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Abstract: Statistical learning is evolving quickly, with increasingly sophisticated

models seeking to incorporate the complicated data structures from modern sci-

entific and business problems. Varying-index coefficient models extend varying-

coefficient models and single-index models for semiparametric regressions. This

new class of model offers greater flexibility in terms of characterizing compli-

cated nonlinear interaction effects in a regression analysis. To safeguard against

outliers and extreme observations, we consider a robust quantile regression ap-

proach to estimate the model parameters. High-dimensional loading parameters

are allowed in our development, under reasonable theoretical conditions. Thus,

we propose a regularized estimation procedure to select the significant nonzero

loading parameters, identify linear functions in varying-index coefficient models,

and consistently estimate the parametric and nonparametric components. Under

some technical assumptions, we show that the proposed procedure is consistent
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in terms of variable selection and linear function identification, and that the

proposed parameter estimation enjoys the oracle property. Extensive simulation

studies are carried out to assess the finite-sample performance of the proposed

method. We illustrate our methods using an example based on New Zealand

workforce data.

Key words and phrases: High-dimensional data, Penalty, Quantile regression,

Semiparametric regression, Varying index coefficient model.

1. Introduction

Semiparametric regression models are powerful statistical learning ap-

proaches that are popular in scientific and business research studies be-

cause they enjoy the merits of both parametric and nonparametric mod-

els. We consider the varying-index coefficient model (VICM) proposed by

Ma and Song (2015). This new class of model extends varying-coefficient

models (Fan and Zhang (1999)), single-index models (Xia et al. (2002)),

single-index coefficient models (Xue and Wang (2012)), and almost all other

familiar semiparametric models. To safeguard against outliers and extreme

observations, we consider a robust quantile regression (QR) approach to fit

the VICM. Specifically, for a given quantile level τ ∈ (0, 1), varying-index

coefficient QR models are given by

Qτ (Y |X,Z) =
d∑

l=1

mτ,l(Z
Tβτ,l)Xl, (1.1)
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where X = (X1, ..., Xd)
T , X1 ≡ 1, Z = (Z1, ..., Zp)

T are covariates for the

response variable Y ∈ R, βτ,l = (βτ,l1, ..., βτ,lp)
T are unknown loading pa-

rameters for the lth covariate Xl, and mτ,l(·) are unknown nonparametric

functions, for l = 1, ..., d. Let ετ = Y − Qτ (Y |X,Z) be the model error

with an unspecified conditional density function fετ (·|X,Z) and a condi-

tional cumulative distribution function Fετ (·|X,Z) of ετ given (X,Z). In

the remainder of the paper, we drop the subscript τ from βτ,l, mτ,l(·), ετ ,

fϵτ (·|X,Z), and Fετ (·|X,Z) to simplify the notation. However, it is helpful

to bear in mind that these quantities are τ -specific. Note that ε’s condi-

tional τth quantile is equal to zero; that is, P (ε ≤ 0|X,Z) = Fε(0|X,Z) =

τ . For the sake of identifiability, we assume that β =
(
βT
1 , ...,β

T
d

)T
belongs

to the following parameter space:

Θ =
{
β =

(
βT
l : 1 ≤ l ≤ d

)T
: ∥βl∥2 = 1, βl1 > 0,βl ∈ Rp

}
,

where ∥.∥2 denotes the L2 norm such that ∥ξ∥2 = (ξ21 + · · ·+ ξ2s )
1/2

, for any

vector ξ = (ξ1, ..., ξs)
T ∈ Rs. Model (1.1) is quite general, and includes

many other existing models as special cases: (i) when ml(·) is assumed to

be constant or a linear function, it reduces to the linear regression model

with interactions; (ii) when d = 1 and Xl = 1, it is the single-index model;

(iii) when ml(·) is constant for l ≥ 2 and X1 = 1, it is the partial linear

single-index model; (iv) when the common coefficient vector βl is used, it
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is the single-index coefficient model; and (v) when we consider X = Z and

the common coefficient vector βl, it reduces to the well-known adaptive

varying-coefficient model.

The VICM offers a flexible way to model and assess the nonlinear in-

teraction effects between the covariates X and Z. Note that the choice of

these specialized model forms may depend on the application. For exam-

ple, in econometric studies, it is often of interest to summarize the effects

of multiple input variables within a single variable, and then to perform a

regression analysis on the combined variable and other ordinary variables.

The well-known capital asset pricing model (CAPM) and the Fama-French

three-factor model both introduce derived variables in their model repre-

sentations. Such variables may invoke linear or nonlinear interactions in

the regression function with other variables, even those used to create the

index variables. Experienced data analysts may suggest that predictors be

properly used in different components of X and Z. How to design X and

Z objectively from data remains an interesting question. However, fully

addressing this question is very challenging, and beyond the scope of this

study. Thus, similarly to traditional studies on index models, we assume

that X and Z are given in the data set, and that there is no overlapped

term between X and Z. Our main interest is to perform statistical infer-
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ences on both the loading coefficients βl and the nonparametric functions

ml (·), for l = 1, ..., d.

Ma and Song (2015) proposed a profile least squares estimation proce-

dure for the VICM and established its theoretical properties. Their work

focused on a mean regression, which is suitable for nicely distributed data,

such as Gaussian data, but may perform badly in the presence of outliers

and heavy-tailed errors. Our model (1.1) imposes different assumptions on

the error structure and, thus, produces a novel and robust framework ap-

plicable to a wider variety of applications. The estimation methods and the

associated asymptotic theories are thus different to those of Ma and Song

(2015).

Since the seminal work of Koenker and Bassett (1978), QRs have emerged

as an important alternative to the mean regression. It is well known that

an inference based on a QR is more robust against distribution contami-

nation (Koenker (2005)). A full range of quantile analyses can provide a

more complete description of the conditional distribution. It is now widely

acknowledged that an analysis based on a QR may lead to more appropriate

findings. For example, climatologists often pay close attention to how the

high quantiles of tropical cyclone intensity change over time (Elsner et al.

(2008)), because these generate strong winds and waves, often resulting in
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heavy rain and storm surges. In the health sciences, medical scientists often

study the effects of maternal behaviors on the low quantiles of birth-weight

distributions (Abrevaya (2001)). Furthermore, in business and economics,

petroleum is a primary source of nonrenewable energy, and has important

effects on industrial production, electric power generation, and transporta-

tion (Marimoutou et al. (2009)). Thus, most analysts focus on the high

quantiles of oil prices, because oil price fluctuations have considerable ef-

fects on economic activity. The QR framework considered in this study may

affect all of these fields, where a direct application of a mean regression is

inappropriate.

Another important contribution of this study is that we consider high-

dimensional learning issues for the quantile VICM. In fact, recent advances

in technologies for cheaper and faster data acquisition and storage have led

to explosive growth in data complexity in a variety of scientific areas, such

as medicine, economics, and environmental science. We have to consider a

realistic solution to the “large n, diverging p” data setting. Specifically, we

allow the dimension of the covariates Z to increase to infinity as the sample

size increases. Many penalty-based estimation methods have been proposed

to address the high-dimensional issue (Fan and Li (2006); Giraud (2015);

Hastie et al. (2015)). This framework can effectively reduce the model bias
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and improve the prediction performance of the fitted model. Fan and Peng

(2004) first studied the nonconcave penalized likelihood estimation when

the number of covariates increases with the sample size. Later, Wang et al.

(2012) extended their method to generalized linear models for longitudi-

nal measurements. The high-dimensional issue has also been investigated

for semiparametric models. Wang and Wang (2015) applied the smoothly

clipped absolute deviations (SCAD) penalty to perform variable selection

for single-index prediction models with a diverging number of index param-

eters. Fan et al. (2017) presented a penalized empirical likelihood approach

for high-dimensional semiparametric models.

Variable selection for model (1.1) is challenging, because the high-

dimensional loading parameter is structured within the unknown nonpara-

metric function coefficients. We adopt a spline basis approximation for the

estimation of ml(·), and estimate the unknown vector of the loading param-

eters βl under the sparsity assumption. In addition, we correctly identify

the linear interaction effects between the covariates. That is, we want to

decide whether it is necessary to model ml(·) nonparametrically for all d

varying index functions. Ma and Song (2015) constructed a generalized

likelihood ratio statistic to test whether there exists a linear interaction

effect between covariates. Although this test approach works very well for
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low-dimensional problems, it is computationally infeasible when the num-

ber of covariates is large. To this end, we develop a group penalization

method that can quickly and effectively differentiate linear functions from

nonparametric functions. The theoretical justification is also nontrivial for

this complicated setting.

2. QR Estimation of Functions and Loadings

2.1 Estimation procedures

Suppose that {(Xi,Zi, Yi), 1 ≤ i ≤ n} is an independent and identically

distributed (i.i.d.) sample from model (1.1). Similarly to Wang and Wang

(2015), we assume that each Zik, for i = 1, ..., n, k = 1, ..., p takes a value

in [a, b], where a and b are some finite numbers. B-spline basis functions

are commonly used to approximate the unknown smooth functions, owing

to their desirable numerical stability in practice (de Boor (2001)). We thus

adopt a nonparametric approach to estimate the index functions. More

specifically, let B(u) = (Bs(u) : 1 ≤ s ≤ Jn)
T be a set of normalized B-

spline basis functions of order q (q ≥ 2) with Nn internal knots and Jn =

q +Nn. We then approximate ml(·) using a linear combination of B-spline

basis functions ml(·) ≈ B(·)Tλl, where λ =
(
λT

1 , ...,λ
T
d

)T
is the spline

coefficient vector with λl = (λls : 1 ≤ s ≤ Jn)
T , for l = 1, ..., d.
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Let ρτ (u) = u {τ − I(u ≤ 0)} be the quantile loss function, where I(·)

is an indicator function. We obtain the estimators of the spline coefficients

λ and the loading parameters β by minimizing

Lτn (λ,β) =
n∑

i=1

ρτ

{
Yi −

d∑
l=1

B
(
ZT

i βl

)T
λlXil

}
, (2.1)

subject to the constraints ∥βl∥2 = 1 and βl1 > 0. Minimizing (2.1) with

respect to all unknown quantities requires nonstandard nonlinear program-

ming, and the solution is usually difficult to obtain directly. To address this

computing difficulty, we adopt the profile iterative procedure to estimate

βl and ml(·). The detailed steps are given below.

Step 0. Initialization step: Obtain an initial value β̂(0), with
∥∥∥β̂(0)

∥∥∥
2
=

1. Further details on how to generate the initial values can be found in

Appendix A of the Supplemental Material.

Step 1. For a given β, λ̂(β) can be attained using λ̂ (β) = argmin
λ∈RdJn

Lτn (λ,β).

This leads to m̂l(·,β) = B(·)T λ̂l(β), for l = 1, ..., d. According to (de Boor

(2001), page 116), the first-order derivative ṁl(·) can be approximated by

the spline functions of one order lower than that of ml(·). Then, we have

ˆ̇ml(·,β) = Ḃ(·)T λ̂l(β), where Ḃ is the first-order derivative of B.

The parameter space Θ specifies that β lies on the boundary of a unit

ball. Therefore, for a given λ, the function Lτn (λ,β) is not differentiable at

point β. To handle this constraint, we employ the “remove-one-component”
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method to change the restricted QR to an unrestricted QR. Specifically, for

βl = (βl1, βl2, ..., βlp)
T , let βl,−1 = (βl2, ..., βlp)

T be a (p − 1)-dimensional

parameter vector after removing βl1 in βl. Then, βl, for l = 1, ..., d, can be

rewritten as

βl = βl(βl,−1) = (
√
1− ∥βl,−1∥22,β

T
l,−1)

T , ∥βl,−1∥22 < 1. (2.2)

It is obvious that βl is infinitely differentiable with respect to βl,−1, and the

Jacobian matrix is given by

Jl (βl,−1) =
∂βl

∂βT
l,−1

=

 −βT
l,−1

/√
1− ∥βl,−1∥22

Ip−1

 ,

where Ip is a p×p identity matrix. Denote β−1 =
(
βT
1,−1, ...,β

T
d,−1

)T
. Then,

β−1 belongs to

Θ−1 =
{
β−1 =

(
βT
l,−1 : 1 ≤ l ≤ d

)T
: ∥βl,−1∥22 < 1,βl,−1 ∈ Rp−1

}
.

Step 2. Let β = β(β−1), with the aforementioned definition βl =

βl(βl,−1), for 1 ≤ l ≤ d. Based on the estimators λ̂l, m̂l, and ˆ̇ml from

Step 1, we can construct the QR estimating equations for β−1 by set-

ting ∂Lτn

(
λ̂(β),β

)/
∂β−1 = 0. However, the equations involve a non-

smooth function ψτ (u) = ρ̇τ (u) = τ − I (u ≤ 0). This adds difficulty to

the computation, despite there being a linear programming solver (e.g.,
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Jin et al. (2003)). We circumvent this problem by smoothing the function

∂Lτn

(
λ̂(β),β

)/
∂β−1, that is, by replacing ψτ (·) with a smooth function

ψτh (·) (Whang (2006)). For this purpose, we introduce Gh (x) = G (x/h),

where G (x) =
∫
u<x

K (u)du, K (·) is a kernel function and h is a bandwidth.

Then, we construct the approximation function ψτh (·) = τ−1+Gh (·), and

the smoothed estimating equations for β−1 are given as

Rτnh (β−1) = −
n∑

i=1

ψτh

{
Yi −

d∑
l=1

B
(
ZT

i βl

)T
λ̂l (β)Xil

}

×


ˆ̇m1

(
ZT

i β1,β
)
Xi1J

T
1 Zi +

(
∂λ̂(β)T

/
∂β1,−1

)
Di(β)

...

ˆ̇md

(
ZT

i βd,β
)
XidJ

T
d Zi +

(
∂λ̂(β)T

/
∂βd,−1

)
Di(β)

 = 0,

(2.3)

whereDi(β) = (Di,sl(βl), 1 ≤ s ≤ Jn, 1 ≤ l ≤ d)T , withDi,sl(βl) = Bs(Z
T
i βl)Xil.

Then, we employ the Fisher scoring algorithm to obtain the estimates,

β
(k+1)
−1 = β

(k)
−1 −

[
∂Rτnh (β−1)/∂β

T
−1

]−1Rτnh (β−1) |β−1=β
(k)
−1
. (2.4)

Step 3. Repeat Steps 1 and 2 until convergence, and denote the final

estimators as β̂−1 and λ̂. Then, we apply formula (2.2) to obtain β̂, and

construct the estimators of ml(·) as m̂l(·, β̂) = B(·)T λ̂l(β̂), for l = 1, ..., d.

Remark 1. Another merit of the kernel smoothing method is that we can

quickly obtain the covariance matrix estimation of β̂ by using the sand-
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wich formula, which effectively avoids estimating the density function of

the random error.

2.2 Theoretical properties

Let β0 =
{
(β0

1)
T
, ..., (β0

d)
T
}T

be the true parameters in model (1.1), where

β0
l =

{
β0
l1,

(
β0
l,−1

)T}T

and β0
l,−1 = (β0

l2, ..., β
0
lpn

)T , for 1 ≤ l ≤ d. Here, the

subscript n in pn is used to make it explicit that the dimension of the loading

parameters pn may depend on n. Let ∥g∥2 =
{∫

g2(x)dx
}1/2

be the L2 norm

of a function g. Now, we define the spaceM as a collection of functions with

finite L2 norm on [a, b]d×Rd byM =

{
g(u,x) =

d∑
l=1

gl(ul)xl, Eg
2
l (Z

Tβl) <∞
}
,

where u = (u1, ..., ud)
T and x = (x1, ..., xd)

T . For 1 ≤ k ≤ pn, we assume

that g0k is a minimizer in M for the following optimization problem:

P(Zk) = g0k (U(β0),X)

=
d∑

l=1

g0l,k(Z
Tβ0

l )Xl

= argming∈ME[fε (0|X,Z) {Zk − g (U (β0) ,X)}2],

whereU(β0) = (ZTβ0
1, ...,Z

Tβ0
d)

T . Next, let P(Z) = {P(Z1), · · · ,P(Zpn)}T ,

Z̃ = Z−P(Z),H(β0
−1) = E

{
fε (0|X,Z)

[(
ṁl

(
ZTβ0

l ,β
0
)
XlJ

0T
l Z̃

)d

l=1

]⊗2
}
,

and M (β0
−1) = E

[(
ṁl

(
ZTβ0

l ,β
0
)
XlJ

0T
l Z̃

)d

l=1

]⊗2

, with J0
l = Jl

(
β0
l,−1

)
,

for 1 ≤ l ≤ d, A⊗2 = AAT for any matrix A, and (al)
d
l=1 =

(
aT
1 , ...,a

T
d

)T
for any vector al. For any positive numbers an and bn, we denote an ≪ bn

Statistica Sinica: Preprint 
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if an/bn = o(1). Denote the space of the rth-order smooth function as

C(r) [a, b] =
{
φ
∣∣φ(r) ∈ C [a, b]

}
, where f (i) (v) = dif (v)/dvi. Let fY (y | X,Z)

and FY (y | X,Z) be the condition density and the conditional cumulative

distribution function of Y given (X,Z), respectively, and let ν ≥ 2 be

an integer. To prove the theoretical results of the proposed estimators of

the nonparametric functions and loading coefficients, we need the following

technical conditions.

(C1) For βl in the neighborhood of β0
l , the density function fUl(βl)(·) of the

random variable Ul(βl) = ZTβl is bounded away from zero on [a, b], for

1 ≤ l ≤ d, and satisfies the Lipschitz condition of order 1 on [a, b].

(C2) For every 1 ≤ l ≤ d and 1 ≤ k ≤ pn, g
0
l,k ∈ C(1)[a, b] andml ∈ C(r)[a, b],

for some integer r ≥ 2. At the same time, the spline order q satisfies

q ≥ r + 2.

(C3) X has bounded support, and E
(
XXT |ZTβ0

l = ul
)
is positive defi-

nite, for all ul ∈ [a, b].

(C4) E

[(
ṁl

(
ZTβ0

l ,β
0
)
XlJ

0T
l Z̃

)d

l=1

]⊗2

has eigenvalues that are bounded

and bounded away from zero.

(C5) For all u in a neighborhood of 0, fε (u | X,Z) is bounded away from

zero and is ν times continuously differentiable with respect to u.

(C6) The kernel function K (u) is nonnegative, bounded, symmetrical,

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0170



2.2 Theoretical properties14

continuous, and compactly supported on [−1, 1]. Furthermore, for some

constant CK ̸= 0, K (·) is a νth-order kernel function. For example,∫
ujK (u) du is equal to one if j = 0, zero if 1 ≤ j ≤ ν − 1, and CK if

j = ν.

(C7) The positive bandwidth h satisfies nh2ν → 0.

Remark 2. Conditions (C1)–(C2) are standard conditions for a VICM,

and are similar to conditions (C1), (C2), and (C5) in Ma and Song (2015).

Condition (C3) is similar to condition (C3) in Ma and Xu (2015) and As-

sumption 3 in Whang (2006). Condition (C4) is similar to condition (C7)

in Xue and Wang (2012), and ensures that the asymptotic variance for the

estimator of β0 exists. Condition (C5) is similar to Assumption 4 in Whang

(2006). From condition (C5) and the fact that ε = Y −
∑d

l=1ml(Z
Tβ0

l )Xl,

the conditional density fY (y |X,Z ) satisfies the Lipschitz condition of or-

der one and fY

(∑d
l=1ml

(
ZTβl

)
Xl |X,Z

)
is bounded away from zero for

β in a neighborhood of β0. Conditions (C6)–(C7) are necessary conditions

on the kernel function and the bandwidth h, which are also required in

Whang (2006). Condition (C7) ensures that the smoothing has an asymp-

totically negligible bias on the estimator of β0.

Theorem 1. Assume conditions (C1)–(C7) and n1/(2r+2) ≪ Jn ≪ n1/4

hold. If n−1p3n = o(1), then ∀en ∈ Rd(pn−1), such that eT
nen = 1, and we
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have

(i)
∥∥∥β̂−1 − β0

−1

∥∥∥
2
= Op

(√
pn/n

)
,

(ii) n1/2eT
nM

−1/2
(
β0
−1

)
H

(
β0
−1

) (
β̂−1 − β0

−1

)
d→N (0, τ(1− τ)), where

d→

denotes convergence in distribution.

Theorem 2. Under the same conditions of Theorem 1, for 1 ≤ l ≤ d,

we have |m̂l(ul, β̂)−ml(ul)| = Op

(√
Jn/n+ J−r

n

)
uniformly, for any ul ∈

[a, b].

In practice, we approximate P(Zik) using its spline estimator Pn(Zik),

with its explicit form given in (A.29) of the Supplementary Material. Let

P̂n(Zik) = Di

(
β̂
)T

{
n∑

i=1

ŵiDi(β̂)Di(β̂)
T

}−1 n∑
i=1

ŵiDi(β̂)Zik, ŵi = h−1K (ε̂i/h),

ε̂i = Yi −
d∑

l=1

m̂l(Z
T
i β̂l, β̂)Xil, P̂n(Zi) = {P̂n(Zi1), ..., P̂n(Zipn)}T , Ẑi = Zi −

P̂n(Zi), Ĵl = Jl

(
β̂l,−1

)
, Hn

(
β̂−1

)
=

n∑
i=1

ŵi

[(
ˆ̇ml

(
ZT

i β̂l, β̂
)
XilĴ

T
l Ẑi

)d

l=1

]⊗2

,

and Mn

(
β̂−1

)
=

n∑
i=1

[
ψτ {ε̂i}

(
ˆ̇ml

(
ZT

i β̂l, β̂
)
XilĴ

T
l Ẑi

)d

l=1

]⊗2

.

Remark 3. Based on the above results, we apply the following sandwich

formula to consistently estimate the asymptotic covariance of β̂−1:

Ĉov
(
β̂−1

)
= H−1

n

(
β̂−1

)
Mn

(
β̂−1

)
H−1

n

(
β̂−1

)
. (2.5)

Furthermore, we define Ĵ = ⊕d
l=1Ĵl = diag(Ĵ1, ..., Ĵd) as the direct sum

of the Jacobian matrices Ĵ1, ..., Ĵd with dimension dpn × d(pn − 1). Then,
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we can obtain the estimated asymptotic covariance of β̂ as Ĉov
(
β̂
)

=

ĴĈov
(
β̂−1

)
ĴT .

3. Penalized Estimation for High-dimensional Loading Parame-

ters

Thus far, all covariates Z in model (1.1) have been assumed to be impor-

tant for predicting the response variable. However, the true model is often

unknown. On the one hand, fitted models may be seriously biased and

non-informative if important predictors are omitted. On the other hand,

including spurious covariates may unnecessarily increase the complexity and

further reduce the estimation efficiency. Thus, a fundamental issue is select-

ing variables for the VICM with a diverging number of loading parameters.

As usual, we assume the model is sparse, in the sense that most of the

components of β are essentially zero. Recall from the preceding section,

after profiling, we obtain a single objective function as a function of β.

We can then introduce a common penalty toward sparsity to regularize the

coefficient. More specifically, we modify (2.3) to be

Rτnh (β−1) + nbα1 (β−1) = 0, (3.1)

where bα1 (β−1) = [ṗα1 (|β12|) sgn (β12) , ..., ṗα1 (|β1pn|) sgn (β1pn) , ..., ṗα1 (|βdpn|)

×sgn (βdpn)] is a d(pn − 1) vector with sgn (t) = I (t > 0) − I (t < 0), and
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ṗα1(·) is the first-order derivative of the SCAD penalty function, defined by

ṗα1(x) = α1

{
I (x ≤ α1) +

(aα1 − x)+
(a− 1)α1

I (x > α1)

}
,

where a > 2, pα1(0) = 0, and α1 is a nonnegative penalty parameter that

regulates the complexity of the model. In our simulation studies and real-

data analysis, we set a = 3.7. The iterative majorize-minorize (MM) algo-

rithm proposed by Hunter and Li (2005) can be incorporated to estimate

β−1 in (3.1). Specifically, for a fixed α1, we obtain the estimator β̄α1,−1 of

β−1 using the following iterative procedure:

β
(k+1)
α1,−1 = β

(k)
α1,−1 −

{[
∂Rτnh (β−1) /∂β

T
−1 + n∆α1 (β−1)

]−1

× [Rτnh (β−1) + nbα1 (β−1)]} |
β−1=β

(k)
α1,−1

,

(3.2)

where ∆α1 (β−1) = diag

(
ṗα1 (|β12|)
κ+|β12| , ...,

ṗα1 (|β1pn |)
κ+|β1pn |

, ...,
ṗα1(|βdpn|)
κ+|βdpn|

)
, and κ is a

small number, such as 10−6. The above iterative formula is similar to the

MM algorithm of Hunter and Li (2005), and its convergence can be similarly

justified using their Proposition 3.3 under the stationary and continuity

assumptions.

We next study the asymptotic properties for the proposed penalized

estimator, including the well-known sparsity and oracle properties. In gen-

eral, we define the true coefficients as β0
l,−1 =

((
β

0(1)
l,−1

)T

,
(
β

0(2)
l,−1

)T
)T

, with

β
0(1)
l,−1 =

(
β0
l2, ..., β

0
lsl

)T
and β

0(2)
l,−1 =

(
β0
l(sl+1), ..., β

0
lpn

)T

, where β0
lj ̸= 0 for j =
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2, ..., sl, and β
0
lj = 0 for j = sl+1, ..., pn; β

0(1)
−1 =

((
β

0(1)
1,−1

)T

, ...,
(
β

0(1)
d,−1

)T
)T

;

and β
0(2)
−1 =

((
β

0(2)
1,−1

)T

, ...,
(
β

0(2)
d,−1

)T
)T

. Correspondingly, we also divide

β̄α1l,−1 into two parts, namely, β̄α1l,−1 =
(
(β̄

(1)
α1l,−1)

T , (β̄
(2)
α1l,−1)

T
)T

, with

β̄
(1)
α1l,−1 =

(
β̄α1l2, ..., β̄α1lsl

)T
and β̄

(2)
α1l,−1 =

(
β̄α1l(sl+1), ..., β̄α1lpn

)T
. Here, we

assume the number of nonzero components in βl is fixed, for l = 1, ..., d; that

is, sl does not vary with n. Define β̄
(1)
α1,−1 =

((
β̄

(1)
α11,−1

)T

, ...,
(
β̄

(1)
α1d,−1

)T
)T

and β̄
(2)
α1,−1 =

((
β̄

(2)
α11,−1

)T

, ...,
(
β̄

(2)
α1d,−1

)T
)T

. We need to introduce some

additional conditions to derive the asymptotic theory.

(C8) lim infn→∞ lim infx→0+ ṗα1 (x) /α1 > 0.

(C9) an = max2≤j≤pn,1≤l≤d{ṗα1(
∣∣β0

lj

∣∣), β0
lj ̸= 0} = O

(
n−1/2

)
.

(C10) bn = max2≤j≤pn,1≤l≤d{
∣∣p̈α1(

∣∣β0
lj

∣∣)∣∣ , β0
lj ̸= 0} → 0 as n→ ∞.

(C11) There are constants C1 and C2 such that |p̈α1 (x1)− p̈α1 (x2)| ≤

C2 |x1 − x2| when x1, x2 > C1α1.

(C12) Assume
{
β0
l2, ..., β

0
lsl

}d

l=1
satisfy min1≤l≤d,2≤j≤sl

∣∣β0
lj

∣∣/α1 → ∞ as n→

∞.

Remark 4. Conditions (C8)–(C11) are the regularity conditions on the

penalty given in Fan and Peng (2004), and condition (C12) is similar to

condition (H) of Fan and Peng (2004), which is used to obtain the oracle

property.
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Theorem 3. Under conditions (C1)–(C11) and n1/(2r+2) ≪ Jn ≪ n1/4, if

n−1p3n = o(1) as n→ ∞, we have
∥∥β̄α1,−1 − β0

−1

∥∥
2
= Op

(√
pn

(
n−1/2 + an

))
,

where an is given in condition (C9).

Let M(1) and H(1) be the
∑d

l=1 (sl − 1)×
∑d

l=1 (sl − 1) sub-matrices of

M
(
β0
−1

)
and H

(
β0
−1

)
, respectively, corresponding to β

0(1)
−1 .

Theorem 4. Under conditions (C1)–(C12) and n1/(2r+2) ≪ Jn ≪ n1/4, if

α1 → 0,
√
n/pnα1 → ∞, and n−1p3n = o(1) as n → ∞, with probability

tending to one, the consistent estimator β̄α1,−1 in Theorem 3 satisfies

(i) β̄
(2)
α1l,−1 = 0 for 1 ≤ l ≤ d;

(ii)
√
n
(
β̄

(1)
α1,−1 − β

0(1)
−1

)
d→N

(
0, τ(1− τ)(H(1))−1M(1)(H(1))−1

)
.

Now, we define J0 = ⊕d
l=1J

0
l = diag(J0

1 , ...,J
0
d ) as the direct sum

of the Jacobian matrices J0
1 , ...,J

0
d with dimension dpn × d(pn − 1). For

1 ≤ l ≤ d, βl can be estimated as β̄α1,l = (β̄α1,l1, ..., β̄α1,lpn)
T , with β̄α1,l1 =(

1−
∑pn

k=2 β̄
2
α1,lk

)1/2
. From Theorem 4 (ii), we can use the multivariate delta

method to obtain the asymptotic normality of β̄
(1)
α1 = (β̄

(1)T
α1,1

, ..., β̄
(1)T
α1,d

)T ,

with β̄
(1)
α1,l

=
(
β̄α1l1, β̄α1l2, ..., β̄α1lsl

)T
, for 1 ≤ l ≤ d. That is,

√
n(β̄

(1)
α1 −

β0(1))
d→N

(
0, τ(1− τ)J0(1)(H(1))−1M(1)(H(1))−1J0(1)T

)
, where J0(1) is a sub-

matrix of J0 corresponding to β0(1), and β0(1) =
(
β0
11, ..., β

0
1s1
, ..., β0

d1, ..., β
0
dsd

)T
.

Remark 5. Theorem 3 shows that β̄α1,−1 is a
√
n/pn-consistent estimator
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if an = O(n−1/2). Theorem 4 indicates that β̄α1,−1 is consistent in terms

of variable selection and has the oracle property when the number of load-

ing parameters diverges. These results provide a theoretical guarantee for

the application of our proposed estimation for the high-dimensional QR

VICM. Based on the iterative procedure (3.2), we estimate the asymptotic

covariance matrix of β̄α1,−1 using the following sandwich formula:

Ĉov
(
β̄α1,−1

)
= H̄−1

n

(
β̄α1,−1

)
Mn

(
β̄α1,−1

)
H̄−1

n

(
β̄α1,−1

)
, (3.3)

where H̄n

(
β̄α1,−1

)
= Hn

(
β̄α1,−1

)
+ n∆α1

(
β̄α1,−1

)
, and Mn and Hn are

defined as in subsection 2.2.

Remark 6. The main reason that we do not consider variable selection

for Xk, 1 ≤ k ≤ d is as follows. Based on our model Qτ (Y |X,Z) =

d∑
l=1

mτ,l(Z
Tβτ,l)Xl, it is easy to see thatmτ,l (·) = 0 implies that βτ,l can take

any value. In fact, βτ,l has no impact on Qτ (Y |X,Z) after fixing mτ,l (·) =

0. In this case, our considered model is unidentifiable. Consequently, for

the sake of model identification, we assume that all components mτ,l (·), for

l = 1, ..., d are nonzero. Thus, it is not practical for us to implement variable

selection for Xk, for 1 ≤ k ≤ d (because this is usually equivalent to finding

mτ,l(·) = 0). In addition, in practice, many variables are usually used to

construct the index function (thus, a high-dimensional Z), but relatively
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fewer variables used for X. Hence, we consider variable selection to be a

more relevant issue for Z, and examine it in detail.

Remark 7. Ultrahigh-dimensional variable selection (p ≫ n) has recently

become very popular, especially for genetic studies. There are practical

challenges to allowing p > n in our methods. First, note that we assume

∥βl∥2 = 1, for l = 1, ..., d, for the sake of model identifiability, indicating

that | βlk |< 1, for l = 1, ..., d and k = 1, ..., p. Thus, it is practically difficult

to separate all nonzero coefficients in β from ultrahigh-dimensional back-

ground noise, because the true signal is rather weak (< 1). Thus far, even

recently, existing research findings on nonparametric index models have

been based mostly on fixed p or on diverging dimensionality with p < n;

see Wang and Wang (2015), Huang et al. (2014), Lian and Liang (2016),

Zhang et al. (2016), Ma and He (2016), Zhao et al. (2017), Zhao and Lian

(2017), and Zhang et al. (2017), among others. Furthermore, implement-

ing the proposed estimation procedures for p > n is computationally pro-

hibitive. We recommend that alternative dimension-reduction statistical

methodologies be developed to deal with the ultrahigh-dimensional case.

This an intriguing extension is left to future research.
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4. Identification of Linear Components in a QR VICM

In varying-index coefficient models, identifying the linear interaction com-

ponents is also an important issue. Ma and Song (2015) proposed a gener-

alized likelihood ratio test to distinguish linear functions from nonparamet-

ric functions. However, the classical significance tests may not be useful

in high-dimensional settings, owing to computational and theoretical con-

cerns. Therefore, we develop a penalized procedure to investigate whether

there is a linear interaction effect between ZTβl and Xl.

Let m̈l be the second derivative of ml. Clearly, ∥m̈l∥2 = 0 if ml is a

linear function, for 1 ≤ l ≤ d. Thus, by shrinking ∥m̈l∥2 toward zero, we

can automatically identify the linear and nonlinear components in model

(1.1). Note that ∥m̈l∥2 =
{∫

m̈2
l (x)dx

}1/2
can be equivalently written as√

λT
l Dλl ≡ ∥λl∥D, owing to the well-known algebraic property of the B-

spline approximation, where D is a Jn × Jn matrix with the (k, k′) entry

being
∫ b

a
B̈k (x) B̈k′ (x) dx. Specifically, we minimize

λ̄ = argmin
λ∈RdJn

L∗
τn

(
λ, β̄α1

)
≡ argmin

λ∈RdJn

{
Lτn

(
λ, β̄α1

)
+ n

d∑
l=1

pα2 (∥λl∥D)

}
,

(4.1)

where pα2(·) is the SCAD penalty with a penalty parameter α2, and β̄α1

is given in Section 3. This is still a complicated nonlinear programming
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problem, and we use the “ucminf” function in R to find the minimum of

(4.1) using numerical computing methods. This R function was developed

by Hans Bruun Nielsen and Stig Bousgaard Mortensen for general-purpose

unconstrained nonlinear optimization. It is a quasi-Newton-type algorithm,

with Broyder-Fletcher-Goldfarb-Shanno updating of the inverse Hessian,

and a soft line search with a trust region monitoring method.

Remark 8. One may combine two types of penalties in (2.1) to perform

variable selection for the loading parameters, and to detect linear/nonlinear

functions simultaneously; that is,Qτn (λ,β) = Lτn (λ,β)+n
∑d

l=1

∑pn
j=2 pα1 (|βlj|)

+n
∑d

l=1 pα2 (∥λl∥D). However, λ depends on β, which indicates that we

cannot simultaneously obtain the estimators of λ and β by minimizing

Qτn (λ,β). To address this difficulty, an iterative procedure is proposed to

select the loading parameter and detect the linear/nonlinear components.

That is, for a given λ, we use the penalized robust estimating equations

in (3.1) to estimate and select the loading parameters. Then, we minimize

(4.1) to detect the linear/nonlinear components for a given β.

Let λ̄ =
(
λ̄T

1 , ..., λ̄
T
d

)T
be the minimizer of L∗

τn

(
λ, β̄α1

)
. Consequently,

the final estimator of ml(·) is m̄l(·) = B(·)T λ̄l, for 1 ≤ l ≤ d. Without loss

of generality, we suppose that ml is truly nonlinear for 1 ≤ l ≤ d1, and is

linear for d1 + 1 ≤ l ≤ d. We have the following theoretical results.
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Theorem 5. Suppose that conditions (C1)–(C12) are satisfied. Then, to-

gether with n1/(2r+2) ≪ Jn ≪ n1/4 and α2 → 0, we have for each 1 ≤ l ≤ d,

|m̄l(ul, β̄α1)−ml(ul)| = Op

(√
Jn/n+ J−r

n

)
uniformly, for any ul ∈ [a, b].

Theorem 6. In addition to the conditions in Theorem 5, we further assume

that (
√
Jn/n+ J−r

n )−1α2 → ∞. Then, with probability approaching one,

∥λ̄l∥D = 0, and m̄l is a linear function, for 1 + d1 ≤ l ≤ d.

5. Numerical Illustration

5.1 Selection of tuning parameters

in all our numerical studies, we use the cubic spline (q = 4) to approximate

the nonparametric functions ml(·) in our simulations. We choose the num-

ber of interior knots as Nn =
[
n1/(2q+1)

]
to satisfy the theoretical require-

ment, where [a] stands for the largest integer not greater than a. The kernel

function K (·) is set as the second-order Bartlett kernel (ν = 2); that is,

K (u) = 3
4
√
5
(1− u2/5) I

(
|u| ≤

√
5
)
. The smoothed estimating equations

(2.3) depend on the bandwidth h. We conduct a sensitivity analysis for the

selection of h in the finite samples. Let {T v, v = 1, · · · , 5} be a random

partitioning with size n/5 of the full data set T = (T − T v)
∪
T v, where

T − T v and T v are the cross-validated training and test sets, respectively,

for v = 1, ..., 5. The prediction error (PE) from the fivefold cross-validation
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Figure 1: Prediction error from 5-fold cross-validation with different band-

width h = n−δ with δ = 0.1, 0.2, ..., 1.

is given by PE = n−1
5∑

v=1

∑
(Yi,Xi,Zi)∈T v

ρτ

(
Yi −

d∑
l=1

m̂
(v)
l (ZT

i β̂
(v)
l )Xil

)
, where

m̂
(v)
l and β̂

(v)
l are estimators of ml and βl, respectively, using the training

set T − T v, for l = 1, ..., d. For the quantile levels τ = 0.5, 0.75, we conduct

200 replicates for example 1, given below, with a normal error distribution.

Figure 1 depicts the prediction error for the fivefold cross-validation with

different bandwidths h = n−δ for δ = 0.1, 0.2, ..., 1. It is easy to see that the

PE does not vary significantly with h, indicating that the proposed method

is not sensitive to the bandwidth h. Thus, we fix h = n−0.3 in the simulation

studies to reduce the computational burden. This choice also satisfies the

theoretical requirement nh2ν → 0, with ν = 2.
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The tuning parameter α1 is used to control the sparsity of β, and the

tuning parameter α2 is used to identify the linear functions. Under fixed

dimensions, Lian (2012) demonstrated that the Schwartz information crite-

rion (SIC) is consistent in terms of variable selection in the SCAD penalized

QR. However, the traditional SIC may not work very well for a diverging

number of parameters. Therefore, we adopt the following modified SIC

(MSIC) to select α1:

MSIC (α1) = log
(
Lτn

(
λ̂, β̄α1

))
+ df1Cn log (n)/(2n),

where β̄α1 is the estimated parameter for a given α1, λ̂ is the unpenalized

estimator given in section 2, df1 is the number of nonzero coefficients in β̄α1 ,

and Cn is required to be diverging. In our simulations and applications,

we choose Cn as Cn = max {1, log (log(dpn))} (Chen and Chen (2008)).

The optimal tuning parameter α̂opt
1 is defined as α̂opt

1 = min
α1

MSIC (α1).

Similarly, for α2,

MSIC (α2) = log
(
Lτn

(
λ̄α2 , β̄α̂opt

1

))
+ df2Jn log (n)/(2n),

where λ̄α2 is the estimated parameter for a given α2, and df2 is the number

of nonlinear components. Then, we have α̂opt
2 = min

α2

MSIC (α2). Note that

every ml(·) is characterized by a spline coefficient vector λl with dimension

Jn. Thus, df2Jn is regarded as the dimension of the nonlinear function coef-

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0170



5.2 Simulation studies27

ficients. Our simulation results confirm that the two proposed MSIC criteria

work well for variable selection and the identification of linear components.

5.2 Simulation studies

Example 1. In this example, our goal is to compare the proposed QR

estimator with the least squares estimator (LS; Ma and Song (2015)). We

generate random samples from the following model:

Yi =
∑d

l=1
ml

(
ZT

i βl

)
Xil + σϵi, (5.1)

where σ = 0.5, d = p = 3, Xi1 = 1, (Xi2, Xi3)
T , and Zi = (Zi1, Zi2, Zi3)

T

follow multivariate normal distributions with mean zero, variance one, and

constant correlation coefficient 0.5. Here, we set the true loading parameters

as β1 = 1√
14
(2, 1, 3)T , β2 = 1√

14
(3, 2, 1)T , and β3 = 1√

14
(2, 3, 1)T , and set

the true coefficient functions as m1(u1) = exp(u1)/5,m2(u2) = sin(0.5πu2),

and m3(u3) = u23. In order to investigate the effects of relatively heavy-

tailed error distributions or outliers, we consider the following four error

distributions of ϵi: the standard normal distribution (SN), t-distribution

with three degrees of freedom (t3), Laplace distribution (LA) with location

parameter zero and shape parameter one and mixed normal distribution

(MN(ρ, σ1, σ2)), which is a mixture of N(0, σ2
1) and N(0, σ2

2), with weights

1− ρ and ρ, respectively. In this example, we consider ρ = 0.1, σ1 = 1 and
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σ2 = 5. For the purpose of comparison, we consider τ = 0.5 and the sample

size n = 500 and 1500, with 200 simulation replications. For a fixed τ = 0.5,

we have Q0.5 (Y |X,Z) = E (Y |X,Z) =
∑d

l=1ml

(
ZT

i βl

)
Xil, because the

median and the mean of ϵi are both zero under the four error distributions.

Therefore, it is fair to compare the proposed QR estimator with the least

squares estimator under this setting.

For the parametric part, we report the bias (Bias); empirical stan-

dard deviation (ESD), calculated as the sample standard deviation of 200

estimates; estimated asymptotic standard deviation (ASD), based on the

sandwich formula (2.5); and mean absolute deviation (MAD), calculated as

the mean absolute deviation of 200 estimates. We compute the root aver-

age squared error (RASE) to measure the accuracy of the nonparametric

estimators m̂l RASE(m̂l) =
√

1
n

∑n
i=1 (m̂l (uil)−ml (uil))

2, uil = ZT
i β̂l, for

l = 1, 2, 3. To conserve space, we report the corresponding results for the

proposed QR estimator with τ = 0.5 and the least squares estimator in Ta-

bles S2–S6 in Appendix B of the Supplementary Material. Both the mean

regression and the median regression in this example are consistent to the

true parameters and functions, owing to their small bias, MAD, and RASE.

The aforementioned tables show that the performance of the proposed QR

is much more stable than that of LS, especially in cases with non-normal
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errors, demonstrating the robust feature of our proposed approach. Finally,

the estimated ASD is very close to the ESD, especially for n = 1500. This

demonstrates that the sandwich covariance formula (2.5) works reasonably

well.

Example 2. In this example, we specify the conditional quantile func-

tion Qτ (Yi|Xi,Zi) as

Qτ (Yi|Xi,Zi) = mτ,1(Z
T
i βτ,1)Xi1 +mτ,2(Z

T
i βτ,2)Xi2 +mτ,3(Z

T
i βτ,3)Xi3,

where βτ,1 =
(τ1/2,τ,2τ)

T

√
5τ2+τ

, βτ,2 =
(τ,τ1/2,2τ)

T

√
5τ2+τ

, βτ,3 =
(2τ,τ,τ1/2)

T

√
5τ2+τ

, mτ,1 (u1) =

τ 1/2u1, mτ,2 (u2) = τ sin (0.5πu2), and mτ,3 (u3) = −0.5 log (1− τ)u23. The

covariate Xi1 = 1 and (Xi2, Xi3)
T are generated from an independent stan-

dard normal distribution. The covariates Zi = (Zi1, Zi2, Zi3)
T are inde-

pendently generated from the uniform distribution U(0,1). Similarly to

Ma and He (2016) and Frumento and Bottai (2016), we generate Yi as

Yi = mUi,1(Z
T
i βUi,1)Xi1 +mUi,2(Z

T
i βUi,2)Xi2 +mUi,3(Z

T
i βUi,3)Xi3,

where Ui follows the uniform distribution U(0,1). In this example, it is

easy to see that the loading coefficients βτ,l and nonparametric functions

mτ,l, for l = 1, 2, 3, are functions of τ , suggesting that the covariate effects

vary with the quantile level. Thus, the VICM model structure is more

sophisticated than that of example 1, and the mean regression method is
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no longer appropriate.

In this example, we consider an estimation at the quartiles τ = 0.5 and

τ = 0.75, and simulate 200 data sets with n = 500 and n = 1500. Tables S7

and S8 in Appendix B of the Supplementary Material give the bias, ESD,

ASD, and MAD of βτ,l, and the RASE formτ,l for the proposed method, for

l = 1, 2, 3. Note that the true loading coefficients βτ,l and the nonparametric

functions mτ,l are different at τ = 0.5 and 0.75. The proposed estimation

is also consistent, with small biases and RASE, and the ESD, ASD, MAD,

and RASE become smaller as the sample size increases.

Example 3. The main goal of this example is to investigate the

finite-sample performance of the proposed penalized estimation approach

for variable selection and identifying linear components. We generate ran-

dom samples from model (5.1), with σ = 0.2, d = 4, m1(u1) = 0.2u31,

m2(u2) = cos(0.5πu2), m3(u3) = 0.5u3, and m4(u4) = −0.5u4. In this case,

we allow the last two nonparametric components to be linear functions. The

true loading parameters are βl = ςl/ ∥ςl∥2 with ςl = (ςl1, ..., ςldn ,0pn−dn)
T ,

for (1 ≤ l ≤ 4), where ςlk is generated from a uniform distribution U(0.5, 1),

for k = 1, ..., dn, and 0m denotes an m-vector of zeros. The dimension of

βl is set as pn = [n1/3], and the number of nonzero coefficients in βl is

taken as dn = [n1/4]. In this example, we focus on the quantile levels at
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τ = 0.1, 0.5, 0.75, and 0.9. To ensure Qτ (Y |X,Z) =
∑d

l=1ml

(
ZT

i βl

)
Xil

at τ = 0.1, 0.5, 0.75, and 0.9, we consider ϵi = ςi − cτ , and cτ is the τth

quantile of the random error ςi, resulting in Qτ (ϵi|Xi,Zi) = 0. Here, {ςi}

is an i.i.d. random sample from SN, t3, LA, or MN. The other settings are

the same as those of example 1.

To evaluate the performance of the variable selection and the identi-

fication of the linear components for our proposed method, we consider

the following five criteria: (1) the average number of zero coefficients that

are correctly estimated to be zero (C); (2) the average number of nonzero

coefficients that are incorrectly estimated to be zero (IC); (3) the average

correctly fit (CF) percentage, which measures the accuracy of the vari-

able selection procedure, where “ correctly fit” means that the procedure

correctly selects significant components from all βl, for l = 1, 2, 3, 4; (4)

the proportion of ml identified as the linear component for l = 1, 2, 3, 4

(ILCl); and (5) the proportion of correctly identified linear components

(CIL) among the four nonparametric functions. For the loading parame-

ters, we compute the mean square error of the oracle estimators (O.MSE),

penalized estimators (P.MSE), and unpenalized estimators (U.MSE). We

also consider the RASE of the penalized estimators (P.RASE) and the un-

penalized estimators (U.RASE), which measure the accuracy of the non-
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parametric estimations. In each case, 200 data sets are generated. The

simulation results are summarized in Tables S9–S11 in Appendix B of the

Supplementary Material.

Tables S9–S11 show the following observations. First, the values in the

column labeled C are very close to the true number of zero-loading parame-

ters. The CF values increase steadily with the sample size n, and approach

one quickly, indicating that the proposed procedure is consistent in terms

of variable selection. Second, the proposed penalized estimator performs

similarly to the oracle estimator in terms of the MSE, and significantly im-

proves the estimation accuracy of the unpenalized estimator. Third, only

the last two functions m3 and m4 are linear, in this example. Thus, note

that ILCl is close to zero, for l = 1, 2, and ILCl approaches one, for l = 3, 4,

as the sample size increases. These results show that our penalized method

can correctly distinguish linear components from nonparametric functions,

with a high probability. Fourth, for the nonlinear functions (m1 and m2),

there is a small difference between the RASE of the penalized and unpe-

nalized estimators. However, our proposed penalized estimator is obviously

more efficient for the linear components m3 and m4, because it reduces

about 40%-60% of the RASE relative to that of the unpenalized estimator.

This is because m3 and m4 are truly identified as linear functions by the
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regularized method. In summary, the proposed methods are satisfactory at

different quantile levels in terms of variable selection and the identification

of linear components.

5.3 Real-data analysis

In this subsection, we illustrate the proposed approaches by analyzing a

cross-sectional data set of a workforce company, plus another health survey,

in New Zealand during the early 1990s (McCulloch (1995)). This data

set consists of physical, lifestyle, and psychological variables, and can be

freely downloaded from the R package VGAMdata. Three binary variables

(sex, diabetes, nervous) and seven continuous variables (age, cholest, dmd,

feethour, sleep, sbp, dbp) are considered here as predictors. These factors

may affect the body mass index (BMI ) of the subject (Yee (2015)). In this

study, our goal is to explore the functional dependency of the body mass

index on the risk factors. Thus, we take the BMI as the response (Y ),

and set the three binary variables as X (d = 4, including an intercept)

and the seven continuous variables as the covariate Z (p = 7). Detailed

definitions of the variables are reported in Table S12. Before implementing

the estimation procedure, we normalize all continuous predictor variables

to have mean zero and variance one, and take a logarithm transformation
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of the response variable. We consider both an unpenalized estimator (β̂l

and m̂l) and a penalized estimator (β̄l and m̄l) at the quantile levels τ =

0.1, 0.25, 0.5, 0.75, and 0.9.

We plot a histogram and Q-Q plot of BMI in Figure S1 of Appendix B.

The figure suggests that the response does not follow a normal distribution.

Moreover, we find that the p-value is less than 10−3 using the Shapiro–Wilk

test (Shapiro and Wilk (1965)), and therefore reject the null hypothesis of

a normal distribution. Thus, a QR analysis may be more suitable here.

The estimated values β̂ and β̄ of the loading parameters are presented in

Table S13 of Appendix B. Based on the penalized approach, the loadings are

automatically estimated as zero and produce sparse solutions. It seems that

the estimated loading parameters for τ = 0.25, 0.75, and 0.9 are sparser.

For example, at τ = 0.25, the loading parameters for Z1 and Z7 are nonzero

for sex (X2), suggesting age and dbp have interaction effects with gender

on the response BMI at the first quartile. For the diabetes status X3, age,

feethour and sleep may include interaction effects. The other parameter

estimates can be interpreted similarly.

After using the penalized estimate λ̄l discussed in Section 4, Table S14

displays the estimated functional norms ∥ λ̄l ∥D, for l = 1, 2, 3, 4, clearly

indicating that m3 is identified as nonlinear for τ = 0.1, 0.25, 0.5, 0.75, and
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that m4 is regarded as nonlinear only for τ = 0.1. In all other cases, the

functions can be treated as linear. Figure 2 reports the estimated curves

and their 95% confidence bands at different quantiles. The graphs agree

with the numerical results. In particular, the estimated function m̄1(·)

appears to be an increasing function of index ZT β̄α1,1, which indicates

that the combination of seven continuous factors has a positive effect on

BMI. Other functions can be interpreted similarly for their effects on the

response. These nonlinear interaction effects between the covariates ZTβl

and Xl cannot be detected easily without using the proposed QR VICM.

Additional numerical results for this data analysis can be found in Ap-

pendix B.

Supplementary Material

The online Supplementary Material contains the procedure for generating

the initial values, additional numerical results, and technical proofs of the

theoretical results.
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Figure 2: Plots of the unpenalized estimator m̂l(·) (solid line) and its 95%

pointwise confidence intervals (dashed line), and the penalized estimator

m̄l(·) (dotted line).
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