 0

IND 0 0 0 0 0 0
QIC EXC 0.090 0.494 0 0 0 0

AR1 0.044 0.372 0 0 0 0
IND 0 0 0 0 0 0

QIC/b EXC 0.012 0.570 0 0.002 0 0
AR1 0.018 0.398 0 0 0 0
IND 0 0 0 0 0 0

n = 300 ELCIC EXC 0.026 0.958 0 0 0 0
T = 3 AR1 0 0.016 0 0 0 0

IND 0 0 0 0 0 0
QIC EXC 0.078 0.574 0 0 0 0

AR1 0.030 0.318 0 0 0 0
IND 0 0 0 0 0 0

QIC/b EXC 0.012 0.640 0 0 0 0
AR1 0.002 0.346 0 0 0 0
IND 0 0 0 0 0 0

n = 100 ELCIC EXC 0.052 0.946 0 0 0 0
T = 5 AR1 0 0.002 0 0 0 0

IND 0 0 0 0 0 0
QIC EXC 0.102 0.834 0 0 0 0

AR1 0.006 0.058 0 0 0 0
IND 0 0 0 0 0 0

QIC/b EXC 0.016 0.920 0 0 0 0
AR1 0 0.064 0 0 0 0
IND 0 0 0 0 0 0

n = 300 ELCIC EXC 0.02 0.98 0 0 0 0
T = 5 AR1 0 0 0 0 0 0

IND 0 0 0 0 0 0
QIC EXC 0.098 0.894 0 0 0 0

AR1 0.002 0.006 0 0 0 0
IND 0 0 0 0 0 0

QIC/b EXC 0.008 0.984 0 0 0 0
AR1 0 0.008 0 0 0 0
IND 0 0 0 0 0 0
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Table 3: Performance of ELCIC compared with the cross-validation (CV)
method for the scenarios under longitudinal count data. 500 Monte Carlo data
are generated with sample size n = 100, 200 and number of observations within-
subject T = 3.

n Criteria MS FP OVS OVOS CS JS VOS

100 CV 0.017 1.710 0.225 0.775 – – –
ELCIC1 0.016 0.595 0.575 0.425 – – –
ELCIC2 0.016 0.610 0.565 0.435 0.91 0.52 0.39

200 CV 0.007 1.825 0.190 0.810 – – –
ELCIC1 0.007 0.405 0.655 0.345 – – –
ELCIC2 0.007 0.405 0.655 0.345 0.975 0.64 0.335

Note: MS: consistency ‖β̂−β0‖2; FP: average number of falsely selecting
nonzero variables; OVS: number of selecting the true mean structure/500;
OVOS: number of over selecting the mean structure/500; CS: number of
selecting the true correlation structure/500; JS: number of jointly select-
ing the true mean and the correlation structures/500; VOS: number of
over selecting the mean structure under the true correlation structure se-
lected/number of selecting the true correlation structure.
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