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Abstract: The literature on the infinite-arms bandit problem includes a regret

lower bound of all allocation strategies for Bernoulli rewards with a uniform

prior, and strategies based on success runs. Furthermore, a two-target algorithm

has been proposed that achieves the regret lower bound, and optimality has been

extended to Bernoulli rewards with general priors. We present a confidence-

bound target (CBT) algorithm that achieves optimality for rewards that are

bounded above. For each arm, we construct a confidence bound and compare

it against those of other arms and a target value to determine whether the arm

should be sampled further. The target value depends on the assumed priors of

the arm means. In the absence of information on the prior, the target value

is determined empirically. Numerical studies show that the CBT algorithm is

versatile and outperforms its competitors.
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2 CHAN AND HU

1. Introduction

Berry et al. (1997) initiated the development of the infinite-arms bandit

problem. For Bernoulli rewards with a uniform prior, they showed a
√

2n

regret lower bound for n rewards, and provided algorithms based on success

runs that achieve no more than 2
√
n regret. Bonald and Proutière (2013)

provided a two-target stopping-time algorithm that can get arbitrarily close

to the lower bound of Berry et al. (1997), and is also optimal on Bernoulli

rewards with general priors. Wang, Audibert, and Munos (2008) considered

bounded rewards, and showed that their confidence-bound algorithm has

regret bounds that are log n times the optimal regret. Vermorel and Mohri

(2005) proposed a POKER algorithm for general reward distributions and

priors.

The confidence-bound method has been arguably the most influential

approach over the past 30 years for the fixed arm-size bandit problem.

Lai and Robbins (1985) derived the smallest asymptotic regret that can

be achieved by any algorithm. Lai (1987) showed that by constructing an

upper confidence bound (UCB) for each arm, and playing the arm with

the largest UCB, this smallest regret is achieved in exponential families.

The UCB approach was subsequently extended to unknown time horizons

and other parametric families in Agrawal (1995a), Auer, Cesa-Bianchi, and
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CONFIDENCE BOUNDS FOR INFINITE-ARMS BANDIT 3

Fischer (2002), Burnetas and Katehakis (1996), Cappé et al. (2013), and

Kaufmann, Cappé, and Garivier (2012), and has been shown to perform

well in practice, achieving optimality beyond that of exponential families.

Chan (2020) modified the subsampling approach of Baransi, Maillard, and

Mannor (2014) to show that optimality is achieved in exponential families,

despite not applying parametric information in the selection of the arms.

The method applies confidence bounds that are computed empirically from

subsample information, which substitutes for the missing parametric infor-

mation. A related problem is the study of the multi-armed bandit with

irreversible constraints, initiated by Hu and Wei (1989).

The Bayesian approach has also enjoyed considerable success; see Berry

and Fristedt (1985), Gittins (1989), and Thompson (1933) for early ground-

work, and Korda, Kaufmann, and Munos (2013) for more recent advances.

We show here how the confidence-bound method can be applied on infi-

nite arms. We call this new procedure the confidence-bound target (CBT).

As in the UCB, in the CBT, a confidence bound is computed for each arm.

The difference is that in the CBT, we specify an additional target value.

Then, we compare the confidence bound of an arm against this target to

decide whether to play the arm further, or to discard it and play a new

arm.
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4 CHAN AND HU

We derive a regret lower bound that applies to all bandit algorithms,

and proceed to show how the target in the CBT is chosen to achieve this

lower bound. This optimal target depends only on the prior distribution of

the arm means, and not on the reward distributions. That is, the reward

distributions need not be specified for optimality to be achieved.

To handle the situation in which the prior is not available, we provide

an empirical version of the CBT in which the target value is computed

empirically. Numerical studies on Bernoulli rewards and on a URL data set

show that the CBT and empirical CBT outperform their competitors.

In the related continuum-armed bandit problem, there is an uncount-

ably infinite number of arms. Each arm is indexed by a known parameter

θ and has rewards with mean f(θ), where f is an unknown continuous

function. For solutions to the problem of maximizing the expected sum of

rewards, see Agrawal (1995b), Auer, Ortner, and Szepesvári (2007), Cope

(2009), Kleinberg (2004), and Tyagi and Gärtner (2013).

The remainder of this paper proceeds as follows. In Section 2, we

describe the infinite-arms bandit problem. In Section 3, we review the

literature on this problem. In Section 4, we describe the CBT. In Section

5, we motivate why the chosen target of the CBT leads to the regret lower

bound, and state the optimality of the CBT. In Section 6, we introduce an
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empirical version of the CBT to tackle unknown priors, and explain why it

works. In Section 7, we perform numerical studies. Section 8 concludes the

paper.

2. Problem setup

Let Yk1, Yk2, . . . be independent and identically distributed (i.i.d.) re-

wards from arm k. In the classical multi-armed bandit problem, there are

finitely many arms, and the objective is to sequentially select the arms so

as to maximize the expected sum of rewards. Equivalently, we minimize

the regret, which is the expected cumulative difference between the best

arm mean and the mean of the arm played.

In the infinite-arms bandit problem that we consider here, there are

infinitely many arms, and rewards are bounded above by a value that we

shall assume for simplicity to be one. We assume, in addition, that it is

possible for an arm to have reward mean arbitrarily close to one.

The regret of a bandit algorithm, after n trials, is defined to be

Rn = E
( ∞∑
k=1

nk∑
t=1

Xkt

)
, where Xkt = 1− Ykt (≥ 0) (2.1)

is the loss associated with reward Ykt, and nk is the number of times arm

k has been played (hence, n =
∑∞

k=1 nk). The expectation in (2.1) is with

respect to the following Bayesian framework.

Statistica Sinica: Preprint 
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6 CHAN AND HU

Let g be a prior on (0,∞). For each µ in which g(µ) > 0, let Fµ be

a nonnegative distribution with mean µ. The expectation in (2.1) is with

respect to

µk
i.i.d.∼ g for k ≥ 1 and Xkt

i.i.d.∼ Fµk for t ≥ 1. (2.2)

The minimization of the regret under (2.2) for finite arms, known as the

stochastic bandit problem, has been studied in Agrawal and Goyal (2012),

Bubeck and Liu (2013), and Russo and Van Roy (2014).

In the infinite-arms bandit problem, a key decision to be made at each

trial is whether to sample a new arm or to play a previously played arm.

The Bayesian framework in (2.2) provides useful information on the new

arms.

3. Preliminary background

Let a ∧ b denote min(a, b), b·c (d·e) denote the greatest (least) integer

function, and a+ denote max(0, a). We say that an ∼ bn if limn→∞(an/bn) =

1, an = o(bn) if limn→∞(an/bn) = 0, and an = O(bn) if lim supn→∞ |an/bn| <

∞.

Berry et al. (1997) showed that for Bernoulli rewards with g uniform

on (0, 1), a regret lower bound

lim inf
n→∞

Rn√
n
≥
√

2 (3.1)

Statistica Sinica: Preprint 
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CONFIDENCE BOUNDS FOR INFINITE-ARMS BANDIT 7

is unavoidable. They proposed the following bandit strategies:

1. f -failure strategy. We play the same arm until f failures are encoun-

tered. When this happens, we switch to a new arm. We do not go

back to a previously played arm; that is, the strategy is non-recalling.

2. s-run strategy. We restrict ourselves to no more than s arms, following

the one-failure strategy in each, until a success run of length s is

observed in an arm. When this happens, we play the arm for the

remaining trials. If no success run of length s is observed in all s

arms, then the arm with the highest proportion of success is played

for the remaining trials.

3. Non-recalling s-run strategy. We follow the one-failure strategy until

an arm produces a success run of length s. When this happens, we

play the arm for the remaining trials. If no arm produces a success

run of length s, then the one-failure strategy is used in all n trials.

4. m-learning strategy. We follow the one-failure strategy for the first

m trials, with the arm at trial m played until it yields a failure.

Thereafter, we play, for the remaining trials, the arm with the highest

proportion of successes.

Statistica Sinica: Preprint 
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8 CHAN AND HU

Berry et al. (1997) showed that Rn ∼ n/(log n) for the f -failure strategy

for any f ≥ 1, whereas for the
√
n-run strategy, the

√
n log n-learning

strategy, and the non-recalling
√
n-run strategy,

lim sup
n→∞

Rn√
n
≤ 2.

Bonald and Proutière (2013) proposed a two-target algorithm with tar-

get values s1 = b 3
√

n
2
c and sf = bf

√
n
2
c, where f ≥ 2 is user-defined. An

arm is discarded if it has fewer than s1 successes when it encounters its

first failure, or fewer than sf successes when it encounters its fth failure. If

both targets are met, then the arm is accepted and played for the remaining

trials. Bonald and Proutière (2013) showed that for the uniform prior, the

two-target algorithm satisfies, for n ≥ f2

2
,

Rn ≤ f + (
sf+1

f
)(

sf−f+2

sf−s1−f+2
)f (2 + 1

f
+ 2(f+1)

s1+1
),

from which they conclude that

lim sup
n→∞

Rn√
n
≤
√

2 + 1
f
√
2
.

Thus, for f and n large, the regret is close to the asymptotic lower bound

√
2n.

Bonald and Proutière (2013) extended their optimality on Bernoulli

rewards to nonuniform priors. They showed that when g(µ) ∼ αµβ−1, for

Statistica Sinica: Preprint 
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some α > 0 and β > 0 as µ → 0, the regret lower bound of Berry et al.

(1997) is extended to

lim inf
n→∞

(n−
β
β+1Rn) ≥ C0, where C0 = (β(β+1)

α
)

1
β+1 . (3.2)

They also showed that their two-target algorithm with s1 = bn
1

β+2C
−β+1
β+2

0 c

and sf = bfn
1

β+1C−10 c satisfies

lim sup
f→∞

[lim sup
n→∞

(n−
β
β+1Rn)] ≤ C0.

Wang, Audibert, and Munos (2008) proposed a UCB-F algorithm for

rewards taking values in [0, 1], and showed that under suitable regularity

conditions, Rn = O(n
β
β+1 log n). In the UCB-F, an order n

β
β+1 arms are

chosen, and confidence bounds are computed on these arms to determine

which arm to play. The UCB-F is different from the CBT in that it pre-

selects the number of arms, and also does not have a mechanism to reject

weak arms quickly. Carpentier and Valko (2015) also considered rewards

taking values in [0, 1], but their interest in maximizing the selection of a

good arm differs from the aims here and in the papers above.

4. Proposed methodology

We propose a new bandit algorithm called CBT, in which a confidence

bound is constructed for each arm and compared against a target value.

Statistica Sinica: Preprint 
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10 CHAN AND HU

Let Skt =
∑t

u=1Xku, X̄kt = t−1Skt, and σ̂2
kt = t−1

∑t
u=1(Xku − X̄kt)

2. Let

bn and cn be positive confidence coefficients satisfying

bn →∞ and cn →∞ with bn + cn = o(nδ), for all δ > 0. (4.1)

In our numerical studies, we select bn = cn = log log n. We define the

confidence bound of arm k, after it has been played t times, to be

Lkt = max
(X̄kt

bn
, X̄kt −

cnσ̂kt√
t

)
. (4.2)

Let ζ > 0 be a specified target value. In the CBT, the arms are played

sequentially. Arm k is played until Lkt goes above ζ, and it is discarded

when that happens. We discuss in Section 5 how ζ should be selected to

achieve optimality. It suffices to mention here that the optimal ζ decreases

at a polynomial rate with respect to n.

Confidence bound target (CBT)

1. Play arm 1 at trial 1.

2. For m = 1, . . . , n − 1: Let k be the arm played at trial m, and let t

be the number of times arm k has been played up to trial m.

(a) If Lkt ≤ ζ, then play arm k at trial m+ 1.

Statistica Sinica: Preprint 
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(b) If Lkt > ζ, then play arm k + 1 at trial m+ 1.

Let K be the number of arms played after n trials, and let nk be the number

of times arm k has been played after n trials. Hence, n =
∑K

k=1 nk.

There are three types of arms that we need to take care of, and that

explains the design of Lkt. The first type is arms with µk (mean of loss Xkt)

significantly larger than ζ. We would like to reject these arms quickly. The

decision to reject arm k when X̄kt/bn exceeds ζ is key to achieving this.

The second type is arms with µk larger than ζ, but not by as much as

those of the first type. We are unlikely to reject these arms quickly because

it is difficult to determine whether µk is smaller or larger than ζ based on

a small sample. Rejecting arm k when X̄kt − cnσ̂kt/
√
t exceeds ζ ensures

that arm k is rejected only when it is statistically significant that µk is

larger than ζ. Though there may be a large number of rewards from these

arms, their contributions to the regret are small because they have small

µk, because ζ is chosen small when n is large.

The third type of arms is those with µk smaller than ζ. For these

arms, the best strategy (when ζ is chosen correctly) is to play them for the

remaining trials. Selecting bn → ∞ and cn → ∞ in (4.2) ensures that the

probabilities of rejecting these arms are small.

Statistica Sinica: Preprint 
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For Bernoulli rewards, the first target s1 of the two-target algorithm is

designed for the quick rejection of the first type of arms, and the second

target sf is designed to reject the second type. The difference between

the two-target algorithm and the CBT is that whereas the former monitors

an arm for rejection only when there are one and f failures, with f chosen

large for optimality, the CBT checks for rejection each time a failure occurs.

The frequent monitoring by the CBT is a positive feature that results in

significantly better performance in the numerical experiments discussed in

Section 7.

5. Optimality

We state the regret lower bound in Section 5.1, and show that the CBT

achieves this bound in Section 5.2.

5.1 Regret lower bound

In Lemma 1, we motivate the choice of ζ. Let Pµ denote the probability

and Eµ denote the expectation with respect to X
d∼ Fµ. Let Pg(·) =∫∞

0
Pµ(·)g(µ)dµ and Eg(·) =

∫∞
0
Eµ(·)g(µ)dµ. Let λ =

∫∞
0
Eµ(X|X >

0)g(µ)dµ[= Eg(X|X > 0)] be the mean of the first positive loss of a random

arm. We assume that λ < ∞. The value λ is the unavoidable cost of

Statistica Sinica: Preprint 
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exploring a new arm. We consider Eµ(X|X > 0) instead of µ because

it makes sense to reject an arm only after observing a positive loss. For

Bernoulli rewards, λ = 1. Let p(ζ) = Pg(µ1 ≤ ζ) and v(ζ) = Eg(ζ − µ1)
+.

Consider an idealized algorithm that plays arm k until a positive loss is

observed, and µk is revealed when that happens. If µk > ζ, then arm k is

rejected, and a new arm is played next. If µk ≤ ζ, then we stop exploring

and play arm k for the remaining trials.

Let

rn(ζ) = λ
p(ζ)

+ nEg(µ1|µ1 ≤ ζ). (5.1)

Assuming that the exploration stage of the idealized algorithm uses o(n) tri-

als and ζ is small, its regret is asymptotically rn(ζ). Let K be the total num-

ber of arms played. The first term in the expansion of rn(ζ) approximates

E(
∑K−1

k=1

∑nk
t=1Xkt), whereas the second term approximates E(

∑nK
t=1XKt).

Lemma 1. Let ζn be such that v(ζn) = λ
n

. We have

inf
ζ>0

rn(ζ) = rn(ζn) = nζn.

Proof. Because Eg(ζ − µ1|µ1 ≤ ζ) = v(ζ)
p(ζ)

, it follows from (5.1) that

rn(ζ) = λ
p(ζ)

+ nζ − nv(ζ)
p(ζ)

. (5.2)

It follows from d
dζ
v(ζ) = p(ζ) and d

dζ
p(ζ) = g(ζ) that

d
dζ
rn(ζ) = g(ζ)[nv(ζ)−λ]

p2(ζ)
.

Statistica Sinica: Preprint 
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Because v is continuous and strictly increasing when it is positive, the root

to v(ζ) = λ
n

exists, and Lemma 1 follows from solving d
dζ
rn(ζ) = 0. ut

Consider:

(A1) there exist α > 0 and β > 0 such that g(µ) ∼ αµβ−1 as µ→ 0.

Under (A1), p(ζ) =
∫ ζ
0
g(µ)dµ ∼ α

β
ζβ and v(ζ) =

∫ ζ
0
p(µ)dµ ∼ α

β(β+1)
ζβ+1

as ζ → 0; hence, v(ζn) ∼ λ
n

for

ζn ∼ Cn−
1

β+1 , where C = (λβ(β+1)
α

)
1

β+1 . (5.3)

In Lemma 2, we state the regret lower bound. We assume the following:

(A2) there exists a1 > 0 such that Pµ(X > 0) ≥ a1 min(µ, 1), for all µ.

We need this assumption to avoid having bad arms that are played a large

number of times, because their losses are mostly zeros, but can be very big

when positive.

Lemma 2. Under (A1) and (A2), all infinite-arms bandit algorithms have

regret satisfying

Rn ≥ [1 + o(1)]nζn ∼ Cn
β
β+1 as n→∞. (5.4)

Lemma 2 is proved in the Supplementary Material.

Example 1. Consider X
d∼ Bernoulli(µ). Condition (A2) holds with

a1 = 1. If g is uniform on (0,1), then (A1) holds with α = β = 1. Because

Statistica Sinica: Preprint 
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λ = 1, by (5.3), ζn ∼
√

2
n
. Lemma 2 states that Rn ≥ [1 + o(1)]

√
2n,

agreeing with Theorem 3 of Berry et al. (1997).

Bonald and Proutière (2013) showed (5.4) in their Lemma 3 for Bernoulli

rewards under (A1), and showed that their two-target algorithm gets close

to the regret lower bound when f is large. We show in Theorem 1 that the

lower bound in (5.4) is achieved by the CBT for rewards that need not be

Bernoulli.

5.2 Optimality of the CBT

We state the optimality of the CBT in Theorem 1, after describing the

conditions on discrete rewards under (B1) and continuous rewards under

(B2) for which the theorem holds. Let Mµ(θ) = Eµe
θX .

(B1) The rewards are integer-valued. For 0 < δ ≤ 1, there exists θδ > 0

such that for µ > 0 and 0 ≤ θ ≤ θδ,

Mµ(θ) ≤ e(1+δ)θµ, (5.5)

Mµ(−θ) ≤ e−(1−δ)θµ. (5.6)

In addition,

Pµ(X > 0) ≤ a2µ for some a2 > 0, (5.7)

EµX
4 = O(µ) as µ→ 0. (5.8)

Statistica Sinica: Preprint 
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(B2) The rewards are continuous random variables satisfying

sup
µ>0

Pµ(X ≤ γµ)→ 0 as γ → 0. (5.9)

Moreover, (5.8) holds and for 0 < δ ≤ 1, there exists τδ > 0 such that for

0 < θµ ≤ τδ,

Mµ(θ) ≤ e(1+δ)θµ, (5.10)

Mµ(−θ) ≤ e−(1−δ)θµ. (5.11)

In addition, for each t ≥ 1, there exists ξt > 0 such that

sup
µ≤ξt

Pµ(σ̂2
t ≤ γµ2)→ 0 as γ → 0, (5.12)

where σ̂2
t = t−1

∑t
u=1(Xu − X̄t)

2 and X̄t = t−1
∑t

u=1Xu for i.i.d. Xu
d∼ Fµ.

Theorem 1. Assume (A1), (A2), and either (B1) or (B2). For the CBT

with threshold ζn satisfying (5.3) and bn, cn satisfying (4.1),

Rn ∼ nζn as n→∞. (5.13)

Theorem 1 states that the CBT is optimal because it attains the lower

bound given in Lemma 2. In the examples below, we show that the regu-

larity conditions (A2), (B1), and (B2) are reasonable and checkable. The

proof of Theorem 1 and the verification details in Examples 3–5 are given

in the Supplementary Material.

Statistica Sinica: Preprint 
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Example 2. If X
d∼ Bernoulli(µ) under Pµ, then

Mµ(θ) = 1− µ+ µeθ ≤ exp[µ(eθ − 1)].

Hence, (5.5) and (5.6) hold with θδ > 0 satisfying

eθδ − 1 ≤ θδ(1 + δ) and e−θδ − 1 ≤ −θδ(1− δ).

In addition, (5.7) holds with a2 = 1, and (5.8) holds because EµX
4 = µ.

Condition (A2) holds with a1 = 1.

Example 3. Let Fµ be a distribution with support on 0, . . . , I for

some positive integer I > 1 and having mean µ. Condition (A2) holds with

a1 = I−1, and (B1) holds as well.

Example 4. Let Fµ be the Poisson distribution with mean µ. Condi-

tion (A2) holds with a1 = 1− e−1, and (B1) holds as well.

Example 5. Let Z be a continuous nonnegative random variable with

mean one, and with Eeτ0Z <∞, for some τ0 > 0. Let Fµ be the distribution

of µZ. Condition (A2) holds with a1 = 1, and (B2) holds as well.

6. Methodology for unknown priors

The optimal implementation of the CBT and, in particular, the compu-

tation of the optimal target ζn, assumes knowledge of how g(µ) behaves for

Statistica Sinica: Preprint 
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µ near zero. For g unknown, we rely on Theorem 1 to motivate an empirical

implementation of the CBT.

What is striking about (5.13) is that it relates the optimal target ζn

to Rn
n

; moreover, this relation does not depend on either the prior g or the

reward distributions. We suggest, therefore, in an empirical implementation

of the CBT, to apply the targets

ζ(m) := S′
m

n
, (6.1)

where S ′m is the sum of the losses Xkt over the first m trials.

In the beginning with m small, ζ(m) underestimates the optimal target,

but this encourages exploration, which is the right strategy at the beginning.

As m increases, ζ(m) gets closer to the optimal target, and the empirical

CBT behaves like the CBT when deciding whether to play an arm further.

A key difference between the CBT and the empirical CBT is that the latter

decides from among all played arms which to play further, whereas the CBT

plays the arms sequentially.

Empirical CBT

Notation: When there are m total rewards, let nk(m) denote the num-

ber of rewards from arm k, and let Km denote the number of arms played.

Statistica Sinica: Preprint 
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For m = 0, play arm 1. Hence, K1 = 1, n1(1) = 1, and nk(1) = 0 for

k > 1.

For m = 1, . . . , n− 1:

1. If min1≤k≤Km Lknk(m) ≤ ζ(m), then play the arm k minimizing Lknk(m)

at trial m+ 1.

2. If min1≤k≤Km Lknk(m) > ζ(m), then play a new arm Km + 1 at trial

m+ 1.

The empirical CBT, unlike the CBT, does not achieve the smallest

regret. This is because when a good arm (i.e., an arm with µk below the

optimal target) appears early, we are not sure whether this is because of

good fortune or because the prior is disposed toward arms with small µk.

Thus, we explore more arms before we are certain, and play the good arm

for the remaining trials. Similarly, when no good arm appears after many

trials, we conclude that the prior is disposed toward arms with large µk,

and play an arm with µk above the optimal target for the remaining trials,

even though it is advantageous to explore further.

Because analyzing the regret of the empirical CBT is complicated, we

consider an idealized version of the empirical CBT in the Supplementary

Statistica Sinica: Preprint 
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Material, deriving its asymptotic regret, to give us a sense of the additional

regret when applying the CBT empirically.

In the idealized version of the empirical CBT, µk is revealed after the

first positive loss of arm k is observed. The number of arms played is the

smallest K satisfying

min
1≤k≤K

µk ≤ Kλ
n
,

and exploitation of the best arm begins after µ1, . . . , µK have been revealed.

The idealized empirical CBT is like the idealized algorithm described at the

beginning of Section 5.1, but with a target ζ = kλ
n

, after k arms have been

played. This is because λ is the mean of the first positive loss of each

arm, so after k arms have been played, the sum of the losses has mean kλ.

The idealized empirical CBT is a simplification of the empirical CBT that

captures the additional regret of the empirical CBT over that of the CBT

when applying a target that does not depend on the prior.

Theorem 2. The idealized empirical CBT has regret

R′n ∼ Iβnζn, (6.2)

where Iβ = ( 1
β+1

)
1

β+1 (2− 1
(β+1)2

)Γ(2− β
β+1

) and Γ(u) =
∫∞
0
xu−1e−xdx.

The constant Iβ increases with β, with I0 = 1 and limβ→∞ Iβ = 2. The

increase is quite slow, so that for reasonable values of β, it is closer to one
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than two, for example, I1 = 1.10, I3 = 1.24, and I5 = 1.36. Equation (6.2)

states that the empirical CBT should have regret not more than 36% over

the baseline lower bound when β ≤ 5. This agrees with the simulation

outcomes presented in Section 7.

7. Numerical studies

We study arms with Bernoulli rewards in Example 6, and arms with

unspecified reward distributions in Example 7. In our simulations, 10,000

data sets are generated for each entry in Tables 1–4, and standard errors are

placed after the ± sign. In both the CBT and the empirical CBT, we select

bn = cn = log log n. Aziz (2019) performed numerical studies involving

various infinite-arms bandit algorithms, including the CBT and empirical

CBT, with the objective of finding the arm with the best mean. The study

also applies an infinite-arms bandit to an online data set involving voting

responses to 3795 proposed captions for a cartoon on a New Yorker website.

Example 6. We consider Bernoulli rewards with uniform prior g(µ) =

1, as well as the beta priors g(µ) = 3µ2 [i.e., Beta(3,1)], g(µ) = 15
16
µ2(1−µ)−

1
2

[i.e., Beta(3,1
2
)], g(µ) = 5µ4 [i.e., Beta(5,1)], and g(µ) = 315

256
µ4(1−µ)−

1
2 [i.e.,

Beta(5,1
2
)].

We see from Tables 1–3 that the two-target algorithm does better with
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Regret

n =100 n =1000 n =10,000 n =100,000

CBT ζ =
√

2/n 14.6±0.1 51.5±0.3 162±1 504±3

empirical 15.6±0.1 54.0±0.3 172±1 531±3

Berry et al. 1-failure 21.8±0.1 152.0±0.6 1123±4 8955±28

√
n-run 19.1±0.2 74.7±0.7 260±3 844±9

√
n-run (non-recall) 15.4±0.1 57.7±0.4 193±1 618±4

n
1
2 log n-learning 18.7±0.1 84.4±0.6 311±3 1060±9

Two-target f = 3 15.2±0.1 52.7±0.3 167±1 534±3

f = 6 16.3±0.1 55.8±0.4 165±1 511±3

f = 9 17.5±0.1 58.8±0.4 173±1 514±3

UCB-F K = b
√
n/2c 39.2±0.1 206.4±0.4 1204±1 4432±5

Lower bound
√

2n 14.1 44.7 141 447

Table 1: Regrets for Bernoulli rewards with uniform prior.

f = 3 at smaller n, and with f = 6 or 9 at larger n. The CBT is the best

performer uniformly over sample size and prior, and the empirical CBT is

competitive against the two-target algorithm, with f fixed.

Even though the CBT outperforms the empirical CBT, its optimal tar-

get ζ depends on the prior. On the other hand, when applying the empirical

CBT, the same algorithm is used for all priors here and on the URL data

set in Example 7 with an unspecified prior. Hence, though it seems that
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Regret

Beta(3, 1) Beta(3, 1
2
) Beta(5, 1) Beta(5, 1

2
)

CBT ζ = Cn−
1

β+1 284.2±0.9 363.0±1.0 474.0±1.0 554.3±1.1

empirical 299.6±0.9 382.2±1.1 509.6±1.0 592.7±1.0

n
1

β+1 -run non-recall 346.3±1.3 445.7±1.7 546.5±1.4 658.8±1.6

Two-target f = 3 310.7±1.1 390.8±1.3 510.3±1.3 592.1±1.3

f = 6 301.2±1.2 385.9±1.4 520.9±1.5 619.5±1.6

f = 9 311.0±1.3 400.1±1.6 545.3±1.6 649.6±1.7

UCB-F 649.5±0.3 779.2±0.3 774.0±0.3 867.6±0.2

Lower bound Cn
β
β+1 251.5 336.4 426.3 538.5

Table 2: Regrets for Bernoulli rewards with beta priors at n = 1000.

the empirical CBT is numerically comparable to the two-target algorithm

and inferior to the CBT, in applications where the prior is unknown or

incorrectly specified, it can perform much better.

For the uniform prior, the best performing among the algorithms in

Berry et al. (1997) is the non-recalling
√
n-run algorithm. For the UCB-F

[cf. Wang, Audibert, and Munos (2008)], the selection ofK = b(β
α

)
1

β+1 ( n
β+1

)
β
β+1 c

(∼ 1
p(ζn)

) and the “exploration sequence” Em =
√

logm works well.

Example 7. We consider the URL data set studied in Vermorel and

Mohri (2005), who propose a POKER algorithm for dealing with a large

number of arms. We reproduce part of their Table 1 in our Table 4, to-
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Regret (×10)

Beta(3, 1) Beta(3, 1
2
) Beta(5, 1) Beta(5, 1

2
)

CBT ζ = Cn−
1

β+1 866±3 1127±4 2122±5 2569±6

empirical 1004±3 1318±4 2547±5 3149±6

n
1

β+1 -run non-recall 1476±7 1713±8 3874±13 4142±13

Two-target f = 3 1159±5 1501±6 2973±9 3559±11

f = 6 990±4 1308±5 2527±7 3060±9

f = 9 957±4 1257±5 2429±7 2992±9

UCB-F 3739±3 4522±4 6488±4 7499±5

Lower bound Cn
β
β+1 795 1064 1979 2499

Table 3: Regrets (×10) for Bernoulli rewards with beta priors at n=100,000.

Regret

Algorithm ε n =130 n =1300

emp. CBT 212±2 123.8±0.6

POKER 203 132

ε-greedy 0.05 733 431

ε-first 0.15 725 411

ε-decreasing 1.0 738 411

Table 4: Average regret Rn/n.

gether with new simulations on the empirical CBT. The data set consists

of the retrieval latency of 760 university home pages, in milliseconds, with
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a sample size of more than 1300 for each home page. The numbers in the

data set correspond to the nonnegative losses Xkt. The data set can be

downloaded from “sourceforge.net/projects/bandit.”

In our simulations, the losses are randomly permuted within home page

in each run. At n = 130, POKER performs better than the empirical

CBT, whereas at n = 1300, the empirical CBT performs better. The other

algorithms are uniformly worse than both the POKER and the empirical

CBT.

The algorithm ε-first refers to exploring the first εn losses, with a ran-

dom selection of the arms to be played. This is followed by pure exploitation

for the remaining (1−ε)n losses, on the “best” arm (with the smallest mean

loss). The algorithm ε-greedy refers to selecting, in each trial, a random

arm with probability ε, and the best arm with the remaining 1 − ε proba-

bility. The algorithm ε-decreasing is like ε-greedy, except that in the mth

trial, we select a random arm with probability min(1, ε
m

), and the best arm

otherwise. Both ε-greedy and ε-decreasing are disadvantaged by not using

information on the total number of trials. Vermorel and Mohri (2005) also

ran simulations on more complicated strategies, such as LeastTaken, Soft-

Max, Exp3, GaussMatch, and IntEstim, with the average regret ranging

from 276–747 at n = 130 and 189–599 at n = 1300.
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8. Conclusion

The CBT optimizes the regret in the infinite-arms bandit problem when

it is possible for an arm to have reward mean arbitrarily close to the upper

bound of the rewards. This optimality is over all bandit algorithms, and

does not require knowledge of the reward distribution for a given arm mean.

It depends, however, on the correct selection of a target value computed

from an assumed prior.

The empirical CBT is like the CBT, with the key difference being that

the former computes the target value empirically. Though not optimal, it

performs well in numerical studies, and is more practical because it can be

applied without assuming a prior.

We suggest here two extensions of the CBT and empirical CBT for

future work. The first is to handle the situation in which the sample size is

not known in advance. Bonald and Proutière (2013) have a version of the

two-target algorithm that they believe to be optimal for Bernoulli rewards

when the sample size is not known in advance.

The second extension is to incorporate covariate information in the

computation of the confidence bounds, leading to recommended arms that

are specific to subgroups of the population. Modern developments in the

finite-arms bandit literature has centered on handling covariate information;
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see, for example, Goldenshluger and Zeevi (2013), Perchet and Rigollet

(2013), Slivkins (2014), Wang, Kulkarni, and Poor (2005), and Yang and

Zhu (2002). When the number of arms is comparable to or larger than the

sample size, an infinite-arms approach is more appropriate and will provide

strategies that differ from those of a finite-arms framework.

Supplementary Material

The proofs of Lemma 2 and Theorems 1 and 2, and the verifications of

(A2), (B1), and (B2) in Examples 3–5 are provided in the online Supple-

mentary Material.
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