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DYNAMIC PENALIZED SPLINES FOR STREAMING DATA
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Abstract: We propose a dynamic version of the penalized spline regression de-

signed for streaming data that allows for the insertion of new knots dynamically

based on sequential updates of the summary statistics. A new theory using direct

functional methods rather than the traditional matrix analysis is developed to

attain the optimal convergence rate in the L2 sense for the dynamic estimation

(also applicable for standard penalized splines) under weaker conditions than

those in existing works on standard penalized splines.

Key words and phrases: Nonparametric regression, convergence rate, streaming

data.

1. Introduction1

A penalized spline regression is a computationally efficient method for2

reconstructing smooth functions from noisy data. The method usually3

starts with a sequence of knots prior to having knowledge of about the4

data. Then it finds the spline with given knots that minimizes the total5

squared error plus a penalty on its qth derivative. Specifically, suppose data6
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{(xi, yi)}i=1,...,n are sampled from a nonparametric model7

yi = f0(xi) + εi,

for some unknown function f0 : [0, 1] → R contaminated with an indepen-8

dent error εi. The penalized spline estimate of f0 is given by9

f̂n = arg min
f∈Sκn,p+1

n∑
i=1

{yi − f(xi)}2 + λn

∫ 1

0

f (q)2(x)dx, (1.1)

where p ≥ q are positive integers, κn = {0 = κn,1 ≤ · · · ≤ κn,kn = 1} ⊆ [0, 1]10

is the set of chosen knots,11

Sκn,p+1 = {f ∈ Cp−1([0, 1]) : f |[κn,i,κn,i+1] ∈ Pp, i = 1, . . . , kn − 1} (1.2)

is the space of splines of order p, Pp is the set of polynomial functions of12

degree not exceeding p, and λn is a positive tuning parameter depending13

on n. By taking a proper basis of Sκn,p+1, the calculation is reduced to per-14

forming a ridge-type regression. This formulation was originally proposed15

in O’Sullivan (1986) with q = 2 and p = 3; see Claeskens et al. (2009) for an16

explicit formulation. The generalized cross-validations proposed by Golub17

et al. (1979) and Wahba (1990) are often used to choose λn. In particular,18

if λn = 0, the method is called a regression spline. If κn = {x1 . . . , xn}19

and p = 2q − 1, it is called a smoothing spline (Craven and Wahba, 1978).20

De Boor (1978) and Eubank (1999) offer a general guidance on how to21
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fit smoothing splines; see the formulations for the case q = p in Ruppert22

(2002), Hall and Opsomer (2005), and Yao and Lee (2008), among others.23

Our main contribution is to propose a dynamic version of the penalized24

spline estimation with a theoretical guarantee and a specifically designed25

algorithm for streaming data that allows for an adaptive choice of knot26

sequence.27

Note that to reach a consistent estimation that approximates a function28

in an infinite-dimensional space, we need to have the number of summary29

statistics grow as the samples stream in, which differs from the usual online30

algorithms. For example, Schifano et al. (2016) proposed online updating31

techniques for parametric regression problems with a constant memory size,32

and Yang et al. (2010) focused on the online learning of a group lasso by33

updating from a previous estimation. By comparison, our approach tackles34

a nonparametric problem using a sequential updating method, where the35

memory consumption grows much more slowly than the sample size does.36

Owing to its technical challenge, there is no existing work on a penal-37

ized spline approach oriented toward streaming data. To fill this gap, we38

propose a dynamic version of the penalized spline estimation, making a39

sensible modification to the target function by adding a projection to the40

function space of f in the goodness-of-fit term on the right side of (1.1). Our41
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algorithm requires only a single iteration of data, and allows for an adap-42

tive insertion of knots at the cost of a slight precision loss. We show that43

under certain conditions, the integrated squared error (i.e., L2-error) of the44

dynamic estimation converges at the same rate as the standard penalized45

spline estimation, Op

{
n−2q/(2q+1)

}
, which has not previously been estab-46

lished for the dynamic penalized spline method. This result is derived from47

a novel technique that lifts the spline space to an infinite-dimensional one,48

which can be adopted seamlessly into the proposed dynamic estimation. By49

the definition in Stone (1982) or Stone (1980), this rate is asymptotically50

optimal if p = q and f0 ∈ Cq([0, 1]). Speckman (1985) showed this to be51

the optimal rate of the average mean squared error in an empirical sense.52

Golubev and Nussbaum (1990) note that this is the minimax rate for f053

in Sobolev balls, and Huang (2003) obtained similar results for regression54

splines. If f0 ∈ Cp+1([0, 1]) and p ≤ 2q− 1, with a nearly equi-spaced knots55

condition on κn, it is also the convergence rate of the average/empirical56

mean squared error for a “large” number of knots in the standard penalized57

spline method, as shown in Claeskens et al. (2009). This indicates that58

the size of κn makes little contribution to the result once it is sufficiently59

large, that is, exceeding a lower bound depending on f0 and n. Xiao (2019)60

extended this result to C l([0, 1]), for q ≤ l ≤ p, to obtain L2 and L∞ rates,61
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while Schwarz and Krivobokova (2016) established an equivalent kernel the-62

ory for penalized splines. Note that we require weaker conditions to attain63

the optional rate for the proposed dynamic estimation than those in exist-64

ing works on standard penalized splines (or the “the large number of knots65

scenario”); see, for example, Claeskens et al. (2009); Xiao (2019), whose66

works also include theories when the number of knots κn and the penalty67

strength λn are small, where the estimation behaves like a regression spline.68

Nevertheless, in practice, it is still meaningful to control the size and69

location of κn for computational efficiency. Various methods have been70

proposed to choose κn based on knowledge of the data. For instance, Spiriti71

et al. (2013) suggested a blind search with a golden section adjustment or72

genetic algorithm for knot selection. Lindstrom (1999) proposed free-knot73

regression splines with a penalty on the knots. This type of method usually74

involves iterative computations over full data, and is not applicable when75

the data come in a streaming manner. Thus, a proper choice of κn with76

dynamic updates becomes relevant. It is natural to expect the size of κn to77

grow slowly with n to improve the estimation. Intuitively, we may insert78

new knots into existing κn as the sample size n grows, behaving like we have79

a new regressor in a ridge-type regression. Hence, we propose modifying the80

target function by adding a projection operator that sequentially elevates81
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the model dimension.82

The rest of the article is organized as follows. We present the proposed83

dynamic penalized spline estimation with its updating algorithm in Section84

2, and offer the corresponding theory that outlines the new technique in85

Section 3. Numerical studies, including simulated and real-data examples,86

are provided in Section 4, while technical proofs are provided in the online87

Supplementary Material.88

2. Proposed Methodology and Algorithm89

2.1 Dynamic penalized spline estimation90

Our goal is to develop a dynamic version of the penalized spline estimation91

that is easy to implement using a sequential updating algorithm with a92

theoretical guarantee. The general setting is that the data are collected in93

a streaming manner, where the ith incoming data cluster consists ofmi pairs94

of observations, {(xj, yj) : j =
∑i−1

k=1mk + 1, . . . ,
∑i

k=1mk}, for i = 1, 2, . . ..95

Because our proposed method and theory remain virtually unchanged for96

each cluster mi = 1, we present this setting for notational convenience.97

Now, suppose that we observe data {(xi, yi)}i=1,2,... in a streaming fashion98

(i.e., one by one), following the model99

yi = f0(xi) + εi,
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for some unknown function f0 : [0, 1] → R and an error εi. For each n,100

we denote a knot set κn = {κn,1 ≤ · · · ≤ κn,kn} ⊆ [0, 1], depending on101

x1, . . . , xn−1, y1, . . . , yn−1, and κn−1, such that κn−1 ⊆ κn. Let p and q102

be positive integers satisfying p ≥ q, and let Sκn,p+1 be as in (1.2). Let103

H1((0, 1)) be the Sobolev space equipped with the inner product104

〈g1, g2〉H1 =

∫ 1

0

{g1(x)g2(x) + g′1(x)g′2(x)} dx.

Let Pn be the orthogonal projection from H1(0, 1) to Sκn,p+1 with respect to105

this norm. We propose the following modification of the standard penalized106

spline regression in (1.1):107

f̃n = arg min
f∈Sκn,p+1

n∑
i=1

{yi − Pif(xi)}2 + λn

∫ 1

0

f (q)2(x)dx. (2.1)

Note that the projections {Pi}ni=1 serve as a bridge linking the full spline108

space Sκn,p+1 and the partial space Sκi,p+1, where the squared errors of109

(xi, yi) are evaluated in their own reduced spline spaces in the target func-110

tion (2.1). Using this modification, we show that the current penalized111

spline estimate depends on the previous summary statistics using the same112

tuning parameter and knots, as well as the newly added data. This provides113

an algorithm for streaming data and is referred to as a dynamic penalized114

spline estimation. The asymptotic theory shows that the approximation115

error introduced by this modification is negligible. For theoretical conve-116
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nience, we let Pi be H1 projections rather than the L2 type to guarantee117

the boundedness of the derivative of Pif , without loss of generality. Now,118

we describe how the estimation is updated dynamically.119

Choose a basis bi = (bi1, . . . , bili)
T of Sκi,p+1, for i = 1, 2, . . . For i, j ≥ 1,120

let Cij be the li×lj matrix with the value in the uth row and the vth column121

being Cij,uv = 〈biu, bjv〉H1 , and let Qji = CjiC
−1
ii . Then,122

(Pibj1, . . . , Pibjlj)
T = Qji(bi1, . . . , bili)

T, i ≤ j.

For i ≤ j ≤ k, because Pi = PiPj, we have

(Pibk1, . . . , Pibklk)
T = Qkj(Pibj1, . . . , Pibjlj)

T = QkjQji(bi1, . . . , bili)
T.

Thus,123

Qki = QkjQji. (2.2)

Suppose f̃n = a1bn1 + · · ·+ alnbnln . Then, we have the following numer-124

ical representation for f̃n:125

(a1, . . . , aln)T = Un(λn)Tn,

where Un(λn) = (Sn + λnDn)−1, Sn =
∑n

i=1Qnibi(xi)bi(xi)
TQT

ni, Dn =126 ∫ 1

0
b
(q)
n (x)b

(q)
n (x)Tdx, and Tn =

∑n
i=1 yiQnibi(xi). Despite its complicated127

expression, it is simple to calculate Sn+1, and Tn+1 given Sn, Tn, xn+1 and128

yn+1. If κn+1 = κn (no new knots), we may choose bn+1 = bn, in which case,129

Sn+1 = Sn + bn+1(xn+1)bn+1(xn+1)
T, Tn+1 = Tn + yn+1bn+1(xn+1).
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If a new knot is inserted, that is, κn+1 % κn, by (2.2), we have

Sn+1 = Qn+1,nSnQ
T

n+1,n + bn+1(xn+1)bn+1(xn+1)
T,

Tn+1 = Qn+1,nTn + yn+1bn+1(xn+1).

Using these equations, we are able to update Sn and Tn in a sequential130

manner. When κn+1 = κn and λn+1 = λn, Un(λn) can be updated using131

the Sherman–Morrison formula,132

Un+1(λn) = Un(λn)− Un(λn)bn+1(xn+1)bn+1(xn+1)
TUn(λn)

1 + bn+1(xn+1)TUn(λn)bn+1(xn+1)
.

Note that both κn and λn grows much slower than n, thus in most cases133

we may update λn only when κn is changed, which greatly reduces the134

calculation of matrix inversions.135

In terms of the computational complexity, when not inserting a new136

knot or updating λn, our update procedure involves only a few matrix-137

vector multiplications of scale |κn|, that is, O(|κn|2). The insertion of knots138

and updating of λn involve complexity O(|κn|3), which occurs on average139

O(|κn|/n) times. Thus, the overall computational complexity of the pro-140

posed update procedure is O(|κn|2m + |κn|4m/n) for a block of m data141

points, which is generally much smaller than the complexity O(|κn|2n) of142

the standard method, where n is the sample size.143
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2.2 Implementation and dynamic knots insertion144

When the tuning parameter λn is updated (often together with updating145

κn), it can be tuned by minimizing the generalized cross-validation score.146

Suppose (f̃n(y1), . . . , f̃n(yn))T = An(λn)(y1, . . . , yn)T, the generalized cross-147

validation score as in Golub et al. (1979), is148

V (λn) =
n ‖{I − An(λn)}(y1, . . . , yn)T‖2

Tr{I − An(λn)}2
.

This can be rewritten as149

n {Rn + T T
nUn(λn)SnUn(λn)Tn − 2T T

nUn(λn)Tn}
[n− Tr{SnUn(λn)}]2

, (2.3)

where Rn =
∑n

i=1 y
2
i .150

The set of knots κn+1 can be updated using various algorithms. As an151

example, we use the following method in our implementation; other meth-152

ods are also viable, as long as they can be updated dynamically for stream-153

ing data. The theory in Theorem 2 suggests that we may let κn+1 = κn154

for most n, which agrees with the intuition that the number of knots grows155

slowly relative to the sample size. We introduce a parameter ν that reflects156

the spanning of κn, that is, E∆n = O(n−ν), with ∆n = maxj |κn,j − κn,j+1|.157

Our theory implies that, given ν > (2q − 1)/{(2q + 1)(2q − 3)} and α > 0,158

we may add new knots when n > α|κn−1|1/ν . If we are to insert a new knot159

x into κn such that κn+1 = κn ∪ {x}, we insert x in a similar way to that160
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in Yuan and Zhou (2012). According to Proposition 6, Section 1.5.3.2 in161

Kunoth et al. (2017),162

inf
s∈Sκn,p+1

‖f0 − s‖L2([κn,i,κn,i+1])
≤ K (κn,i+p+1 − κn,i−p)q

∥∥∥f (q)
0

∥∥∥
L2([κn,i−p,κn,i+p+1])

,

for some constant K. We suggest inserting the new point where this bound163

is large, with f0 replaced by f̃n. Let164

j = arg max
j

(κn,j+p+1 − κn,j−p)q
∥∥∥f̃ (q)

n

∥∥∥
L2([κn,j−p,κn,j+p+1])

, . (2.4)

Then a new knot is placed at (κn,i + κn,i+1)/2, where165

i = arg max
j−p≤i≤j+p

(κi+1 − κi). (2.5)

This is a light-weight algorithm compared to the matrix algebraic compu-166

tations. This way of selecting new knots tends to place more knots where167

the curve changes sharply. The limiting behavior of the algorithm has a the168

density of knots roughly proportional to |f (q)
0 (x)|1/q.169

We summarize the proposed dynamic penalized spline estimation al-170

gorithm as follows. Given an initial knot sequence κ0, the spline order171

p and the penalty order q, the values of ν and α for knot insertion, let172

{b0,1, . . . , b0,l0} be a basis of Sκ0,p+1. Let S0, T0, and R0 be zeros in Rl0×l0 ,173

Rl0 , and R, and let Rn =
∑n

i=1 y
2
i .174

In practice, the parameter ν can be chosen to be slightly larger than its175

theoretical bound (2q− 1)/{(2q+ 1)(2q− 3)} given in Theorem 2. Further-176
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for n = 1, 2, . . . do

if n > max{α|κn−1|1/ν , p} then
Let κ∗ be the new knot as defined in (2.4) and (2.5) and

κn = κn−1 ∪ {κ∗};

Choose a basis bn = (bn,1, . . . , bn,ln)T for Sκn,p+1;

Let Cn−1,n−1 be the matrix that

Cn−1,n−1,uv = (bn−1,u, bn−1,v)H1 ;

Let Cn,n−1 be the matrix that Cn,n−1,uv = (bn,u, bn−1,v)H1 ;

Let Qn,n−1 = Cn,n−1C
−1
n−1,n−1;

Let Sn = Qn,n−1Sn−1Q
T
n,n−1 + bn(xn)bn(xn)T,

Tn = Qn,n−1Tn−1 + ynbn(xn) and Rn = Rn−1 + y2n;

else

Let κn = κn−1 and bn = bn−1;

Let Sn = Sn−1 + bn(xn)bn(xn)T, Tn = Tn−1 + ynbn(xn) and

Rn = Rn−1 + y2n;

end

Let Dn =
∫ 1

0
b
(q)
n (x)b

(q)
n (x)Tdx and λn be the minimizer of (2.3);

Let f̃n(x) = bn(x)T(Sn + λnDn)−1Tn;

end

12
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more, α can be tuned using the first batch of samples to achieve a balance177

between the number of knots and the generalized cross-validation scores,178

as shown in our numerical studies. Moreover, after one chooses α in this179

way, the resulting estimates are fairly stable when varying the value of ν180

under the constraint α|κn−1|1/ν < n. This provides practical guidance on181

choosing ν and α, given the penalty order q. We conclude this section by182

noting that the proposed method and algorithm, as well as the theory in the183

next section, can be extended straightforwardly to the case of multivariate184

covariates, with a slight modification.185

3. Theoretical Results186

Before stating the main result, we give a corresponding result on the L2
187

convergence of the standard penalized spline that is novel in the literature.188

The proof is deferred to the Supplementary Material, in which the tech-189

niques are useful in analyzing the dynamic penalized splines. A standard190

condition below is imposed for the penalized spline estimation defined in191

(1.1).192

Assumption 1. f0 ∈ C l([0, 1]) for some l ≥ q, or f0 ∈ H l([0, 1]) for some193

l ≥ q + 1, p ≥ q ≥ 2, where H l([0, 1]) is the Sobolev space slightly larger194

than C l.195
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Recall that ∆i = max1≤j≤ki |κi,j+1 − κij|. Let Fi(x) =
∑i

j=1 1x≥xj/i,196

Ej(x) =
∑i

j=1 1x≥xjεj, and Mj = max0≤x≤1Ej(x), where 1x≥xj is one when197

x ≥ xj, and zero otherwise. We suppose Fn converges to some differentiable198

function F .199

Assumption 2. F is a continuously differentiable probability distribution200

function on [0, 1], such that 0 < minx F
′(x) ≤ maxx F

′(x) <∞.201

Assumption 3. ‖Fn − F‖∞ = Op

(
n−1/2

)
and Mn = Op

(
n1/2

)
.202

When x1, x2, . . . are independent and identically distributed (i.i.d.)203

from the distribution F , it is well known that ‖Fn − F‖∞ = Op

(
n−1/2

)
.204

Furthermore, when ε1, ε2, . . . are zero-mean and independent (also indepen-205

dent of x1, x2, . . . ) with a second moment uniformly bounded by M , from206

Doob’s martingale inequality, one has P (Mn ≥ α) ≤ (nM)1/2/α, for all α >207

0, which implies Mn = Op

(
n1/2

)
. For nonrandom x1, x2, . . . , this assump-208

tion simply corresponds to its nonrandom version ‖Fn − F‖∞ = O
(
n−1/2

)
209

and Mn = O
(
n1/2

)
. When working with a large number of knots, that is,210

the “smoothing spline” scenario in Claeskens et al. (2009), unlike existing211

theories for the penalized spline, we impose neither an explicit assumption212

on the distributions of xi or yi, nor a lower bound on the distance between213

adjacent knots in κn (e.g., Claeskens et al., 2009).214
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Theorem 1. Given Assumptions 1 and 2, there exist constants C1 and C2215

depending on l, p, q, f0, and F . When the following holds,216

‖Fn − F‖∞ λ
− 1

2q
n n

1
2q ≤ C1, λn ≤ C1n, (3.1)

we have217

∥∥∥f0 − f̂n∥∥∥2
2
≤ C2∆

2min{l,p+1}
n + C2λn/n+ C2M

2
nλ
− 1

2q
n n−

4q−1
2q , (3.2)

where f̂n is the standard penalized spline estimation defined in (1.1).218

If we additionally impose Assumption 3, then for D1n
1/(2q+1) ≤ λn ≤219

D2n
1/(2q+1), D1, D2 ∈ (0,∞), and ∆n = Op

{
(λn/n)1/(2min{l,p+1})

}
, we have220

∥∥∥f0 − f̂n∥∥∥2
2

= Op

(
n−

2q
2q+1

)
.

The inequality (3.2) reveals the relation between λn/n and ∆
2min{l,p+1}
n .221

For instance, if (λn/n)−1/(2min{l,p+1}) ≥ C|κn|, for some C, the first term222

∆
2min{l,p+1}
n dominates, which is usually not desired.223

Compared to the conditions assumed in Claeskens et al. (2009), this224

L2 convergence rate does not require a lower bound of mini |κn,i+1 − κn,i| .225

In the second part of the theorem, Assumption 3 and D1n
1/(2q+1) ≤ λn ≤226

D2n
1/(2q+1) together imply (3.1) by noting227

‖Fn − F‖∞ λ
− 1

2q
n n

1
2q = Op(n

1−2q
4q+2 ), λn = o(n).
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Stone (1982) has shown that under certain conditions, if (xi, yi) are sim-228

ple random samples with Eyi = f0(xi) and l = q, the rate Op

{
n−2q/(2q+1)

}
229

is optimal for the integrated squared error. With stronger assumptions,230

Claeskens et al. (2009) showed the convergence rate of the average mean231

squared error (in an empirical sense)
∑n

i=1{f0(xi)−f̂n(xi)}2/n = Op

{
n−2q/(2q+1)

}
232

for a large number of knots, and Op

{
n−(2p+2)/(2p+3)

}
for a small number of233

knots. These results were attained under a stronger condition that, roughly234

speaking, the knots in κn are not far from being equi-spaced.235

Next, we present the result for the proposed dynamic penalized spline236

estimation, which requires several additional assumptions.237

Assumption 4. supi=1,2,...Eε
2
i < ∞, Eεi = 0, for i = 1, 2, . . . Either238

{εi}i=1,2,... are pairwise uncorrelated and independent of {κi}i=1,2,... and239

{xi}i=1,2,..., or {εi}i=1,2,... are pairwise independent and εj is independent240

of κi and xi, for i ≤ j.241

Assumption 5. D1n
1/(2q+1) ≤ λn ≤ D2n

1/(2q+1) for some D1, D2 ∈ (0,∞),242

E∆n = O (n−ν), ‖Fn − F‖2∞ |κ2n+1| = op
(
nξ
)
, and

∑
j≤n:κj+1 6=κj ‖Fj − F‖

2
∞ =243

op
(
nξ
)

for some ν > (2q−1)/{(2q+1)(2q−3)} and ξ = (2q−2)ν+2q/(2q+244

1).245

Assumption 4 is a rather mild condition and is apparently satisfied246

by most situations where xi and κi are commonly assumed to be inde-247
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pendent of εi. Assumption 5 imposes conditions on the distribution of xi248

and the growth of κn, where the spanning ∆n is assumed at a polyno-249

mial order of n, on average. The conditions ‖Fn − F‖2∞ |κ2n+1| = op
(
nξ
)

250

and
∑

j≤n:κj+1 6=κj ‖Fj − F‖
2
∞ = op

(
nξ
)

are actually implied by the stronger251

condition, D3n
ν ≤ |κn| ≤ D4n

ν , which is adopted in most existing works252

on standard spline estimation (e.g., Claeskens et al., 2009; Wang et al.,253

2011; Schwarz and Krivobokova, 2016; Xiao, 2019). Note that the condi-254

tion ‖Fn − F‖2∞ |κ2n+1| = oP (nξ) differs from ‖Fn − F‖2∞ |κn| = oP (nξ).255

Roughly speaking, this assumption requires that the distribution patterns256

of later samples do not differ dramatically from those of earlier ones.257

Theorem 2. Suppose that Assumptions 1–5 hold. Then, we have258

∥∥∥f0 − f̃n∥∥∥2
2

= Op

(
n−

2q
2q+1

)
,

where f̃n is the dynamic penalized spline, as defined in (2.1).259

Note that the results holding in probability is a consequence of the260

random design points {xi}. Our assumptions on Fn are in the form of OP261

or oP , which is the usual case for i.i.d. design points. Replacing those262

assumptions with nonrandom uniform bounds, we arrive at similar results263

for E
∥∥∥f0 − f̃n∥∥∥2.264

Hall and Opsomer (2005), Claeskens et al. (2009), and Xiao (2019) built265
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their arguments on the analyses of matrices. In contrast, our proof deals266

directly with function spaces, which provides a new and general technique.267

Our theory stems from the work of Munteanu (1973), and is adopted268

for penalized splines. Let Z be the Hilbert space L2 × Rn, with the inner269

product defined by270

〈(g1, z11, . . . , z1n), (g2, z21, . . . , z2n)〉Z = λn

∫ 1

0

g1(x)g2(x)dx+
n∑
i=1

z1iz2i.

Let L : Hq → Z be the bounded linear map given by271

Lg =
(
g(q), P1g(x1), . . . , Png(xn)

)
.

We show that272

sup
g
‖g‖22 / ‖Lg‖

2
Z = Op

(
n−1
)

(3.3)

and273 ∥∥∥Lf0 − Lf̃n∥∥∥2
Z

= Op

{
n1/(2q+1)

}
. (3.4)

The first part (3.3) is done by showing that274

sup
g

n ‖g‖22 + λn
∥∥g(q)∥∥2

2
− ‖Lg‖2Z

n ‖g‖22 + λn ‖g(q)‖22
= op(1).

For (3.4), let h = (0, y1, . . . , yn) ∈ Z, and let Q1 : Z → LHq and Q2 : Z →

LSκn,p+1 be orthogonal projection; then, Lf̃n = Q2h and Q2 = Q2Q1. We
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have that

∥∥∥Lf0 − Lf̃n∥∥∥2 = ‖Lf0 −Q2Lf0‖2 +
∥∥∥Q2Lf0 − Lf̂n

∥∥∥2
≤ ‖Lf0 −Q2Lf0‖2 + ‖Q1Lf0 −Q1h‖2 .

From the theory of splines in Schumaker (2007), there exists s ∈ Sκn,p+1275

and C > 0 such that276

∥∥∥f (r)
0 − s(r)

∥∥∥
q
≤ C∆l−r ∥∥f (l)

n

∥∥
q
, 0 ≤ r ≤ l − 1;

thus,277

‖Lf0 −Q2Lf0‖2 ≤ {1 + op(1)}
(
n ‖f0 − s‖22 + λn

∥∥∥f (q)
0 − s(q)

∥∥∥2
2

)
= Op

{
n1/(2q+1)

}
.

We may also show ‖Q1Lf0 −Q1h‖2 = Op

{
n1/(2q+1)

}
from the fact that278

‖Q1Lf0 −Q1h‖ = sup
g∈Hq

〈Lg, Lf0 − h〉Z
‖Lg‖

.

A detailed proof is given in the online Supplementary Material. To279

prove the standard penalized spline estimation, we replace the definition of280

L with Lg =
(
g(q), g(x1), . . . , g(xn)

)
.281
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4. Numerical Study282

4.1 Simulated examples283

We generate independent x1, x2, . . . and ε1, ε2, . . . in simulation studies. For284

the first example, let xi be uniformly distributed on [0, 1], εi follow the stan-285

dard normal distributionN(0, 1), and f0(x) = 50(x−0.5) exp {−100(x− 0.5)2} .286

We consider fitting this model with two smoothness/penalty settings,287

p = 3, q = 2 or p = 4, q = 3. Starting with an initial κ1 = {0, 0.2, 0.4, 0.6, 0.8, 1},288

we take ν = 2/3 for the former setting, and ν = 1/3 for the latter. We289

evaluate the performance of the dynamic and standard penalized spline es-290

timations with various values of α, and the total sample size is 5 × 104.291

We calculate the bias, variance, and total mean squared error, denoted by292

L2
bias = ‖f0−Ef̃n‖22, L2

var = E‖f̃n−Ef̃n‖22, and L2
err = E‖f0− f̃n‖22, respec-293

tively, by averaging over 1000 Monte Carlo runs. The results are shown in294

the Table 1, and show that the dynamic penalized estimation performs as295

well as the standard method, regardless of whether one uses the common296

equi-spaced knots or the knots chosen by the dynamic method (the knot size297

is equal to |κn|). This provides empirical support that the potential preci-298

sion loss caused by modifying the target function (1.1) is numerically negli-299

gible. Note that we fixed ν slightly larger than (2q−1)/{(2q+1)(2q−3)} in300
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each smooth/penalty setting, and that the estimation with different values301

of α appears fairly stable. Note too that the dynamic updates need only302

the previous-step estimates when using newly added data.303

To see the influence of α and ν, we first fix ν slightly larger than its the-304

oretical lower bound, as above, and tune α with the first batch of samples.305

Fig. 1 shows the generalized cross-validation scores versus different values306

of α for the first 500, 1000, and 1500 samples. We see that α = 2 appears307

to reasonably balance the knot size and performance for p = 3, q = 2, and308

ν = 2/3, because a larger α encourages fewer knots and potentially elevates309

the estimation error. Analogously, we may choose α = 0.04 for the case of310

p = 4, q = 3, and ν = 1/3. Furthermore, the number of samples has little311

impact on the choice of α when it is adequate. Moreover, with this selected312

α, the influence on the generalized cross-validation score from the choice of313

ν is fairly minor, as shown in Fig. 2. This provides empirical support on314

how to choose ν and α in practice, and the performance is relatively stable315

in a wide range of α (and ν).316

Our method and theory can be extended naturally to modeling multi-317

dimensional yi; the algorithm for choosing new knots remains unchanged.318

In the second example, we let yi be a bivariate response. With f0(x) =319

(g(x) sinx, g(x) cosx)T, where g(x) = (2πx + 20πx3)/(1 + x3), εi follows320
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Table 1: Results of our first simulated example with the total sample size

5 × 104. The abbreviation DS stands for the proposed dynamic penalized

estimation, PS1 for the standard penalized spline estimation with λn tuned

by generalized cross-validation and the knots equi-spaced on [0, 1] with the

size equal to |κn| of the dynamic method, and PS2 for the standard penalized

spline estimation with the knots κn from the dynamic method. Shown

are the Monte Carlo averages over 1000 runs for L2
bias = ‖f0 − Ef̃n‖22,

L2
var = E‖f̃n − Ef̃n‖22, and L2

err = E‖f0 − f̃n‖22, all multiplied by 104 for

visualization.

p, q, ν α
L2
bias L2

var L2
err

DS PS1 PS2 DS PS1 PS2 DS PS1 PS2

3, 2, 2/3

1 2.25 2.26 2.26 18.9 18.9 18.9 21.1 21.2 21.2

2 2.13 2.16 2.16 18.7 18.6 18.6 20.9 20.8 20.8

4 2.29 2.36 2.36 18.8 18.5 18.5 21.1 20.9 20.9

4, 3, 1/3

.02 1.38 1.39 1.39 17.2 17.2 17.1 18.6 18.6 18.5

.04 1.29 1.28 1.27 17.1 17.1 17.1 18.4 18.4 18.3

.08 1.24 1.27 1.23 17.4 17.3 17.3 18.6 18.6 18.5
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Figure 1: Generalized cross-validation scores of the first batch of samples

in one Monte Carlo run with various values of α. For the left panel, p = 3,

q = 2, and ν = 2/3; for the right panel, p = 4, q = 3, and ν = 1/3.
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ν=1/2.5
α=0.15ν=1/3

α=0.04
ν=1/3.5
α=0.015

ν=1/4
α=0.005

Figure 2: Generalized cross-validation scores of the first 1500 samples in

one Monte Carlo run with various values of ν, where the parameter α is

tuned as in Fig. 1. For the left panel, p = 3 and q = 2, where ν is subject

to a lower bound constraint at 3/5. For the right panel, p = 4 and q = 3,

where the lower bound constraint is 5/21.
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the bivariate standard normal distribution, and the other parameters are321

as in the first example. The penalized spline estimation is performed in322

two fittings, where the smoothness/penalty parameters (and the associated323

values of ν and α) are given by p = 3, q = 2, ν = 2/3, α = 100 and324

p = 4, q = 3, ν = 1/3, α = 0.4, respectively, and the total sample size325

is 5 × 104. To appreciate the influence of the knot placement offered by326

the dynamic estimation, we compare the proposed method to the standard327

method using equi-spaced knots, with the same knot size equal to |κn|. For328

the first setting, L2
err averaged over 1000 Monte Carlo runs for the proposed329

and standard methods are 1.563×10−3 and 1.530×10−3, respectively, where330

both the bias and the variance are similar. For the second setting, we have331

an L2
err of 1.51×10−3 from the dynamic estimation (L2

bias = 2.46×10−4 and332

L2
var = 1.26× 10−3), and 2.59× 10−3 from the standard estimation (L2

bias =333

1.48× 10−3 and L2
var = 1.11× 10−3, respectively). As shown in Fig. 3, for334

the first setting, the dynamic estimation is close to the standard estimation.335

For the second, our method seems to put more knots at large values of x336

with high curvature, which reduces the approximation bias substantially,337

but at the cost of a slightly larger variance. We also report in Table 2 the338

average computation time of each single update of our algorithm on our339

computer with an Intel i5-6500 CPU. This time is much faster than that340
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Figure 3: A Monte Carlo run of the second simulated example. The left

panel is under the setting p = 3, q = 2, ν = 2/3, α = 100, and the right

one is under the setting p = 4, q = 3, ν = 1/3, α = 0.4. The solid line

is the proposed dynamic estimation, the dash line is the estimation of the

standard penalized spline estimation with equi-spaced knots of size |κn|,

and the dotted line is the underlying f0.

of the standard penalized spline estimation using a full sample of n = 1500341

for empirical illustration.342

4.2 A real example343

We present an application to a regression of power plant output. The data344

set comes from Tüfekci (2014), and contains 9568 data points collected from345

a combined cycle power plant over six years, 2006–2011, when the power346

plant was set to work with a full load. The features include the ambient347
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Table 2: Computation time comparison in various settings with sample

size n = 1500, for illustration. The table shows the average time of a

single update on a computer with an Intel i5-6500 CPU, and the time of

a full computation of the standard penalized spline estimation, both in

milliseconds.

p, q, ν α Avg. update time(ms) Std. method(ms)

3, 2, 2/3

1 0.8 24

2 0.5 19

4 0.3 6

4, 3, 1/3

0.02 0.2 19

0.04 0.2 14

0.08 0.2 13
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temperature (AT), measured in whole degrees Celsius, and the full load348

electrical power output (PE), measured in megawatts; see Fig 4(a).349

We perform a penalized spline regression using the proposed dynamic350

method and the standard method measuring E(PE|AT ), where xi is the351

AT of the ith observation, scaled to [0, 1], and yi is the PE of the ith352

observation. We perform the regression with two settings, q = 2, p = 3,353

ν = 2/3 and q = 3, p = 4, ν = 1/3. We first obtain estimations with various354

α on 500 data points, shown in (b) and (d) of Fig 4. From the generalized355

cross-validation scores, we see that α = 2 (or 0.125) is an adequate choice356

for adding knots in the first (or the second) setting. Then, we carry out the357

proposed and standard methods on the full data set, denoting the estimates358

by f̃ and f̂ (with the same number of knots as the proposed method, but359

equi-spaced on [0, 1]), respectively. We measure the relative L2 difference360

between f̃ and f̂ , ‖f̃ − f̂‖2/‖f̂‖2, which is 1.268× 10−4 for the first setting361

and 8.478 × 10−5 for the second. This suggests there is little difference362

between using the dynamic updates in a streaming manner and performing363

a standard estimation using the full data. We also performed a 10-fold cross-364

validation measuring average mean squared prediction error, finding nearly365

identical results the for dynamic and standard estimations in both settings366

(not reported for conciseness) . This empirically supports our theory for367
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the dynamic penalized splines. Fig. 4 (c) and (e) show that the estimates368

obtained by the two methods are visually indistinguishable.369

Supplementary Material370

The auxiliary lemmas and proofs of the main theorems are deferred to371

the online Supplementary Material.372
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Figure 4: Illustration of the power plant data set. Panels (b) and (d) are

plotted under the setting q = 2, p = 3, and ν = 2/3, while (c) and (e) are
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