Statistica Sinica Preprint No: SS-2020-0223	
Title	A CLASS OF MULTILEVEL NONREGULAR
	DESIGNS FOR STUDYING QUANTITATIVE FACTORS
Manuscript ID	SS-2020-0223
URL	http://www.stat.sinica.edu.tw/statistica/
DOI	10.5705/ss.202020.0223
Complete List of Authors	Lin Wang and
	Hongquan Xu
Corresponding Author	Lin Wang
E-mail	linwang@gwu.edu

NONREGULAR DESIGNS FOR QUANTITATIVE FACTORS

Lin Wang ${ }^{1}$, Hongquan Xu^{2}
${ }^{1}$ The George Washington University and ${ }^{2}$ University of California, Los Angeles

Abstract: Fractional factorial designs are widely used to design screening experiments. Nonregular fractional factorial designs can have better properties than regular designs, but their construction is challenging. Current research on the construction of nonregular designs focuses on two-level designs. We provide a novel class of multilevel nonregular designs by permuting levels of regular designs. We develop a theory illustrating how levels can be permuted without a computer search and, accordingly, propose a sequential method for constructing nonregular designs. Compared with regular designs, these nonregular designs provide more accurate estimations on factorial effects and more efficient screening for experiments with quantitative factors. We further explore the space-filling property of the obtained designs and demonstrate their superiority.

Key words and phrases: Generalized minimum aberration, geometric isomorphism, level permutation, orthogonal array, regular design, Williams transformation.

1. Introduction

Screening experiments are commonly designed to investigate controlled factors and identify which of them are important. Fractional factorial designs are highly suitable for screening experiments because they allow us to investigate many factors simultaneously using a small number of runs. These designs are classified into two broad types: regular designs and nonregular designs. Designs that can be constructed by defining relations between factors are called regular designs; all other designs are nonregular. There are many more nonregular designs than there are regular designs. Good nonregular designs can either fill the gaps between regular designs in terms of various run sizes, or provide better estimations for factorial effects.

The construction of good nonregular designs is important and challenging. Constructions for two-level nonregular designs have been presented by Plackett and Burman (1946), Deng and Tang (2002), Xu and Deng (2005), Fang et al. (2007), and Phoa and Xu (2009), among others. While numerous constructions are available for two-level designs, these designs are not able to provide information on quadratic or higher order factorial effects. Multilevel designs with three or more levels are useful in many scientific and engineering fields, such as drug combination experiments (Ding et al., 2013; Jaynes et al., 2013; Silva et al., 2016; Clemens et al., 2019), because
these designs enable researchers to study complex factorial effects and interactions. They are also flexible in terms of the number of levels for factors, without the strict restriction on Latin hypercube designs (LHDs) that the number of levels has to be the same as the run size. Nevertheless, there are very few constructions for multilevel nonregular designs (Xu et al., 2009), because the large number of such designs makes providing an efficient algorithm for searching the design space extremely challenging. A systematic construction also seems impossible without a unified mathematical description.

This study provides a class of multilevel nonregular designs by manipulating nonlinear-level permutations on regular designs. Although linearlevel permutations have been studied by Cheng and Wu (2001), Xu et al. (2004), and Ye et al. (2007) for three-level designs, and Tang and Xu (2014) have improved the properties of regular designs, nonlinear level permutations have not been studied. Note that linearly permuted regular designs can be still considered as regular because they are just cosets of regular designs and share the same defining relationship. We consider a nonlinearlevel permutation based on the Williams transformation, which was first used by Williams (1949) to construct balanced Latin square designs, and then by Butler (2001) and Wang et al. (2018b) to construct orthogonal or
maximin LHDs. However, our purpose differs from theirs. We provide a class of nonregular designs by manipulating nonlinear-level permutations on regular designs using the Williams transformation, and develop a general theory on the obtained designs. Using this theory, we propose a sequential construction method that efficiently constructs good designs in terms of the minimum β-aberration criterion, which is used to assess multilevel designs. We further explore the space-filling property of the obtained designs and demonstrate their superiority.

The remainder of the paper is organized as follows. Section 2 introduces the minimum β-aberration criterion and generates a class of nonregular designs using the Williams transformation. Section 3 presents our main theoretical results. Based on the theory, in Section 4, we propose a sequential construction method and compare the constructed designs with available designs. In Section 5, we apply the constructed designs. Section 6 concludes the paper. All proofs are deferred to the Appendix.

2. Notation, Background, and Definitions

Let $Z_{q}=\{0, \ldots, q-1\}$. A q-level design $D=\left(x_{i j}\right)$ with N runs and n factors is an $N \times n$ matrix over Z_{q}, where each column corresponds to a factor. Let $p_{0}(x) \equiv 1$ and $p_{j}(x)$, for $j=1, \ldots, q-1$, be an orthonormal
polynomial of order j defined on Z_{q}, satisfying

$$
\sum_{x=0}^{q-1} p_{i}(x) p_{j}(x)= \begin{cases}0, & i \neq j \\ q, & i=j\end{cases}
$$

The set $\left\{p_{0}(x), p_{1}(x), \ldots, p_{q-1}(x)\right\}$ is called an orthonormal polynomial basis.

Multilevel designs are often used to study quantitative factors by fitting response surface models such as polynomial models. A commonly accepted principle for polynomial models is that the effects of a lower polynomial order are more important than those of a higher polynomial order, while the effects of the same polynomial order are regarded as equally important. Based on this principle, Cheng and Ye (2004) proposed the minimum β aberration criterion for selecting multilevel designs. For a q-level design $D=\left(x_{i j}\right)$ with N runs and n factors, define

$$
\begin{equation*}
\beta_{k}(D)=N^{-2} \sum_{\|u\|_{1}=k}\left|\sum_{i=1}^{N} \prod_{j=1}^{n} p_{u_{j}}\left(x_{i j}\right)\right|^{2} \text { for } k=1, \ldots, K \tag{2.1}
\end{equation*}
$$

where $u=\left(u_{1}, \ldots, u_{n}\right) \in Z_{q}^{n},\|u\|_{1}=u_{1}+\cdots+u_{n}$, and $K=n(q-1)$. The vector $\left(\beta_{1}(D), \ldots, \beta_{K}(D)\right)$ is called the β-wordlength pattern of D, and each β_{k} measures the overall aliasing between the j th- and the $(k-j)$ th-order polynomial terms, for all j, with $0 \leq j \leq k$. The minimum β-aberration criterion sequentially minimizes β_{k}, for $k=1,2, \ldots, K$. Because linear
and second-order terms are more important than higher-order terms, the sequential minimization of $\beta_{1}, \ldots, \beta_{4}$ is adequate for choosing designs in practice. Tang and Xu (2014) and Lin et al. (2017) provide statistical justifications and additional insights for minimum β-aberration designs.

The minimum β-aberration criterion is an extension of the minimum G_{2}-aberration criterion (Tang and Deng, 1999) for two-level designs, but differs from the generalized minimum aberration criterion Xu and Wu , 2001) for multi-level designs with qualitative factors.

For $x \in Z_{q}$, the Williams transformation is defined by

$$
W(x)= \begin{cases}2 x, & \text { for } 0 \leq x<q / 2 \tag{2.2}\\ 2(q-x)-1, & \text { for } q / 2 \leq x<q\end{cases}
$$

The Williams transformation is a permutation of Z_{q}. For a design $D=\left(x_{i j}\right)$, let $W(D)=\left(W\left(x_{i j}\right)\right)$. The following example shows that we can get better designs from the Williams transformation.

Example 1. Consider a five-level regular design D with three columns, x_{1}, x_{2}, and $x_{3}=x_{1}+x_{2}(\bmod 5)$. By (2.1), $\beta_{1}(D)=\beta_{2}(D)=0, \beta_{3}(D)=0.125$, and $\beta_{4}(D)=0.525$. For each $b=0, \ldots, 4$, we obtain two designs using linear permutations and the Williams transformation, namely, D_{b} with columns x_{1}, x_{2}, and $x_{3}=x_{1}+x_{2}+b(\bmod 5)$, and $E_{b}=W\left(D_{b}\right)$. It can be verified that all D_{b} and E_{b} have $\beta_{1}=\beta_{2}=0$. Table 1 shows their β_{3} and β_{4}. The

Table 1: The β-wordlength pattern of D_{b} and E_{b} in Example 1 .

b	$\beta_{3}\left(D_{b}\right)$	$\beta_{4}\left(D_{b}\right)$	$\beta_{3}\left(E_{b}\right)$	$\beta_{4}\left(E_{b}\right)$
0	0.125	0.525	0.442	0.004
1	0.125	0.525	0.168	0.021
2	0.125	0.096	0.168	0.021
3	0.000	0.686	0.442	0.004
4	0.125	0.096	0.000	0.027

best design from D_{b} is D_{3} with $\beta_{3}=0$ and $\beta_{4}=0.686$, while the best design from E_{b} is E_{4} with $\beta_{3}=0$ and $\beta_{4}=0.027$. Design E_{4} performs much better than D_{3} under the minimum β-aberration criterion, although both are better than the original design D.

Remark 1. In the computation of β_{k} defined in (2.1), the orthonormal polynomials for a five-level factor are $p_{0}(x)=1, p_{1}(x)=(x-2) / \sqrt{2}$, $p_{2}(x)=\sqrt{10 / 7}\left\{p_{1}(x)^{2}-1\right\}, p_{3}(x)=\left\{10 p_{1}(x)^{3}-17 p_{1}(x)\right\} / 6$, and $p_{4}(x)=$ $\left\{70 p_{1}(x)^{4}-155 p_{1}(x)^{2}+36\right\} / \sqrt{14}$.

Example 1 shows that from a regular design, we can obtain a series of nonregular designs using linear permutations and the Williams transformation. This series provides better designs than those of the original regular design and linearly permuted designs.

In general, for a prime number q, a regular q^{n-m} design D has $n-m$ independent columns, denoted as x_{1}, \ldots, x_{n-m}, and m dependent columns, denoted as x_{n-m+1}, \ldots, x_{n}, which can be specified by m generators as

$$
\begin{equation*}
x_{n-m+i}=c_{i 1} x_{1}+\cdots+c_{i(n-m)} x_{n-m} \quad(\bmod q), \text { for } i=1, \ldots, m, \tag{2.3}
\end{equation*}
$$

where each vector $\left(c_{i 1}, \ldots, c_{i(n-m)}\right)$ is a generator with entries that are constants in Z_{q}. For each regular q^{n-m} design D and $b=\left(b_{1}, \ldots, b_{m}\right) \in Z_{q}^{m}$, let

$$
\begin{equation*}
D_{b}=\left(x_{1}, \ldots, x_{n-m}, x_{n-m+1}+b_{1}, \ldots, x_{n}+b_{m}\right) \quad(\bmod q), \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{b}=W\left(D_{b}\right) \tag{2.5}
\end{equation*}
$$

Note that we only consider permutations for dependent columns in (2.4) because linearly permuting one or more independent columns is equivalent to linearly permuting some dependent columns, which can be seen from (2.3). Throughout the paper, all additions between columns of a design are subject to the modulus q, the number of levels of the design, as in (2.3) and (2.4). We omit the notation $(\bmod q)$ for such operations when no confusion is introduced. From each regular q^{n-m} design D, we can derive q^{m} of D_{b} and q^{m} of E_{b}. To find the best design, one can search over all possible permutations $b \in Z_{q}^{m}$. However, this is cumbersome and even infeasible in
many cases. In the next section, we develop a theory to determine the best E_{b} without employing a computer search.

For $q=3$, the two classes of designs, D_{b} and E_{b}, always have the same β-wordlength patterns because they are geometrically isomorphic (Cheng and Ye, 2004). However, with more than three levels, their performance varies significantly under the minimum β-aberration criterion. Tang and Xu (2014) studied the class of D_{b}. As we have seen in Example 1, the class of E_{b} provides many better designs than those of the class of D_{b}.

3. Theoretical Results

We study the properties of E_{b} in this section. It is well known that a regular design D is an orthogonal array of strength $t \geq 2$. An orthogonal array is a design in which all q^{t} level combinations appear equally often in every submatrix formed by t columns. Note that t is often omitted when it is equal to two. Because the Williams transformation is a permutation of $\{0, \ldots, q-1\}$, if $D=\left(x_{i j}\right)$ is a q-level orthogonal array, then $W(D)=$ $\left(W\left(x_{i j}\right)\right)$ is still an orthogonal array. The following result is from Tang and Xu (2014).

Lemma 1. For an orthogonal array of strength $t, \beta_{k}=0$, for $k=1, \ldots, t$.

From the construction in (2.5), E_{b} is an orthogonal array of the same
strength as D and D_{b}. While we use designs of strength two in practice, Lemma 1 guarantees that $\beta_{1}\left(E_{b}\right)=\beta_{2}\left(E_{b}\right)=0$; as such, linear terms are not aliased with the intercept or with each other. Then, we want to minimize $\beta_{3}\left(E_{b}\right)$ in order to minimize the aliasing between the linear and the secondorder terms. The following theorem gives a theoretical permutation b that ensures $\beta_{3}\left(E_{b}\right)=0$ so that no aliasing exists between any linear terms and second-order terms.

Theorem 1. For an odd prime q, let

$$
\gamma=W^{-1}((q-1) / 2)=\left\{\begin{array}{lll}
(q-1) / 4, & \text { if } q=1 & (\bmod 4) \tag{3.1}\\
(3 q-1) / 4, & \text { if } q=3 & (\bmod 4)
\end{array}\right.
$$

Let D be a regular q^{n-m} design generated by (2.3), and let E_{b} be defined by (2.5). Then, $\beta_{3}\left(E_{b^{*}}\right)=0$, with $b^{*}=\left(b_{1}^{*}, \ldots, b_{m}^{*}\right)$, where

$$
\begin{equation*}
b_{i}^{*}=\left(1-\sum_{j=1}^{n-m} c_{i j}\right) \gamma \quad(i=1, \ldots, m) \tag{3.2}
\end{equation*}
$$

Example 2. Consider a 7^{3-1} design D with $x_{3}=x_{1}+x_{2}$. Then, $\gamma=$ $(3 \times 7-1) / 4=5$, and equation (3.2) gives $b_{1}^{*}=2$. It can be verified that $\beta_{3}\left(E_{2}\right)=0$ and $\beta_{4}\left(E_{2}\right)=0.003$. Consider another 7^{3-1} design D with $x_{3}=2 x_{1}+2 x_{2}$. Then, $\gamma=5$, and equation (3.2) gives $b_{1}^{*}=6$. It can be verified that $\beta_{3}\left(E_{6}\right)=0$ and $\beta_{4}\left(E_{6}\right)=0.0196$.
$E_{b^{*}}$ such that $\beta_{3}\left(E_{b^{*}}\right)=0$. In the following, we give a sufficient condition for the $E_{b^{*}}$ to be the unique design with $\beta_{3}=0$ among all possible $q^{m} E_{b}$.

Definition 1. Let D be a regular q^{n-m} design. If there exist $n-m$ independent columns of $D, z_{1}, \ldots, z_{n-m}$, and a series of $s+1$ sets of columns, $T_{0} \subset \cdots \subset T_{s}$, such that $T_{0}=\left\{z_{1}, \ldots, z_{n-m}\right\}$,
$T_{k+1}=T_{k} \cup\left\{w \in D: w=c_{1} w_{1}+c_{2} w_{2} \quad(\bmod q), w_{1}, w_{2} \in T_{k}, c_{1}, c_{2} \in Z_{q}\right\}$,
for $k=0, \ldots, s-1$, and $T_{s}=D$, then D is called recursive. Furthermore, if either c_{1} or c_{2} is restricted to 1 or -1 in (3.3) for all k, then D is called ordinary-recursive; if both c_{1} and c_{2} are resticted to 1 or -1 in (3.3) for all k, then D is called simple-recursive.

Example 3. Consider the 7^{3-1} design D defined by $x_{3}=2 x_{1}+2 x_{2}$ in Example 2. Clearly, D is recursive. Because $-1=6(\bmod 7)$, we have $2 x_{1}+2 x_{2}+6 x_{3}=0, x_{1}+x_{2}+3 x_{3}=0$, and $x_{2}=-x_{1}+4 x_{3}$. Then, D is also ordinary-recursive if we take $T_{0}=\left\{x_{1}, x_{3}\right\}$ and $T_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}=D$. However, D is not simple-recursive.

Example 4. Consider a 5^{5-2} design D with $x_{4}=x_{1}+x_{2}$ and $x_{5}=$ $x_{1}+x_{2}+x_{3}$. Take $T_{0}=\left\{x_{1}, x_{2}, x_{3}\right\}, T_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and $T_{2}=$ $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}=D$. Then, D is simple-recursive. If $x_{5}=x_{1}+x_{2}+2 x_{3}$
instead, then D is ordinary-recursive, but not simple-recursive. Consider another 5^{5-2} design D with $x_{4}=x_{1}+x_{2}$ and $x_{5}=x_{1}+2 x_{2}+2 x_{3}$. This design is not recursive because x_{5} is not involved in any word of length three. However, when one more column $x_{6}=x_{1}+2 x_{2}$ is added, it is ordinary-recursive.

Regular designs with q^{2} runs are popular because they are economical and they guarantee that linear terms are uncorrelated. These designs accommodate two independent columns and up to $q-1$ dependent columns. By Definition 1, they are all recursive by letting T_{0} include the two independent columns and setting $T_{1}=D$.

Lemma 2. Let q be an odd prime, and let D be a regular design of q^{2} runs. Then, D is recursive.

Clearly, recursive designs include ordinary-recursive designs, which, in turn, include simple-recursive designs. For three-level designs, the three types of designs are equivalent; however, they differ markedly for designs with more than three levels. Table 2 compares the numbers of the three types of designs with 25 and 49 runs. There are far fewer simple-recursive designs than there are other types of designs. Although there is a difference between the numbers of ordinary-recursive and recursive designs, the

Table 2: The numbers of the three types of recursive designs with 25 and 49 runs.

	$25-$-run designs			49-run designs		
n	simple	ordinary recursive	simple	ordinary	recursive	
3	2	6	8	2	10	18
4	6	22	24	6	99	135
5	20	32	32	20	517	540
6	16	16	16	70	1214	1215
7				252	1458	1458
8				267	729	729

difference is small. As the number of columns increases, all designs tend to be ordinary-recursive.

The next theorem gives a sufficient condition for $E_{b^{*}}$ to be the unique design with $\beta_{3}=0$ among all possible $q^{m} E_{b}$.

Theorem 2. For an odd prime q, let D be a regular q^{n-m} design defined by (2.3), and let E_{b} be defined as in 2.5). If D is ordinary-recursive, then $E_{b^{*}}$ with b^{*} defined in (3.2) is the only design with $\beta_{3}=0$ among all $q^{m} E_{b}$ derived from D.

In fact, we can show that if D has no more than 13 levels, the result
of Theorem 2 can be extended beyond ordinary-recursive designs. That is, we have the following more general result for $q \leq 13$.

Theorem 3. For a recursive q^{n-m} design D, if q is an odd prime and $q \leq 13, E_{b^{*}}$ with b^{*} defined in (3.2) is the only design with $\beta_{3}=0$ among all E_{b} derived from D.

Theorem 3 is not true for $q \geq 17$. A counterexample for $q=17$ is provided by a 17^{3-1} design with $x_{3}=2 x_{1}+4 x_{2}$. By (3.2), $b^{*}=14$. Then, E_{14} has $\beta_{3}=0$, while the design E_{4} with columns x_{1}, x_{2}, and $x_{3}+4$ also has zero β_{3}. That said, as the number of columns increases, the number of non-ordinary-recursive regular designs decreases dramatically; thus, Theorem 2 works for most recursive designs with many columns.

Example 5. Consider a 7^{8-6} design D with $x_{3}=x_{1}+x_{2}, x_{4}=x_{1}+$ $2 x_{2}, x_{5}=x_{1}+4 x_{2}, x_{6}=x_{1}+5 x_{2}, x_{7}=2 x_{1}+5 x_{2}$, and $x_{8}=2 x_{1}+6 x_{2}$. There are $7^{6}=117,649 E_{b}$ derived from D, which makes it cumbersome, if not impossible, to do an exhaustive search for the best E_{b}. Note that $x_{7}=x_{1}+x_{6}$, and $x_{8}=x_{3}+x_{6}$. Therefore, D is ordinary-recursive by taking $T_{0}=\left\{x_{1}, x_{2}\right\}, T_{1}=\left\{x_{1}, \ldots, x_{6}\right\}$, and $T_{2}=\left\{x_{1}, \ldots, x_{8}\right\}=D$. Equation (3.2) gives $b_{1}^{*}=2, b_{2}^{*}=4, b_{3}^{*}=1, b_{4}^{*}=3, b_{5}^{*}=5$, and $b_{6}^{*}=0$. It can be verified that $\beta_{3}\left(E_{b^{*}}\right)=0$ and $\beta_{4}\left(E_{b^{*}}\right)=9.677$. By Theorem 2, $E_{b^{*}}$ is the
best design among all E_{b} derived from D under the minimum β-aberration criterion.

By Theorems 2 and 3, for an ordinary-recursive design or a recursive design with no more than 13 levels, $E_{b^{*}}$ is the best design among all E_{b}, which is obtained without a computer search. Theorem 2 does not apply to the class of linearly permuted designs D_{b}. A counterexample follows.

Example 6. Consider the 7^{3-1} design D defined by $x_{3}=2 x_{1}+2 x_{2}$ in Example 2. Example 3 shows that it is ordinary-recursive, but there are three D_{b} with zero β_{3}. Specifically, it is easy to verify that $\beta_{3}\left(D_{b}\right)=0$ for $b=0,3,5$.

In fact, Tang and Xu (2014) showed that if D is simple-recursive, the design $D_{\tilde{b}}$ given by

$$
\begin{equation*}
\tilde{b}_{i}=\left(1-\sum_{j=1}^{n-m} c_{i j}\right)(q-1) / 2 \quad(i=1, \ldots, m) \tag{3.4}
\end{equation*}
$$

is the unique design with $\beta_{3}=0$ among all D_{b}. As we have shown above, only a small number of regular designs are simple-recursive. Therefore, results on simple-recursive designs are usually not applicable for designs with more than three levels. In contrast, Theorem 2 is more general and applies to the broader classes of ordinary-recursive and recursive designs.

Theorem 3 and Lemma 2 indicate the following result.

Corollary 1. For an odd prime $q \leq 13$, let D be a regular design of q^{2} runs. Then, $E_{b^{*}}$ with b^{*} defined as in (3.2) is the unique design with $\beta_{3}=0$ among all E_{b} derived from D.

Now, we show another useful property of $E_{b^{*}}$. A design D over Z_{q} is called mirror-symmetric if $(q-1) J-D$ is the same design as D, where J is a matrix of unity. Mirror-symmetric designs include two-level foldover designs as special cases.

Theorem 4. For an odd prime q, let D be a regular q^{n-m} design defined by (2.3), and let E_{b} be defined as in (2.5). Then, $E_{b^{*}}$ with b^{*} defined in (3.2) is mirror-symmetric.

Tang and Xu (2014) showed that a design is mirror-symmetric if and only if it has $\beta_{k}=0$ for all odd k. By Theorem 4, $E_{b^{*}}$ has $\beta_{k}\left(E_{b^{*}}\right)=0$ for all odd k. This guarantees that odd-order terms are not aliased with any even-order term. Specifically, linear terms are not aliased with any even-order term.

4. Construction Method and Design Comparisons

Based on our theoretical results, we propose a sequential method for constructing multilevel nonregular designs. For simplicity, we focus on designs with q^{2} runs, although the method and results apply to general q^{n-m}
designs. A regular fractional factorial design with q^{2} runs has two independent columns, denoted as x_{1} and x_{2}, and can accommodate up to ($q-1$) dependent columns, each of which is generated by $c_{1} x_{1}+c_{2} x_{2}$, with $c_{1}, c_{2} \in\{1, \ldots, q-1\}$. Then, the first two columns of $E_{b^{*}}$ are $W\left(x_{1}\right)$ and $W\left(x_{2}\right)$, respectively. To obtain $n \geq 3$ columns, we add columns to $E_{b^{*}}$ sequentially by searching over generators $\left(c_{1}, c_{2}\right)$. Each new column is generated by $W\left(c_{1} x_{1}+c_{2} x_{2}+b^{*}\right)$, where $b^{*}=\left(1-c_{1}-c_{2}\right) \gamma$, with γ defined in (3.1) and $\left(c_{1}, c_{2}\right)$ minimizing $\beta_{4}\left(E_{b^{*}}\right)$; that is,

$$
\left(c_{1}, c_{2}\right)=\arg \min _{\left(c_{1}, c_{2}\right)} \beta_{4}\left(E_{b^{*}}\right)
$$

The last three columns of Tables 35 show the generators of the added columns, as well as the β-wordlength patterns of the obtained $E_{b^{*}}$.

To see the merit of $E_{b^{*}}$, we compare it with commonly used regular designs and the class of $D_{\tilde{b}}$. The regular design of Mukerjee and Wu (2006), denoted by D, consists of the first n columns of

$$
\begin{equation*}
x_{1}, x_{2}, x_{1}+x_{2}, x_{1}+2 x_{2}, x_{1}+3 x_{2}, \ldots, x_{1}+(q-1) x_{2} \tag{4.1}
\end{equation*}
$$

The design $D_{\tilde{b}}$ is obtained sequentially similarly to the generation of $E_{b^{*}}$. The only difference is that the added column of $D_{\tilde{b}}$ is $c_{1} x_{1}+c_{2} x_{2}+\tilde{b}$, where $\tilde{b}=\left(1-c_{1}-c_{2}\right)(q-1) / 2$. Tables 35 compare the obtained designs $D, D_{\tilde{b}}$, and $E_{b^{*}}$ with 25 runs, 49 runs, and 121 runs, respectively. We can see that

Table 3: Comparison of β-wordlength patterns for 25 -run designs with five levels.

	D				$D_{\tilde{b}}$			$E_{b^{*}}$		
n	β_{3}	β_{4}	Generators β_{3}	β_{4}	Generators	β_{3}	β_{4}			
3	0.125	0.525	$(1,2)$	0	0.271	$(1,1)$	0	0.027		
4	0.375	1.361	$(2,1)$	0	1.336	$(1,2)$	0	1.037		
5	0.750	3.029	$(1,4)$	0	3.793	$(1,3)$	0	3.768		
6	1.250	6.786	$(1,1)$	0	8.250	$(2,3)$	0	8.250		

$E_{b^{*}}$ always performs best for any design size.
To illustrate the merit of the obtained design $E_{b^{*}}$, we further examine its space-filling property. For an $N \times n$ design, we consider the maximin measure in all projection dimensions, which is given by

$$
M m_{s}=\min _{r=1, \ldots,\binom{n}{s}}\left\{\frac{1}{\binom{N}{2}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{1}{d_{i j, s r}^{2 s}}\right\}^{-1 /(2 s)}, \text { for } s=1, \ldots, n
$$

where $d_{i j, s r}$ is the Euclidean distance between the i th and j th design points in the r th projection of dimension s. Design points are scaled to $[0,1]^{n}$ to apply this measure; that is, the j th column is obtained using $x_{j} /(q-1)$. This measure was proposed in Joseph et al. (2015) to assess the "maximin projection designs." Designs with larger $M m_{s}$ values are more space-filling in s-dimension projections. Figure 1 plots the $M m_{s}$ values of the 121×12

Table 4: Comparison of β-wordlength patterns for 49-run designs with seven levels.

	D		$D_{\tilde{b}}$			$E_{b^{*}}$		
n	β_{3}	β_{4}	Generators	β_{3}	β_{4}	Generators	β_{3}	β_{4}
3	0.063	0.563	$(2,3)$	0	0.063	$(1,1)$	0	0.003
4	0.188	1.354	$(1,4)$	0	0.313	$(3,5)$	0	0.055
5	0.375	2.440	$(2,5)$	0	1.135	$(3,6)$	0	0.836
6	0.625	4.313	$(1,2)$	0	3.094	$(2,5)$	0	2.368
7	0.938	7.401	$(2,2)$	0	6.438	$(2,6)$	0	4.928
8	1.312	12.78	$(2,6)$	0	11.23	$(2,3)$	0	9.677

designs in Table 5 for $s=1, \ldots, 12$. We also generate a 121×12 maximumprojection LHD from the R package MaxPro (Joseph et al., 2015), and include its $M m_{s}$ values in Figure 1. The design is claimed to be space-filling in all projected dimensions, so can serve as a benchmark in the comparison. Because this design has 121 levels, we further collapse it to an 11-level design and include the $M m_{s}$ values of the collapsed design in Figure 1. To obtain a good maximum-projection design, the R package MaxPro is run 100 times and the best design is selected. It takes, on average, seven seconds to get a maximum-projection design. Therefore, to run the package 100 times takes

Table 5: Comparison of β-wordlength patterns for 121 -run designs with 11 levels.

	D		$D_{\tilde{b}}$			$E_{b^{*}}$		
n	β_{3}	β_{4}	Generators		β_{4}	Generators	β_{3}	β_{4}
3	0.025	0.585	$(2,4)$	0	0.010	$(1,1)$	0	0.0002
4	0.075	1.388	$(4,2)$	0	0.055	$(2,4)$	0	0.005
5	0.150	2.350	$(5,3)$	0	0.281	$(4,2)$	0	0.015
6	0.250	3.629	$(3,5)$	0	0.710	$(2,9)$	0	0.031
7	0.375	5.274	$(4,7)$	0	1.466	$(2,8)$	0	0.637
8	0.525	7.682	$(1,3)$	0	3.152	$(5,3)$	0	1.308
9	0.700	11.07	$(2,8)$	0	5.519	$(4,10)$	0	3.572
10	0.900	15.82	$(3,3)$	0	8.891	$(1,7)$	0	5.864
11	1.125	22.26	$(1,7)$	0	13.49	$(5,1)$	0	9.896
12	1.375	31.29	$(4,10)$	0	19.65	$(5,4)$	0	14.44

Figure 1: Plot of $M m_{s}$ (the larger the better) against s for five designs: D (circle), $D_{\tilde{b}}$ (cross), $E_{b^{*}}$ (square), the maximum-projection design (triangle), and the collapsed maximum-projection design (plus).

about 12 minutes, whereas it takes less than a second to obtain any of the other designs in the plot. Even so, Figure 1 shows that $E_{b^{*}}$ outperforms the selected maximum-projection design and its collapsed design for all $s \leq 11$ projection dimensions, although the collapsed design is marginally better than $E_{b^{*}}$ for the full dimension $s=12$. In addition, $E_{b^{*}}$ outperforms all other designs in Figure 1 on projection dimension $s=2, \ldots, 10$, and is only slightly worse than $D_{\tilde{b}}$ when $s=11$. The good performance of $E_{b^{*}}$ comes from its zero β_{3} and smaller β_{4} values.

We also compare designs of other sizes in Table 5, finding similar per-
formance. This is because the designs in Table 5 are obtained sequentially, such that those with fewer than 12 columns are actually projections of the 121×12 designs. Therefore, Figure 1 also reflects the projection properties of designs with fewer columns. Similar results hold for 25 -run and 49 -run designs.

5. Applications

Consider applying the three 25 -run designs with three columns and five levels in Table 3 to the following normalized second-order polynomial model:

$$
\begin{equation*}
y=\alpha_{0}+\sum_{j=1}^{3} p_{1}\left(x_{j}\right) \alpha_{j}+\sum_{j=1}^{3} p_{2}\left(x_{j}\right) \alpha_{j j}+\sum_{j=1}^{2} \sum_{k=j+1}^{3} p_{1}\left(x_{j}\right) p_{1}\left(x_{k}\right) \alpha_{j k}+\varepsilon \tag{5.1}
\end{equation*}
$$

where $p_{1}(x)=\sqrt{2}(x-2) / 2 ; p_{2}(x)=\sqrt{5 / 14}\left\{(x-2)^{2}-2\right\} ; \alpha_{0}, \alpha_{j}, \alpha_{j j}$, and $\alpha_{j k}$ are the intercept, linear, quadratic, and bilinear terms, respectively; and $\varepsilon \sim N\left(0, \sigma^{2}\right)$. Using this normalized model instead of a model with natural terms (i.e., terms x_{j}, x_{j}^{2}, and $x_{j} x_{k}$) produces orthogonality between any two linear terms and between the linear and quadratic terms of an orthogonal array. For the regular design D, because $\beta_{3}(D) \neq 0$, the linear terms are aliased or correlated with the bilinear terms, and the model in (5.1) is indeed not estimable. Whereas both $D_{\tilde{b}}$ and $E_{b^{*}}$ have $\beta_{1}=\beta_{2}=\beta_{3}=0$, the intercept and linear terms are not correlated with the quadratic and bilinear terms, and so they can be estimated independently. For either design, let
M denote the model matrix corresponding to the three quadratic and three bilinear terms: $\alpha_{11}, \alpha_{22}, \alpha_{33}, \alpha_{12}, \alpha_{13}$, and α_{23}. The variance-covariance matrix of the estimates of the parameters for these terms is $\sigma^{2}\left(M^{\mathrm{T}} M\right)^{-1}$. For $D_{\tilde{b}}$, the variances of the estimates for the quadratic terms, α_{11}, α_{22}, and α_{33}, are $0.047 \sigma^{2}, 0.041 \sigma^{2}$, and $0.047 \sigma^{2}$, respectively, and for the bilinear terms, α_{12}, α_{13}, and α_{23}, are $0.051 \sigma^{2}, 0.050 \sigma^{2}$, and $0.051 \sigma^{2}$, respectively. For $E_{b^{*}}$, the variance of the estimate for each quadratic term is $0.040 \sigma^{2}$, and that for each bilinear term is $0.041 \sigma^{2}$. With $E_{b^{*}}$, the variance of the quadratic terms decreases by up to 14.9%, and the variance of the bilinear terms decreases by up to 19.6%. It can be verified that the correlations between the estimates are also smaller for $E_{b^{*}}$ than they are for $D_{\tilde{b}}$.

Furthermore, consider the bias brought about by the inadequacy of the polynomial terms in model (5.1). Suppose we have the following nonnegligible third-order polynomial terms:

$$
\sum_{i+j+k=3} \alpha_{i j k} p_{i}\left(x_{1}\right) p_{j}\left(x_{2}\right) p_{k}\left(x_{3}\right) .
$$

Then, the estimates of the linear parameters in model (5.1) are biased by these third-order terms. Specifically, for the estimators from the design $D_{\tilde{b}}$,
we have

$$
\begin{aligned}
& E\left(\hat{\alpha}_{1}\right)=\alpha_{1}-.12 \alpha_{021}-.36 \alpha_{012}+.3 \alpha_{111} \\
& E\left(\hat{\alpha}_{2}\right)=\alpha_{2}+.36 \alpha_{201}-.36 \alpha_{102}-.1 \alpha_{111} \\
& E\left(\hat{\alpha}_{3}\right)=\alpha_{3}+.36 \alpha_{210}-.12 \alpha_{120}-.3 \alpha_{111}
\end{aligned}
$$

and for the estimators from the design $E_{b^{*}}$, we have

$$
\begin{aligned}
& E\left(\hat{\alpha}_{1}\right)=\alpha_{1}+.096 \alpha_{021}-.096 \alpha_{012}+.08 \alpha_{111} \\
& E\left(\hat{\alpha}_{2}\right)=\alpha_{2}+.096 \alpha_{201}-.096 \alpha_{102}+.08 \alpha_{111} \\
& E\left(\hat{\alpha}_{3}\right)=\alpha_{3}+.096 \alpha_{210}+.096 \alpha_{120}-.08 \alpha_{111} .
\end{aligned}
$$

Obviously, the design $E_{b^{*}}$ brings less bias to the estimators of the linear terms than does $D_{\tilde{b}}$. Because $\beta_{5}=0$ for both designs, the estimates of the second-order terms from $D_{\tilde{b}}$ and $E_{b^{*}}$ are not biased by third-order terms. In summary, $E_{b^{*}}$ is better than $D_{\tilde{b}}$ and D_{b} for screening or studying quantitative factors. The results are general and apply to other designs in Tables 3-5.

6. Conclusion

We provide a new class of nonregular designs based on the Williams transformation, and develop a theory on the property of the obtained designs.

Using this theory, we further propose a sequential method for constructing nonregular designs with a minimum β-aberration. The sequential method is fast and efficient in terms of generating multilevel nonregular designs using large numbers of runs and factors. Although two-level nonregular designs have been catalogued by some researchers, few works have examined the construction of multilevel nonregular designs. The approach presented here is a pioneering work in this field. The obtained designs provide more accurate estimations on factorial effects and are more efficient than regular designs for screening quantitative factors.

The obtained designs can be used to generate orthogonal LHDs, which are common in computer experiments. Orthogonal LHDs have $\beta_{1}=\beta_{2}=0$, thus guaranteeing the orthogonality between the linear effects. A popular construction, proposed by Steinberg and Lin (2006) and Pang et al. (2009), rotates a regular design to obtain an LHD that inherits the orthogonality from both the rotation matrix and the regular design. Wang et al. (2018a) improved the method by rotating a linearly permuted regular design, that is, $D_{\tilde{b}}$, with \tilde{b} defined in (3.4). The orthogonal LHDs generated in this way have $\beta_{3}=0$, and thus guarantee that nonnegligible quadratic and bilinear effects do not contaminate the estimation of the linear effects. Based on the results presented here, we can rotate the class of designs $E_{b^{*}}$ to obtain new
orthogonal LHDs that have smaller β_{4} values and inherit the good spacefilling property of $E_{b^{*}}$. These LHDs may be good options for designing computer experiments and Gaussian processing modeling.

The Williams transformation is pairwise linear, which is probably the simplest nonlinear transformation. Nevertheless, it leads to some remarkable results, such as Theorems 2 and 4. It would be of interest to identify and characterize other nonlinear transformations that have similar properties. In addition, the proposed method requires that the number of levels of the regular designs are prime numbers, and does not work for, say, fourlevel designs. Therefore, it would also be interesting to extend the method to include nonprime numbers of levels.

Acknowledgments

The authors thank the two reviewers for their helpful comments and suggestions.

Appendix: Proofs of Theorems

We need the following lemmas for the proofs.

Lemma A.1. The D_{b} is the same design as $D_{e}+\gamma(\bmod q)$, where $e=$ $b-b^{*}, \gamma$ is defined as (3.1), and b^{*} is defined as (3.2).

Proof. For D_{b}, permuting all columns x_{j} to $x_{j}-\gamma$ for $j=1, \ldots, n$ is equivalent to keeping the independent columns unchanged while permuting the dependent columns $x_{n-m+i}+b_{i}$ to $x_{n-m+i}+b_{i}-b_{i}^{*}$ for $i=1, \ldots, m$. Hence, $D_{b}-\gamma$ is the same design as D_{e} with $e=b-b^{*}$. Equivalently, D_{b} is the same design as $D_{e}+\gamma(\bmod q)$.

Lemma A.2. If x is a real number which is not an integer, then

$$
\sum_{n=-\infty}^{\infty} \frac{(-1)^{n-1}}{(n+x)^{2}}=\frac{\pi^{2} \cos \pi x}{(\sin \pi x)^{2}}
$$

Proof. It is known that $\sum_{n=-\infty}^{\infty} 1 /(n+x)^{2}=\pi^{2} /(\sin \pi x)^{2}$. Then

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} \frac{(-1)^{n-1}}{(n+x)^{2}} & =\sum_{n=-\infty}^{\infty} \frac{1}{(n+x)^{2}}-2 \sum_{\text {even } n} \frac{1}{(n+x)^{2}} \\
& =\frac{\pi^{2}}{(\sin \pi x)^{2}}-\frac{1}{2} \frac{\pi^{2}}{(\sin (\pi x / 2))^{2}} \\
& =\frac{\pi^{2} \cos \pi x}{(\sin \pi x)^{2}}
\end{aligned}
$$

Lemma A.3. Let $p_{1}(x)=\rho[x-(q-1) / 2]$ be the linear orthogonal polynomial, where $\rho=\sqrt{12 /[(q+1)(q-1)]}$. Then for $x=0, \ldots, q-1$,

$$
p_{1}(x)=-\frac{\rho}{2 q} \sum_{v=0}^{q-1} g(v) \cos \left\{\frac{(2 v+1) \pi(x+0.5)}{q}\right\}
$$

where

$$
\begin{equation*}
g(v)=\frac{\cos (\pi(v+0.5) / q)}{\{\sin (\pi(v+0.5) / q)\}^{2}} \tag{A.1}
\end{equation*}
$$

Proof. For $x \in(0, q)$, the Fourier-cosine expansion of $x-q / 2$ is given by

$$
x-\frac{q}{2}=\sum_{v=1}^{\infty} a_{v} \cos \left(\frac{v \pi x}{q}\right)
$$

with

$$
a_{v}=\frac{2}{q} \int_{0}^{q}\left(x-\frac{q}{2}\right) \cos \left(\frac{v \pi x}{q}\right) d x= \begin{cases}0, & \text { if } v \text { is even } \\ -4 q /\left(v^{2} \pi^{2}\right), & \text { if } v \text { is odd }\end{cases}
$$

Then

$$
\begin{aligned}
p_{1}(x) & =-\frac{4 \rho q}{\pi^{2}} \sum_{\text {odd } v>0} \frac{1}{v^{2}} \cos \left(\frac{v \pi(x+0.5)}{q}\right) \\
& =-\frac{2 \rho q}{\pi^{2}} \sum_{v=-\infty}^{\infty} \frac{1}{(2 v+1)^{2}} \cos \left\{\frac{(2 v+1) \pi(x+0.5)}{q}\right\} \\
& =-\frac{2 \rho q}{\pi^{2}} \sum_{k=-\infty}^{\infty} \sum_{v=0}^{q-1} \frac{1}{(2 k q+2 v+1)^{2}} \cos \left\{\frac{(2 k q+2 v+1) \pi(x+0.5)}{q}\right\} .
\end{aligned}
$$

Since for any integers k and x,

$$
\cos \left\{\frac{(2 k q+2 v+1) \pi(x+0.5)}{q}\right\}=(-1)^{k} \cos \left\{\frac{(2 v+1) \pi(x+0.5)}{q}\right\}
$$

we have

$$
p_{1}(x)=-\frac{2 \rho q}{\pi^{2}} \sum_{v=0}^{q-1} \sum_{k=-\infty}^{\infty} \frac{(-1)^{k}}{(2 k q+2 v+1)^{2}} \cos \left\{\frac{(2 v+1) \pi(x+0.5)}{q}\right\}
$$

By Lemma A. 2 and A.1), we have

$$
p_{1}(x)=-\frac{\rho}{2 q} \sum_{v=0}^{q-1} g(v) \cos \left\{\frac{(2 v+1) \pi(x+0.5)}{q}\right\} .
$$

Proof of Theorem 1. Denote $e=b-b^{*}$ and $D_{e}=\left(y_{i j}\right)$. By Lemma A.1, D_{b} is the same design as $\left(D_{e}+\gamma\right)(\bmod q)$, so $E_{b}=W\left(D_{b}\right)=W\left(D_{e}+\gamma\right)$. By Lemma A.3,

$$
\begin{aligned}
p_{1}(W(x)) & =-\frac{\rho}{2 q} \sum_{v=0}^{q-1} g(v) \cos \left\{\frac{(2 v+1) \pi(W(x)+0.5)}{q}\right\} \\
& =-\frac{\rho}{2 q} \sum_{v=0}^{q-1} g(v) \cos \left\{\frac{(2 v+1) \pi(2 x+0.5)}{q}\right\}
\end{aligned}
$$

because $\cos \{(2 v+1) \pi(W(x)+0.5) / q\}=\cos \{(2 v+1) \pi(2 x+0.5) / q\}$ for any integer v. Then we have

$$
\begin{align*}
\beta_{3}\left(E_{b}\right) & =\beta_{3}\left(W\left(D_{e}+\gamma\right)\right) \\
& =N^{-2} \sum_{y_{1}, y_{2}, y_{3}}\left|\sum_{i=1}^{N} p_{1}\left(W\left(y_{i 1}+\gamma\right)\right) p_{1}\left(W\left(y_{i 2}+\gamma\right)\right) p_{1}\left(W\left(y_{i 3}+\gamma\right)\right)\right|^{2} \\
& =N^{-2}\left(\frac{\rho}{2 q}\right)^{6} \sum_{y_{1}, y_{2}, y_{3}}\left|\sum_{v_{1}=0}^{q-1} \sum_{v_{2}=0}^{q-1} \sum_{v_{3}=0}^{q-1} g\left(v_{1}\right) g\left(v_{2}\right) g\left(v_{3}\right) S(y, v)\right|^{2}, \text { (A.2) } \tag{A.2}
\end{align*}
$$

where $\sum_{y_{1}, y_{2}, y_{3}}$ sums over all three different columns y_{1}, y_{2}, y_{3} in $D_{e}, y_{j}=$ $\left(y_{1 j}, \ldots, y_{N j}\right)$ for $j=1,2,3$, and

$$
\begin{aligned}
S(y, v) & =\sum_{i=1}^{N} \prod_{j=1}^{3} \cos \left\{\frac{\left(2 v_{j}+1\right) \pi\left(2 y_{i j}+2 \gamma+0.5\right)}{q}\right\} \\
& =\sum_{i=1}^{N} \prod_{j=1}^{3}(-1)^{(q+1) / 2+v_{j}} \sin \left\{\frac{2\left(2 v_{j}+1\right) \pi y_{i j}}{q}\right\} \\
& =(-1)^{(q+1) / 2+v_{1}+v_{2}+v_{3}} \sum_{i=1}^{N} \prod_{j=1}^{3} \sin \left\{\frac{2\left(2 v_{j}+1\right) \pi y_{i j}}{q}\right\}
\end{aligned}
$$

If $b=b^{*}, e=0$ and $D_{e}=D$. Because D is a regular design, it is a linear space over Z_{q}. Thus, $\left(q-y_{i 1}, \ldots, q-y_{i n}\right) \in D$ whenever $\left(y_{i 1}, \ldots, y_{i n}\right) \in D$.

Then $S(y, v)=0$ for any $y=\left(y_{1}, y_{2}, y_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$. By A.2), $\beta_{3}\left(E_{b^{*}}\right)=0$.

Proof of Theorem 2. Following the proof of Theorem 1, if $b \neq b^{*}$, then $e=b-b^{*}$ has nonzero components. Since D is ordinary-recursive, there exist three columns, say z_{1}, z_{2}, z_{3}, in D such that $z_{3}=c_{1} z_{1}+c_{2} z_{2}, c_{1}=1$ or $-1, c_{2} \in Z_{q}$, and z_{1}, z_{2} and $z_{3}+e_{0}$ are three columns in D_{e}, where e_{0} is a nonzero component of e. We only consider $c_{1}=1$ below as the proof for $c_{1}=-1$ is similar. Let d be the design formed by z_{1}, z_{2}, and $z_{3}+e_{0}$. By A.2), we only need to show that $\beta_{3}(W(d)) \neq 0$. Note that
$\beta_{3}(W(d))=N^{-2}\left(\frac{\rho}{2 q}\right)^{6}\left|\sum_{v_{1}=0}^{q-1} \sum_{v_{2}=0}^{q-1} \sum_{v_{3}=0}^{q-1}(-1)^{v_{1}+v_{2}+v_{3}} g\left(v_{1}\right) g\left(v_{2}\right) g\left(v_{3}\right) S(z, v)\right|^{2}$,
where $g(v)$ is defined in A.1, and
$S(z, v)=\sum_{i=1}^{N} \sin \left(\frac{2\left(2 v_{1}+1\right) \pi z_{i 1}}{q}\right) \sin \left(\frac{2\left(2 v_{2}+1\right) \pi z_{i 2}}{q}\right) \sin \left(\frac{2\left(2 v_{3}+1\right) \pi\left(z_{i 3}+e_{0}\right)}{q}\right)$.

By applying the product-to-sum identities twice, we have

$$
\begin{align*}
S(z, v) & =\frac{1}{4}\left\{\sum_{i=1}^{N} \sin \left(\frac{2 \pi\left(t_{1} z_{i 1}-t_{4} z_{i 2}+\left(2 v_{3}+1\right) e_{0}\right)}{q}\right)\right. \\
& +\sum_{i=1}^{N} \sin \left(\frac{2 \pi\left(t_{2} z_{i 1}+t_{4} z_{i 2}-\left(2 v_{3}+1\right) e_{0}\right)}{q}\right) \\
& -\sum_{i=1}^{N} \sin \left(\frac{2 \pi\left(t_{1} z_{i 1}+t_{3} z_{i 2}+\left(2 v_{3}+1\right) e_{0}\right)}{q}\right) \\
& \left.-\sum_{i=1}^{N} \sin \left(\frac{2 \pi\left(t_{2} z_{i 1}-t_{3} z_{i 2}-\left(2 v_{3}+1\right) e_{0}\right)}{q}\right)\right\} \tag{A.4}
\end{align*}
$$

where $t_{1}=2\left(v_{1}+v_{3}\right)+2, t_{2}=2\left(v_{1}-v_{3}\right), t_{3}=2\left(v_{2}+v_{3} c_{2}\right)+c_{2}+1$, and $t_{4}=2\left(v_{2}-v_{3} c_{2}\right)-c_{2}+1$. Let

$$
\begin{equation*}
v_{10}=q-1-v_{3} \text { and } v_{20}=v_{3} c_{2}+\left(c_{2}-1\right)(q+1) / 2 \quad(\bmod q) \tag{A.5}
\end{equation*}
$$

When $v_{1}=v_{10}$ and $v_{2}=v_{20}, t_{1}=t_{4}=0(\bmod q)$ and the first item in the right hand side of A.4), $\sum_{i=1}^{N} \sin \left(2 \pi\left(t_{1} z_{i 1}-t_{4} z_{i 2}+\left(2 v_{3}+1\right) e_{0}\right) / q\right)$, equals $N \sin \left(2 \pi\left(2 v_{3}+1\right) e_{0} / q\right)$. When $v_{1} \neq v_{10}$ or $v_{2} \neq v_{20}$, the item is zero. By similar analysis to other items in A.4, we have

$$
S(z, v)= \begin{cases}\frac{N}{4} \sin \left\{\frac{2 \pi\left(2 v_{3}+1\right) e_{0}}{q}\right\}, & \text { if }\left(v_{1}, v_{2}\right)=\left(v_{10}, v_{20}\right) \text { or }\left(q-1-v_{10}, q-1-v_{20}\right) ; \\ -\frac{N}{4} \sin \left\{\frac{2 \pi\left(2 v_{3}+1\right) e_{0}}{q}\right\}, & \text { if }\left(v_{1}, v_{2}\right)=\left(v_{10}, q-1-v_{20}\right) \text { or }\left(q-1-v_{10}, v_{20}\right) ; \\ 0, & \text { otherwise. }\end{cases}
$$

Note that $g(q-1-v)=-g(v)$ for any v. Then by A.3,

$$
\begin{equation*}
\beta_{3}(W(d))=\left(\frac{\rho}{2 q}\right)^{6}\left|\sum_{v_{3}=0}^{q-1}(-1)^{v_{3} c_{2}} g\left(v_{20}\right)\left(g\left(v_{3}\right)\right)^{2} \sin \left\{\frac{2 \pi\left(2 v_{3}+1\right) e_{0}}{q}\right\}\right|^{2} \tag{A.6}
\end{equation*}
$$

where v_{20} is defined in A.5). Applying $g(q-1-v)=-g(v)$ again, we can simply A.6) as

$$
\begin{equation*}
\beta_{3}(W(d))=\frac{\rho^{6}}{16 q^{6}}\left|\sum_{v_{3}=0}^{(q-1) / 2}(-1)^{v_{3} c_{2}} g\left(v_{20}\right)\left(g\left(v_{3}\right)\right)^{2} \sin \left\{\frac{2 \pi\left(2 v_{3}+1\right) e_{0}}{q}\right\}\right|^{2} \tag{A.7}
\end{equation*}
$$

By considering the Taylor expansion of $g(v)$, we can see that the sum in A.7) is dominated by the first two items with $v_{3}=0$ and $v_{3}=1$. It can be verified that A.7 is nonzero for $e_{0}=1, \ldots, q-1$. This completes the proof.

Proof of Theorem 3. Following the same process as in the proof of Theorem 2, if D is recursive, then for the three columns z_{1}, z_{2}, and z_{3} in $D, z_{3}=c_{1} z_{1}+$ $c_{2} z_{2}$, where both c_{1} and c_{2} can be any value in Z_{q}. Then we can get A.4) with t_{1} and t_{2} replaced by $t_{1}^{\prime}=2\left(v_{1}+v_{3} c_{1}\right)+1+c_{1}$ and $t_{2}^{\prime}=2\left(v_{1}-v_{3}\right)+1-c_{1}$, which will in turn result in a change of v_{10} in A.5 to

$$
v_{10}^{\prime}= \begin{cases}(q-1) / 2-c_{1} / 2-v_{3} c_{1} \quad(\bmod q), & \text { if } c_{1} \text { is an even number } ; \\ q-\left(c_{1}+1\right) / 2-v_{3} c_{1} \quad(\bmod q), & \text { if } c_{1} \text { is an odd number }\end{cases}
$$

Similar to A.7), we have

$$
\begin{equation*}
\beta_{3}(W(d))=\frac{\rho^{6}}{16 q^{6}}\left|\sum_{v_{3}=0}^{(q-1) / 2}(-1)^{v_{3} c_{2}} g\left(v_{10}^{\prime}\right) g\left(v_{20}\right)\left(g\left(v_{3}\right)\right) \sin \left\{\frac{2 \pi\left(2 v_{3}+1\right) e_{0}}{q}\right\}\right|^{2} \tag{A.8}
\end{equation*}
$$

It can be verified that, for $q \leq 13,\left(\mathrm{~A} .8\right.$ is nonzero for $e_{0}=1, \ldots, q-1$ for any $c_{1}, c_{2} \in Z_{q}$. This completes the proof.

Proof of Theorem \& We need to show that for any run $W\left(x_{1}, \ldots, x_{n}\right)$ in $E_{b^{*}},(q-1)-W\left(x_{1}, \ldots, x_{n}\right)$ also belongs to $E_{b^{*}}$. This is equivalent to show that for each run $\left(x_{1}, \ldots, x_{n}\right)$ in $D_{b^{*}}, W^{-1}\left(q-1-W\left(x_{1}, \ldots, x_{n}\right)\right)$ also belongs to $D_{b^{*}}$. Since the design D contains the zero point $(0, \ldots, 0)$, by Lemma A.1, $D_{b^{*}}$ contains the point (γ, \ldots, γ). Because all design points of D form a linear space and D_{b} is a coset of D, then $\gamma-\left(x_{1}, \ldots, x_{n}\right)$ belongs to the null space of $D_{b^{*}}$. Hence, $\gamma-\left(x_{1}, \ldots, x_{n}\right)+\gamma=2 \gamma-\left(x_{1}, \ldots, x_{n}\right)$ belongs to $D_{b^{*}}$. For $x=0, \ldots, q-1$,

$$
W^{-1}(x)= \begin{cases}x / 2, & \text { for even } x \\ q-(x+1) / 2, & \text { for odd } x\end{cases}
$$

and

$$
\begin{aligned}
W^{-1}(q-1-x) & = \begin{cases}(q-1) / 2-W^{-1}(x), & \text { for even } x \\
(3 q-1) / 2-W^{-1}(x), & \text { for odd } x\end{cases} \\
& =2 \gamma-W^{-1}(x)
\end{aligned}
$$

Then $W^{-1}\left(q-1-W\left(x_{1}, \ldots, x_{n}\right)\right)=2 \gamma-\left(x_{1}, \ldots, x_{n}\right)$. Hence, $W^{-1}(q-1-$ $\left.W\left(x_{1}, \ldots, x_{n}\right)\right)$ belongs to $D_{b^{*}}$. This completes the proof.

References

Butler, N. A. (2001), "Optimal and orthogonal Latin hypercube designs for computer experiments," Biometrika, 88, 847-857.

Cheng, S.-W. and Wu, C. F. J. (2001), "Factor screening and response surface exploration," Statistica Sinica, 11, 553-580.

Cheng, S.-W. and Ye, K. Q. (2004), "Geometric isomorphism and minimum aberration for factorial designs with quantitative factors," The Annals of Statistics, 32, 2168-2185.

Clemens, D. L., Lee, B.-Y., Silva, A., Dillon, B. J., Maslesa-Galic, S., Nava, S., Ding, X., Ho, C.-M., and Horwitz, M. A. (2019), "Artificial intelligence enabled parabolic response surface platform identifies ultra-rapid near-universal TB drug treatment regimens comprising approved drugs," PloS one, 14, e0215607.

Deng, L. Y. and Tang, B. (2002), "Design selection and classification for Hadamard matrices using generalized minimum aberration criteria," Technometrics, 44, 173-184.

Ding, X., Xu, H., Hopper, C., Yang, J., and Ho, C.-M. (2013), "Use of fractional factorial designs in antiviral drug studies," Quality and Reliability Engineering International, 29, 299-304.

Fang, K.-T., Zhang, A., and Li, R. (2007), "An effective algorithm for generation of factorial designs with generalized minimum aberration," Journal of complexity, 23, 740-751.

Jaynes, J., Ding, X., Xu, H., Wong, W. K., and Ho, C.-M. (2013), "Application of fractional
factorial designs to study drug combinations," Statistics in Medicine, 32, 307-318.

Joseph, V. R., Gul, E., and Ba, S. (2015), "Maximum projection designs for computer experiments," Biometrika, 102, 371-380.

Lin, C.-Y., Yang, P., and Cheng, S.-W. (2017), "Minimum Contamination and β-Aberration Criteria for Screening Quantitative Factors," Statistica Sinica, 27, 607-623.

Mukerjee, R. and Wu, C. F. J. (2006), A Modern Theory of Factorial Design, Springer.

Pang, F., Liu, M.-Q., and Lin, D. K. J. (2009), "A construction method for orthogonal Latin hypercube designs with prime power levels," Statistica Sinica, 19, 1721-1728.

Phoa, F. K. H. and Xu, H. (2009), "Quarter-fraction factorial designs constructed via quaternary codes," The Annals of Statistics, 37, 2561-2581.

Plackett, R. L. and Burman, J. P. (1946), "The design of optimum multifactorial experiments," Biometrika, 33, 305-325.

Silva, A., Lee, B.-Y., Clemens, D. L., Kee, T., Ding, X., Ho, C.-M., and Horwitz, M. A. (2016), "Output-driven feedback system control platform optimizes combinatorial therapy of tuberculosis using a macrophage cell culture model," Proceedings of the National Academy of Sciences, 113, E2172-E2179.

Steinberg, D. M. and Lin, D. K. J. (2006), "A construction method for orthogonal Latin hypercube designs," Biometrika, 93, 279-288.

Tang, B. and Deng, L. Y. (1999), "Minimum G_{2}-aberration for nonregular fractional factorial
designs," The Annals of Statistics, 27, 1914-1926.

Tang, Y. and Xu, H. (2014), "Permuting regular fractional factorial designs for screening quantitative factors," Biometrika, 101, 333-350.

Wang, L., Sun, F., Lin, D. K. J., and Liu, M.-Q. (2018a), "Construction of orthogonal symmetric Latin hypercube designs," Statistica Sinica, 28, 1503-1520.

Wang, L., Xiao, Q., and Xu, H. (2018b), "Optimal maximin L_{1}-distance Latin hypercube designs based on good lattice point designs," The Annals of Statistics, 46, 3741-3766.

Williams, E. J. (1949), "Experimental designs balanced for the estimation of residual effects of treatments," Australian Journal of Scientific Research, 2, 149-168.

Xu, H., Cheng, S.-W., and Wu, C. F. J. (2004), "Optimal projective three-level designs for factor screening and interaction detection," Technometrics, 46, 280-292.

Xu, H. and Deng, L. Y. (2005), "Moment aberration projection for nonregular fractional factorial designs," Technometrics, 47, 121-131.

Xu, H., Phoa, F. K. H., and Wong, W. K. (2009), "Recent developments in nonregular fractional factorial designs," Statistics Surveys, 3, 18-46.

Xu, H. and Wu, C. F. J. (2001), "Generalized minimum aberration for asymmetrical fractional factorial designs," The Annals of Statistics, 29, 1066-1077.

Ye, K. Q., Tsai, K.-J., and Li, W. (2007), "Optimal orthogonal three-level factorial designs for factor screening and response surface exploration," in mODa 8-Advances in Model-Oriented

REFERENCES

Design and Analysis, Springer, pp. 221-228.

Department of Statistics, The George Washington University, Washington DC 20052, USA.

E-mail: linwang@gwu.edu

Department of Statistics, University of California, Los Angeles, California 90095, USA.

E-mail: hqxu@stat.ucla.edu

