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Abstract: This paper presents a simple and efficient estimation of the average

treatment effect (ATE) and local average treatment effect (LATE) in models

with unmeasured confounders. In contrast to existing studies that estimate some

unknown functionals in the influence function either parametrically or semipara-

metrically, we do not model the influence function nonparametrically. Instead,

we apply the calibration method to a growing number of moment restrictions to

estimate the weighting functions nonparametrically, and then estimate the ATE

and LATE by substitution. The calibration method is similar to the covariate-

balancing method in that both methods exploit the moment restrictions. The

difference is that the calibration method imposes the sample analogue of the
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moment restrictions, whereas the covariate-balancing method does not. A sim-

ulation study reveals that our estimators have good finite-sample performance

and outperform existing alternatives. An application to an empirical analysis of

return to education illustrates the practical value of the proposed method.

Key words and phrases: Average treatment effect; Endogeneity; Local average

treatment effect; Semiparametric efficiency; Unmeasured confounders

1. Introduction

A common approach to account for individual heterogeneity in the

treatment evaluation literature on observational data is to assume that

there exist confounders and that, conditional on those confounders, there

is no systematic selection into the treatment. This assumption is called

the Unconfounded Treatment Assignment condition (e.g., Rosenbaum and

Rubin (1983)). Under this condition, the average treatment effect (ATE)

is identified and many estimation methods have been proposed, including

weighting methods (Hirano, Imbens, and Ridder (2003; HIR, hereafter),

Huang and Chan (2017)), imputation methods (Rosenbaum (2002)), re-

gression methods (Chen, Hong, and Tarozzi (2008)), matching methods

(Abadie and Imbens, 2006), and covariate-balancing methods (Imai and

Ratkovic, 2014). See Imbens and Wooldridge (2009), Ge and Zhou (2020)

and He and Xiao (2020) for applications of the ATE.
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ATE WITH UNMEASURED CONFOUNDERS 3

A key requirement in this literature is that all confounders are mea-

sured. If some confounders are unmeasured and left out of the conditioning

arguments, the Unconfounded Treatment Assignment condition may not

hold, and consequently the ATE may not be identified. Indeed, the ATE

may still be unidentified, even if the standard instrumental variable con-

dition is satisfied (e.g., Imbens and Angrist (1994)). Thus, to identify the

ATE (or some version of the ATE), additional restrictions must be imposed

either on the model specification or on the instrument (or both). For ex-

ample, Wang and Tchetgen Tchetgen (2018) imposed restrictions on the

model specification. They showed that the ATE is identified if (i) there is

no additive interaction among the instrument-unmeasured confounders in

the treatment probability, conditional on all the confounders and the instru-

ment, or (ii) there is no additive interaction among the treatment status-

unmeasured confounders in the expectation of the potential outcomes, con-

ditional on all the confounders. They derived the influence function, which

contains five unknown functionals. They parameterized all five functionals,

estimated those functionals using appropriate parametric approaches, and

estimated the ATE by plugging in the estimated functionals. They showed

that their ATE estimator is consistent if certain functionals are correctly

parameterized, and that it attains the semiparametric efficiency bound if
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all the functionals are correctly specified.

In constrat, Imbens and Angrist (1994) imposed restrictions on the

instrumental variable. They showed that if the treatment variable is mono-

tone in the instrumental variable for the complier subpopulation, the ATE

for the complier subpopulation (i.e., the local average treatment effect

(LATE)) is identified. Frölich (2007) extended this local identification re-

sult to include confounders. He computed the efficiency bound of the LATE

and derived the influence function, which contains four functionals. He then

estimated all four functionals nonparametrically, and estimated the LATE

by plugging in the estimated functionals. He showed that his LATE es-

timator attains the semiparametric efficiency bound. Donald, Hsu, and

Lieli (2014b,a) proposed an inverse probability weighting method for the

LATE. However, Kang and Schafer (2007) argued that the method is likely

to produce extreme weights and unstable estimates.

In this paper, we propose a simple and efficient estimation of both

the ATE and the LATE by extending the calibration method developed

by Chan, Yam, and Zhang (2016). The calibration method estimates the

weighting functions by solving the sample analogue of the moment restric-

tions. We then estimate the ATE and LATE by plugging in the estimated

weighting functions. We show that our estimators of the ATE and LATE
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are efficient, attaining their respective semiparametric efficiency bounds.

Note that the covariate-balancing method developed by Imai and Ratkovic

(2014) for the weighting functions also exploits the same moment restric-

tions, although it does not necessarily solve the sample analogue. Imai

and Ratkovic (2014) argued that the imposition of those moment restric-

tions produces covariate-balancing weights that improve the performance

of their matching and weighting estimators. Because our method and the

covariate-balancing method share the same idea, our method is expected

to produce a stable plug-in estimator with good finite-sample performance.

Furthermore, we argue that the imposition of the sample analogue of the

moment restrictions delivers the efficiency of the plug-in estimator.

In contrast to existing methods that estimate some unknown functionals

in the influence function either parametrically or semiparametrically, our

method has the advantage of not modeling the influence function, thereby

avoiding potential model misspecification bias. Even if all methods have

the same asymptotic properties, our method may have the advantage of

being more stable and showing better finite-sample performance because

our weights are estimated directly instead of computed as the inverse of the

estimated probabilities.

The remainder of the paper is organized as follows. Section 2 describes
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the basic framework. Section 3 presents the estimation of the ATE, and

Section 4 derives its large-sample properties. Section 5 presents a consistent

variance. Section 6 describes the estimation of the LATE and derives its

large-sample properties. Because the proposed procedure depends on the

smoothing parameter, Section 7 presents a data-driven method for deter-

mining this parameter. Section 8 evaluates the finite-sample performance

of the proposed estimators using a small simulation study, and Section 9

illustrates the practical value of our method by revisiting a return to ed-

ucation study. Section 10 contains a brief discussion. All technical proofs

are relegated to the Supplementary Material.

2. Basic Framework

2.1 The ATE

Let D ∈ {0, 1} denote the binary treatment variable, and let Y (1) and

Y (0) denote the potential outcomes when an individual is assigned to the

treatment and control groups, respectively. The parameter of interest is

the ATE τ = E[Y (1) − Y (0)]. The estimation of τ is complicated by the

confounders and the fact that Y (1) and Y (0) are not observed simultane-

ously. We use X to denote the measured confounders and U to denote

the unmeasured confounders. When all the confounders are measured, the
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following condition identifies τ :

Assumption 1. (Y (0), Y (1)) ⊥ D|(X,U).

When U is unmeasured and omitted from the conditioning argument,

(Y (0), Y (1)) ⊥ D|X may not hold, resulting in the classical omitted vari-

able problem. To tackle this problem, the instrumental variable method is

often preferred. Let Z ∈ {0, 1} denote the variable satisfying the classical

instrumental variable condition:

Assumption 2. (i) ∀z, d, Y (z, d) = Y (d), where Y (z, d) is the response

that would be observed if a unit were exposed to d and the instrument had

taken value z; (ii) Z ⊥ U |X; and (iii) Z 6⊥ D|X.

Wang and Tchetgen Tchetgen (2018) showed that Assumptions 1 and

2 alone do not identify τ . However, if one of the following conditions also

holds:

� Condition (a): E[D|Z = 1, X, U ] − E[D|Z = 0, X, U ] = E[D|Z =

1, X]− E[D|Z = 0, X] and

� Condition (b): E[Y (1)− Y (0)|X,U ] = E[Y (1)− Y (0)|X],

then τ is identified as τ = E[δ(X)], with δ(X) = δY (X)/δD(X), where

δD(X) := E[D|Z = 1, X]− E[D|Z = 0, X] and δY (X) := E[Y |Z = 1, X]−
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E[Y |Z = 0, X]. Wang and Tchetgen Tchetgen (2018) derived the influence

function as

ϕeff (D,Z,X, Y ) =
2Z − 1

f(Z|X)

1

δD(X)

{
Y −Dδ(X)− E[Y |Z = 0, X]

+ E[D|Z = 0, X]δ(X)

}
+ δ(X)− τ, (2.1)

where f(Z|X) is the conditional probability mass function of Z, given X.

The semiparametric efficiency bound of τ is Veff = E[ϕeff (D,Z,X, Y )2].

Because the influence function depends on five unknown functionals, namely,

δ(X), δD(X), f(Z|X), E[Y |Z = 0, X], and E[D|Z = 0, X], they proposed

parameterizing all five functionals, estimated the functionals using appro-

priate parametric methods, and estimated τ by plugging in the estimated

functionals. They showed that their estimator of τ is consistent and asymp-

totically normally distributed if

� δ(X), δD(X), E[Y |Z = 0, X], and E[D|Z = 0, X] are correctly speci-

fied,

� δD(X) and f(Z|X) are correctly specified, or

� δ(X) and f(Z|X) are correctly specified,

and their estimator only attains the semiparametric efficiency bound when

all five functionals are correctly specified. However, their estimator is ineffi-
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cient if any functional is misspecified, and inconsistent if δD(X) and f(Z|X)

are incorrectly specified.

2.2 The LATE

Wang and Tchetgen Tchetgen (2018) achieved the global identification of

the ATE by restricting the model specification. Imbens and Angrist (1994)

and Frölich (2007) achieved the local identification of the ATE by restricting

the instrumental variable. Specifically, let D(z) ∈ {0, 1} denote a binary

potential treatment indicator when the instrument takes the value Z = z.

The observed treatment variable is D = ZD(1)+(1−Z)D(0). Suppose that

the treatment status is monotone in instrument (i.e., P (D(1) < D(0)|X) =

0 ). The LATE is identified as

τLATE = E[Y (1)− Y (0)|D(1) > D(0)] =
E[δY (X)]

E[δD(X)]
.

Frölich (2007) derived the influence function of τLATE (see Section 7 of the

Supplemental Material). He proposed a plug-in estimator of τLATE by esti-

mating the functionals E[Y |X,Z = 0], E[Y |X,Z = 1], E[D|X,Z = 0], and

E[D|X,Z = 1] nonparametrically, and showed that his estimator attains

the semiparametric efficiency bound. Based on the alternative expression

τLATE =
E[(2Z − 1)Y/f(Z|X)]

E[(2Z − 1)D/f(Z|X)]
,

Statistica Sinica: Preprint 
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Donald, Hsu, and Lieli (2014b) and Donald, Hsu, and Lieli (2014a) proposed

estimating f(Z|X) nonparametrically, and estimated τLATE by plugging

in. However, Kang and Schafer (2007) argued that this inverse probability

weighting method is sensitive to small values of the estimated f(Z|X).

3. Estimation of the ATE

3.1 Motivation

To motivate our estimation, we rewrite τ as

τ = E
[{

2Z − 1

f(Z|X)

}
Y

δD(X)

]
. (3.1)

In the case of D = Z, τ is simplified to τ = E [(2D − 1)Y/f(D|X)],

which can be estimated using the inverse propensity score method (HIR,

Imai and Ratkovic (2014)). In other cases, we have to invert two func-

tions: f(Z|X) and δD(X). In principle, we can replace these functions

with some consistent estimates, and estimate τ by plugging in. Although

there are many methods to estimate these functions, not all plug-in esti-

mators of τ are efficient (see HIR). For example, if f(Z|X) and δD(X) are

known, the sample average of (3.1) has the asymptotic variance Vineff =

E
[{(

2Z−1
f(Z|X)

)
Y

δD(X)
− τ
}2
]
, which is greater than the semiparametric effi-

ciency bound V eff . Hahn (1998) and HIR established the same result for
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their models.

Note that f(Z|X) and δD(X) satisfy the following restrictions:

E
[
Zf−1(Z|X)u(X)

]
= E[u(X)] = E

[
(1− Z)f−1(Z|X)u(X)

]
(3.2)

and E
[
δD(X)u(X)

]
= E

[
D
{

(2Z − 1)f−1(Z|X)u(X)
}]

(3.3)

hold for any integrable function u(X). Using these restrictions, Wang and

Tchetgen Tchetgen (2018) proposed parametric estimators for f(Z|X) and

δD(X). Motivated by this insight, we propose an alternative estimation of

τ based on the complete model. We first verify that (3.2) and ( 3.3) identify

f−1(Z|X) and δD(X). Let w(Z|X) denote an arbitrary function of (Z,X),

and let d(X) denote an arbitrary function of X. The following theorem is

proven in the Supplemental Material.

Theorem 1. For any integrable function u(X),

E [Z · w(Z|X)u(X)] = E[u(X)] = E [(1− Z)w(Z|X)u(X)] (3.4)

and E [d(X)u(X)] = E [D {(2Z − 1)w(Z|X)u(X)}] (3.5)

hold if and only if w(Z|X) = f−1(Z|X) and d(X) = δD(X), almost surely.

There are two difficulties with identifying restrictions (3.4) and (3.5).

First, they hold on the entire functional space. In practice, it is impossible

to solve an infinite number of moment restrictions. Second, the unknown
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functions f−1(Z|X) and δD(X) are infinite dimensional. It is impossible to

estimate an infinite-dimensional parameter from finite samples. To over-

come both difficulties, we follow the sieve literature by approximating the

original functional space using a finite-dimensional sieve space. Specifically,

let uK(X) = (uK,1(X), . . . , uK,K(X))> denote known basis functions that

can approximate any integrable function u(X) arbitrarily well as K goes to

infinity (see HIR). The linear sieve space spanned by uK(X) is an approx-

imation of the original functional space. The sieve version of (3.4)–(3.5)

is

E [Z · w(Z|X)uK(X)] = E[uK(X)] = E [(1− Z)w(Z|X)uK(X)] , (3.6)

E [d(X)uK(X)] = E [D {(2Z − 1)w(Z|X)uK(X)}] . (3.7)

Because the sieve space is a subspace of the original functional space,

w(Z|X) = f−1(Z|X) and d(X) = δD(X) is still a solution to (3.6) and

(3.7), but not the only one. For example, for any globally concave and in-

creasing function ρ(v), let λK ∈ RK and βK ∈ RK maximize the objective

function:

G(λ, β) = E
[
Zρ(λ>uK(X))− λ>uK(X)

]
+E

[
(1− Z)ρ(β>uK(X))− β>uK(X)

]
.

Denote wK(Z|X) = Zρ′(λ>KuK(X))+(1−Z)ρ′(β>KuK(X)). For any globally
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concave function ρ1(v), let γK ∈ RK maximize the objective function:

H(γ) = E
[
ρ1(γ>uK(X))−D {(2Z − 1)wK(Z|X)} × γ>uK(X)

]
.

Denote dK(X) = ρ′1(γ>KuK(X)). Then, (wK(Z|X), dK(X)) solves (3.6) and

(3.7). Because there are infinite choices in ρ(v) and ρ1(v), there is an infinite

number of solutions. While all these solutions converge to f−1(Z|X) and

δD(X) as K → +∞, not all of them satisfy the boundedness condition:

wK(Z|X) > 1 and −1 ≤ dK(X) ≤ 1. The functions ρ(υ) = υ − exp(−υ)

and ρ1(υ) = − log(eυ + e−υ) produce a solution satisfying the boundedness

condition, and thus are adopted in this study.

3.2 Estimation

We now implement the above idea in finite samples. Let {Yi, Xi, Zi, Di}Ni=1

denote a sample drawn independently from the joint distribution of (Y,X,Z,D).

The sample analogue of G(λ, β) is

Ĝ(λ, β) =
1

N

N∑
i=1

{
Ziρ(λ>uK(Xi))− λ>uK(Xi)

}
(3.8)

+
1

N

N∑
i=1

{
(1− Zi)ρ(β>uK(Xi))− β>uK(Xi)

}
.

Denote (λ̂K ,β̂K) = arg maxλ,β Ĝ(λ, β) and

ŵK(Zi|Xi) = Ziρ
′(λ̂>KuK(Xi))+(1−Zi)ρ′(β̂>KuK(Xi)), i = 1, 2, ..., N. (3.9)
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The sample analogue of H(γ) is

Ĥ(γ) =
1

N

N∑
i=1

ρ1(γ>uK(Xi))−
1

N

N∑
i=1

Di{(2Zi− 1)ŵK(Zi|Xi)} · γ>uK(Xi).

With γ̂K = arg maxγ Ĥ(γ) and d̂K(Xi) = ρ′1(γ̂>uK(Xi)) for i = 1, 2, ..., N ,

we have that (ŵK(Zi|Xi), d̂K(Xi)) for i = 1, 2, ..., N is a solution to

1

N

N∑
i=1

Ziw(Zi|Xi)uK(Xi) =
1

N

N∑
i=1

uK(Xi) =
1

N

N∑
i=1

(1− Zi)w(Zi|Xi)uK(Xi), (3.10)

1

N

N∑
i=1

d(Xi)uK(Xi) =
1

N

N∑
i=1

Di {(2Zi − 1)w(Zi|Xi)uK(Xi)} . (3.11)

In Section 4 of the Supplemental Material, we show that (ŵK(Z|X), d̂K(X))

is a consistent estimator of (f−1(Z|X), δD(X)).

The question now is whether the plug-in of (ŵK(Z|X), d̂K(X)) delivers

the efficiency of τ . There are two hopeful signs. First, the semiparametric

efficiency bound of τ suggests the importance of the restrictions (3.10) and

(3.11); (ŵK(Z|X), d̂K(X)) satisfies these restrictions. Second, note that

(ŵK(Z|X), d̂K(X)) is the dual solution to a calibration problem similar to

those studied by Hainmueller (2012), Chan, Yam, and Zhang (2016), Zhao

(2019), Ai, Huang, and Zhang (2020) and Ai, Linton, Motegi, and Zhang

(2021). The calibration method seeks to solve the restrictions (3.10 ) and

(3.11), and at the same time, choose the weights closest to the prespeci-

fied design weights, say, q = (q1, ..., qN). For example, the corresponding

calibration problem for ρ(υ) = υ − exp(−υ) and the estimated weights
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(ŵK(Zi|Xi), i = 1, 2, ..., N) is

min
w(.|.)

N∑
i=1

D (w(Zi|Xi), qi) subject to (3.10),

with uniform weights q = (2, ..., 2) and distance measure D(υ, 2) = (υ −

1) log(υ − 1) − (υ − 1) + 1 (see Chan, Yam, and Zhang (2016, Appendix

B) for the derivation). The corresponding calibration problem for ρ1(υ) =

− log(eυ + e−υ) and the estimated weights (d̂K(Xi), i = 1, 2, ..., N) can be

constructed similarly. This equivalence result suggests that our estimated

weights have some optimality property that could help the efficiency of the

plug-in estimator.

Our method for estimating the weights is similar to the covariate-

balancing method proposed by Imai and Ratkovic (2014). For example,

they modeled f(Z|X) by f(Z|X; ς), with ς ∈ RL, and proposed estimating ς

from the moment restriction E [Zf−1(1|X; ς)g(X)] = E[g(X)], where g(X)

is a prespecified M -dimensional vector of known functions with M ≥ L,

using the generalized method of moments or empirical likelihood method.

Their estimator of ς may not solve the sample analogue of the above moment

restriction when M > L, and they considered fixed M . They showed that

their covariate-balancing method improves the performance of their match-

ing and weighting estimators. In contrast, we estimate f−1(1|X) nonpara-

metrically by solving the sample analogue of E [Zf−1(1|X)g(X)] = E[g(X)].
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In addition, the number of moment restrictions M must grow to ensure

the consistency of the nonparametric estimate. Despite this difference,

our method and the covariate-balancing method share the same idea. In

this sense, our method should be viewed as an extension of the covariate-

balancing method to nonparametric estimation. Our estimated weights are

called covariate-balancing weights, and our plug-in estimator is called the

covariate-balancing estimator (CBE).

Using the covariate-balancing weights, we estimate τ by plugging in

τ̂ =
1

N

N∑
i=1

{(2Zi − 1)ŵK(Zi|Xi)}Yi
d̂K(Xi)

.

Relative to existing estimators of τ , our plug-in estimator τ̂ has at least

two advantages. First, ŵK(Z|X) and d̂K(X) satisfy the restrictions (3.10)

and (3.11), which improves the performance of the estimated ATE. If the

number of moment restrictions (i.e., K) is sufficiently large, our method is

unlikely to produce extreme weights, thereby improving the finite-sample

performance of τ̂ (see Imai and Ratkovic (2014) for a simulation study of

how the covariate-balancing method dramatically improves the poor per-

formance of the propensity score matching and weighting estimator, as re-

ported by Kang and Schafer (2007)). Second, our estimator does not require

modeling any functionals, and is always efficient.

How do the design weights affect the plug-in estimator (see also Hain-
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mueller (2012, Section 3.3))? For instance, we could use some initial con-

sistent estimate of f−1(Z|X) as the design weights, or even f−1(Z|X). We

show in Section 8 of the Supplementary Material that these design weights,

uniform or not and estimated or not, do not influence the asymptotic ef-

ficiency of τ . This is not surprising, because the weighting functions are

determined uniquely by the moment restrictions, not by the design weights.

In finite samples, Hainmueller (2012) and Zhao (2019) argued in favor of

uniform design weights, regardless of the true design weights. In light of

their argument, we employ uniform design weights in this study.

4. Large-Sample Properties

To establish the large-sample properties of τ̂ , we impose the following as-

sumptions:

Assumption 3. E
[

1
δD(X)2

]
<∞ and E

[
Y 2

δD(X)4

]
<∞.

Assumption 4. The support X of the r-dimensional covariate X is a

Cartesian product of r compact intervals.

Assumption 5. There exist two positive constants C and C, such that

0 < C ≤ λmin

(
E
[
uK(X)u>K(X)

])
≤ λmax

(
E
[
uK(X)u>K(X)

])
≤ C <∞,
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where λmax

(
E
[
uK(X)u>K(X)

])
(resp. λmin

(
E
[
uK(X)u>K(X)

])
) denotes the

largest (resp. smallest) eigenvalue of E
[
uK(X)u>K(X)

]
.

Assumption 6. There exist three positive constants ∞ > η1 > η2 > 1 >

η3 > 0, such that η2 ≤ f−1(z|x) ≤ η1 and −η3 ≤ δD(x) ≤ η3, ∀(z, x) ∈

{0, 1} × X .

Assumption 7. There exist λK, βK, and γK in RK and α > 0, such that

for any z ∈ {0, 1},

sup
x∈X

∣∣(ρ′−1
(
f−1(z|x)

)
− z · λ>KuK(x)− (1− z) · β>KuK(x)

∣∣ = O(K−α),

sup
x∈X

∣∣(ρ′−1
1

(
δD(x)

)
− γ>KuK(x)

∣∣ = O(K−α).

Assumption 8. ζ(K)4K3/N → 0 and
√
NK−α → 0, where ζ(K) =

supx∈X ‖uK(x)‖ and ‖ · ‖ is the usual Frobenius norm defined by ‖A‖ =√
tr(AA>), for any matrix A.

Assumption 3 is needed to bound the asymptotic variance. This condi-

tion is satisfied if for each X, the correlation between the instrument and the

treatment variable is bounded away from zero. Assumption 4 restricts the

covariates to be bounded. This condition is admittedly restrictive, but is

commonly imposed in the nonparametric regression literature. Assumption

4 can be relaxed if we restrict the tail distribution of X. For example, Chen,
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Hong, and Tarozzi (2008, Assumption 3) allowed the support of X to be the

entire Euclidean space, but imposed
∫
Rr(1 + |x|2)αfX(x)dx < ∞, for some

α > 0. Assumption 5 rules out near multicollinearity in the approximating

basis functions, and can be satisfied by the orthonormalization of the basis

functions. A condition of this type is familiar in the sieve regression litera-

ture (Chan et al., 2016). Assumption 6 is a matching condition. It requires

that individuals in the treatment and control groups can be matched, and

that individuals in the group when Z = 1 and the group when Z = 0 can

be matched. The second part of the matching condition is satisfied if for

each X, the correlation between the instrument and the treatment variable

is bounded away from one. This condition does not imply the first part of

Assumption 3. For example, if δD(X) = X, with X uniformly distributed

over [−1/2, 1/2], then δD(x) satisfies −η3 ≤ δD(x) ≤ η3 with η3 = 1/2, but

E
[
{δD(X)}−2

]
=∞ does not satisfy the first part of Assumption 3.

Assumption 7 is a condition on the sieve approximation error, requiring

that the error shrinks to zero at a polynomial rate. This condition is satis-

fied by the power series and B -splines with α = s/r, where s measures the

smoothness of the function to be approximated, and r is the dimension of

X. A condition of this type is also common in the sieve regression literature

(e.g., HIR, Chan et al. (2016)).
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Assumption 8 regulates the growing rate of the smoothing parameter

(i.e., K) relative to the sample size. The term ζ(K) depends on the type

of sieve basis uK(X). For example, ζ(K) = O(
√
K) for B-splines, and

ζ(K) = O(K) for power series. In the case of power series, Assumption

8 is satisfied by K = O(Nν), for some r/2s < ν < 1/7, which is weaker

than r/[2(s−2r)] < ν < 1/9, the condition imposed by HIR. Assumption 8

implies that our method suffers from the curse of dimensionality. Hence, we

investigate the potential impact of dimensionality on the performance of our

estimator, and find that our estimator does not perform well when r = 10

(see Section 1.3 of the Supplementary Material). Such dimensionality poses

two problems: the approximation error shrinks to zero slowly, and this error

is difficult to balance in small samples. How to deal with both problems is

an important and interesting topic for future research.

Under these assumptions, the following theorem is proven in the Sup-

plementary Material.

Theorem 2. If Assumptions 3–8 are satisfied, we obtain (i) τ̂
p−→ τ and

(ii)
√
N(τ̂ − τ)

d−→ N(0, Veff ), where Veff is the semiparametric efficiency

bound derived by Wang and Tchetgen Tchetgen (2018).
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5. Estimation of Veff

We now present an easy way to compute the variance for τ̂ . The idea is to

view θ̂ = (λ̂>K , β̂
>
K , γ̂

>
K , τ̂)> as the moment estimator of θ = (λ>, β>, γ>, τ)>,

and then to apply the variance formula of the moment estimator. Specifi-

cally, denote

g1(Z,X; θ) =
{
Zρ′

(
λ>uK(X)

)
− 1
}
uK(X)>,

g2(Z,X; θ) =
{

(1− Z)ρ′
(
β>uK(X)

)
− 1
}
uK(X)>,

g3(Z,D,X; θ) =
{
ρ′1
(
γ>uK(X)

)
−D

{
Z · ρ′

(
λ>uK(X)

)
− (1− Z)ρ′

(
β>uK(X)

)}}
uK(X)>,

g4(Z,D,X, Y ; θ) =
{
Z · ρ′

(
λ>uK(X)

)
− (1− Z)ρ′

(
β>uK(X)

)}
Y/ρ′1

(
γ>uK(X)

)
− τ.

Denote g(Z,D,X, Y ; θ) = (g1(Z,X; θ), g2(Z,X; θ), g3(Z,D,X; θ), g4(Z,D,

X, Y ; θ))>. Then, θ̂ is the moment estimator solving the moment condition

N−1
∑N

i=1 g(Zi, Di, Xi, Yi; θ̂) = 0. If the smoothing parameter K is fixed,

we compute the covariance matrix of the moment estimator θ̂ as V̂θ =

L̂−1 · Ω̂ · (L̂−1)>, where L̂ = N−1
∑N

i=1 ∂g(Zi, Di, Xi, Yi; θ̂)/∂θ and Ω̂ =

N−1
∑N

i=1 g(Zi, Di , Xi, Yi; θ̂)×g(Zi, Di, Xi, Yi; θ̂)
>. Let e3K+1 be a (3K+1)-

dimensional column vector in which the last element is one and the other

elements are zero. Denote

V̂ = e>3K+1

{
L̂−1 · Ω̂ · (L̂−1)>

}
e3K+1.

Then, V̂ is a consistent estimator of Veff . The next theorem proves that

V̂ is still a consistent estimator of Veff , even if K grows rather than being
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fixed.

Theorem 3. Suppose that Assumptions 3–8 are satisfied and E
[

Y 4

δD(X)4

]
<

∞ holds. Then, V̂ is a consistent estimator of Veff .

A weighted bootstrap method can be used to estimate the asymptotic

variance. This is a useful alternative estimator that could have better finite-

sample performance than our variance estimator, although at a somewhat

higher computing cost. For more details, see Cheng (2015).

6. Estimation of the LATE

With the covariate-balancing weights, we estimate the LATE using the

plug-in method. Applying the tower law of conditional expectation, we

obtain

τLATE =
1

E [δD(X)]
· E
[{

2Z − 1

f(Z|X)

}
Y

]
.

The plug-in estimator is given by

τ̂LATE =
N∑
i=1

{(2Zi − 1)ŵK(Zi|Xi)}Yi
/ N∑

j=1

d̂K(Xj),

and its large-sample properties are summarized in the following theorem.

Theorem 4. Under Assumptions 3–8, we have
√
N(τ̂LATE − τLATE)

d−→

N(0, VLATE), where VLATE is the semiparametric efficiency bound derived

by Frölich (2007).
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A consistent estimator of VLATE can be constructed using the same

approach as in Section 5.

7. Data-Driven Smoothing Parameter

The large-sample properties of the proposed estimators permit a wide range

of values of K. This presents a dilemma for applied researchers who

have only one finite sample, and would like to have some guidance on the

smoothing parameter. In this section, we present a data-driven approach

to determine K. Note that f(Z|X)−1 and δD(X) satisfy the following re-

gression equations: E [Zf−1(Z|X)|X] = 1 = E [(1− Z)f−1(Z|X)|X] and

E [D{2Z − 1}f−1(Z|X)|X] = δD(X). We choose the smoothing parame-

ter to minimize the mean squared errors of the above moment conditions.

Because there are two unknown functions, we use two smoothing param-

eters, K1 and K2. Let (λ̂K1 , β̂K1) denote the maximizer of Ĝ(λ, β), with

uK(Xi) replaced by uK1(Xi), and let γ̂K2 denote the maximizer of Ĥ(γ),

with uK(Xi) replaced by uK2(Xi) and ŵK(Zi|Xi) replaced by ŵK1(Zi|Xi).

The penalized mean squared errors are defined by

pMSE1(K1) =

∑N
i=1 {ZiŵK1(Zi|Xi)− 1}2 + {(1− Zi)ŵK1(Zi|Xi)− 1}2

(1− (K2
1/N))2

,

pMSE2(K1, K2) =

∑N
i=1

{
Di(2Zi − 1)ŵK1(Zi|Xi)− d̂K2(Xi)

}2

(1−K2
2/N)2

.
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We chooseK1 andK2 to minimize pMSE1 and pMSE2. Specifically, denote

the upper bound of K1 and K2 by K̄1 and K̄2, respectively. The data-

driven K1 and K2 are computed as K̂1 = arg minK1∈{1,...,K̄1} pMSE1(K1)

and K̂2 = arg minK2∈{1,...,K̄2} pMSE2(K̂1, K2).

8. Simulation Studies

In this section, we conduct and report a simulation study with a one-

dimensional covariate to evaluate the finite-sample performance of our ATE

estimator. We consider a scenario identical to the design in Wang and

Tchetgen Tchetgen (2018), which contains a univariate covariate. The sce-

nario of multivariate covariates is relegated to the Supplemental Material

because of space constraints. We also conduct simulation studies of the

finite-sample performance of the LATE estimator; these results are also

reported in the Supplemental Material. The measured confounders are

X = (1, X1), with X1 uniformly distributed on (−1,−0.5) ∪ (0.5, 1). The

unmeasured confounder U is a Bernoulli random variable with mean 0.5.
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The data-generating process for (Z,D, Y ) is parameterized as

Pr(Z = 1|X,U) = expit(γ>X),

Pr(D = 1|Z,X,U) = pD0 (X) + Z × µD(X) + κ(2U − 1),

Pr(Y = 1|Z,X,U) = pY0 (X) + Z × µY (X) + κ(2U − 1),

where µD(X) = tanh(β>X) and µY (X) = tanh(β>X) × tanh(α>X), and

for j ∈ {D, Y },

pj0(X) =
{ψj(X)− (ψj(X)2 + 4OPj(X){1− µj(X)}{1−OPj(X)})1/2}

2{OPj(X)− 1}
,

with OP j(X) = exp(η>j X) and ψj(X) = OPj(X){2 − µj(X)} + µj(X).

The true values of the model parameters are set to α = (0.1, 0.5)>, β =

(0,−0.5)> , γ = (0.1,−0.5)>, ζ = (0,−1)>, η = (−0.5, 1)>, and κ = 0.1.

The ATE in this case is τ = 0.087.

In each Monte Carlo run, samples of 500 observations and 1000 obser-

vations are generated from the above data-generating process. To evaluate

the performance of our CBE relative to that of alternative estimators pro-

posed in the literature, we compute all estimators for each sample, and

repeat the Monte Carlo run 500 times.

The alternative estimators are the naive estimator, the multiply robust

estimator (MR) and bounded multiply robust estimator (B-MR) proposed

by Wang and Tchetgen Tchetgen (2018), and the estimator proposed by
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HIR. The details of the calculations are given below.

1. The CBE is computed using the power series and the data-driven

smoothing parameters (K1, K2), where the upper bounds K1 and

K2 are set at three in this scenario;

2. The naive estimator is computed as the difference between the group

means of the treatment and the control groups;

3. The MR and B-MR are computed using the procedures proposed by

Wang and Tchetgen Tchetgen (2018). Wang and Tchetgen Tchetgen

(2018) considered several cases in which some or all functionals are

misspecified (i.e., in addition to their models M1, M2, and M3, we

add the case in which all the functions are correctly specified (All),

and the case in which all the functions are misspecified (None)).

4. The HIR estimator is computed as

1

N

N∑
i=1

{
2Zi − 1

Ê(D|Zi = 1, Xi)− Ê(D|Zi = 0, Xi)

}
Yi

Ê(Zi|Xi)
,

where Ê(Zi|Xi) is the fitted value from the logit regression of Zi on

uK1(Xi), Ê(D|Zi = 0, Xi) is the fitted value from the logit regression

of Di on uK2(Xi) using the subsample Zi = 0, and Ê(D|Zi = 1, Xi)

is the fitted value from the logit regression of Di on uK2(Xi) using
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the subsample Zi = 1. The smoothing parameters K1 and K2 are

determined using the data-driven method proposed in Section 7.

Table 1 reports the bias, standard deviation, root mean squared error

(RMSE), and coverage probability (CP) at the nominal size α = 0.95. The

table shows several observations. First, the naive estimator is badly biased,

which is not surprising, because it does not control for the unmeasured con-

founder. Second, the B-MR performs as well as the MR when some of the

functionals (M1,M2) or all of the functionals (All) are correctly specified,

but performs substantially better than the MR when most or all of the func-

tionals are misspecified. The CPs of both the MR and the B-MR are close

to the nominal size in all cases, except when the model is badly misspecified.

Despite outperforming the MR, the B-MR is still biased when the model is

badly misspecified. In most cases, the CP of the HIR estimator is higher

than the nominal size. Fourth, the CBE with the data-driven smoothing

parameters is unbiased and its CP is around the nominal size, suggesting

that the asymptotic theory is a good approximation. Finally, we investigate

the stability of the covariate-balancing weights: {ŵK1(Zi|Xi), d̂K2(Xi)}Ni=1.

In Section 1.2 of the Supplemental Material, we plot their empirical dis-

tributions in the jth Monte Carlo run for j ∈ {50, 100, 150, 200, 250, 300,

350, 400, 450} and N = 500. The plots show that {ŵK1(1|Xi)}Ni=1 are dis-
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Table 1: Simulation results of the estimated ATEs

N = 500

Estimators Bias Stdev RMSE CP

Naive -0.057 0.045 0.073 0.77

MR (All) -0.014 0.146 0.147 0.942

MR (M1) -0.011 0.147 0.147 0.942

MR (M2) -0.021 0.159 0.161 0.952

MR (M3) 16.14 363.67 364.02 0.976

MR (None) -22.90 342.10 342.87 0.982

B-MR (All) -0.006 0.151 0.151 0.942

B-MR (M1) -0.028 0.171 0.174 0.952

B-MR (M2) -0.031 0.210 0.212 0.958

B-MR (M3) -0.007 0.146 0.146 0.942

B-MR (None) 0.110 0.641 0.651 1

HIR -0.014 0.161 0.162 0.954

CBE 0.003 0.152 0.152 0.96

N = 1000

Estimators Bias Stdev RMSE CP

Naive -0.056 0.031 0.064 0.586

MR (All) -0.002 0.100 0.100 0.96

MR (M1) 0.000 0.100 0.100 0.96

MR (M2) -0.008 0.120 0.120 0.954

MR (M3) -43.92 754.17 755.45 0.99

MR (None) -42.84 725.97 727.23 0.988

B-MR (All) 0.003 0.102 0.102 0.966

B-MR (M1) -0.022 0.133 0.135 0.95

B-MR (M2) -0.007 0.138 0.138 0.976

B-MR (M3) -0.003 0.108 0.108 0.958

B-MR (None) 0.299 0.621 0.689 1

HIR -0.015 0.120 0.121 0.956

CBE 0.004 0.110 0.110 0.954
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tributed over the interval [1.25, 2.75], {ŵK1(0|Xi)}Ni=1 are distributed over

the interval [1.25, 3.75], and {d̂K2(Xi)}Ni=1 are distributed over the inter-

val [−0.625,−0.125] ∪ [0.125, 0.625]. In all cases, the covariate-balancing

weights do not contain extreme values.

9. Empirical Application

To evaluate the practical value of our method, we revisit the return to edu-

cation study of Card (1995). The data are taken from the National Longitu-

dinal Survey of Young Men, which contains observations on 5525 men aged

between 14 and 24 years in 1966. Of these men, 3010 provided valid edu-

cation and wage responses in the 1976 follow-up survey. The parameter of

interest is the causal effect of education on earnings. The unmeasured con-

founder is the preference for education. The treatment variable is education

beyond high school (see Wang and Tchetgen Tchetgen (2018)). Hence, the

treatment group includes those who attended college. The earnings variable

is wage, dichotomized at its median of $5.375 per hour. In addition to the

preference for education, the distance from home to the nearest four-year

college is also a deciding factor in attending college. Thus, the dummy for

the nearby four-year college is a valid instrument for the treatment variable.

Other measured confounders include race, parents’ education, indica-
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tors for residence in a metropolitan area in 1966, experience, and experience

squared. Race, parents’ education, and residence are included because they

may affect both the instrument and the outcome. Experience and experi-

ence squared, as measures of underlying ability, are included, because they

may modify both the effect of proximity to college on education and the

effect of education on earnings. Following Card (1995), the missing val-

ues are imputed using the mean. The National Longitudinal Survey is not

a representative sample of the US population. This is accounted for by

weighting observations using their sampling weights.

We compute the following: (i) the naive estimator, which is the dif-

ference between the sample means of those who went to college and those

who did not; (ii) the two-stage least squares (2SLS) estimator proposed by

Angrist and Pischke (2008); (iii) the five estimators proposed by Wang and

Tchetgen Tchetgen (2018), namely, the regression-based estimator (REG),

bounded regression-based estimator (B-REG), inverse probability weight-

ing estimator (IPW), bounded probability weighting estimator (B-IPW),

and g-estimator (g), as well as the MR and B-MR; and (iv) the CBE. Table

2 reports the point estimates. The confidence intervals are computed using

the quantile-based nonparametric bootstrap method, which generates 500

samples through empirical bootstrapping.
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Table 2 suggests the following findings. First, the naive approach shows

that education has a significantly positive effect on earnings. Because peo-

ple who pursue more education may have stronger intentions and a better

ability to find a job with higher wages than do those who pursue less educa-

tion, the naive estimator could overestimate the effect. The 2SLS approach

produces a highly significant and positive effect above one. This is clearly

incorrect because the range of the ATE is [−1, 1] by design. The B-IPW

estimate is greater than the naive estimate, which is greater than the true

effect. In addition, its confidence interval is too wide, covering the whole

range [−1, 1]. The MR estimate is unreasonable. The B-REG, g, and B-MR

estimates are all highly positive effects, but they are all greater than the

naive estimates. In contrast, the CBE estimate is positive and less than the

naive estimate. However, it is not significant at the 5% level, suggesting

that the return to education is positive, but small.

10. Discussion

This paper proposes estimations of the ATE and LATE when some con-

founders are unmeasured. The proposed estimators do not require mod-

eling any functionals and are consistent and efficient. A small simulation

study shows that the proposed estimator has good finite-sample perfor-
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Table 2: Estimates of the effect of education beyond high school on earnings

(dichotomized at the median)

Method Point estimate 95% confidence interval

Naive 0.122 (0.084, 0.160)

2SLS 1.057 (0.335, 2.236)

B-REG 0.839 (0.587, 0.973)

B-IPW 0.124 (−1.00, 1.00)

g 0.682 (−0.001, 1.00)

MR 63.74 (−56.44, 68.52)

B-MR 0.681 (0.062, 1.00)

CBE 0.116 (−0.085, 0.143)
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mance. An application to education data illustrates the usefulness of the

proposed approach.

This study focused on the binary treatment model. However, multi-

valued or continuous treatments are common in applications. Thus, ex-

tending the ideas presented here to such models is worth pursuing in future

research.

Supplementary Material

The online Supplementary Material contains the technical proofs for The-

orems 1–4 and partial simulation results not presented in the main text.
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Frölich, M. (2007). Nonparametric iv estimation of local average treatment effects with covari-

ates. Journal of Econometrics 139 (1), 35–75.

Ge, S. and Y. Zhou (2020). Social distancing, labor market outcomes, and job characteristics

in the covid-19 pandemic. Frontiers of Economics in China 15 (4), 478.

Hahn, J. (1998). On the role of the propensity score in efficient semiparametric estimation of

average treatment effects. Econometrica 66 (2), 315–331.

Hainmueller, J. (2012). Entropy balancing for causal effects: A multivariate reweighting method

to produce balanced samples in observational studies. Political Analysis 20 (1), 25–46.

He, X. and F. Xiao (2020). Unintended consequences of lockdowns: Evidence from domestic

helpers in urban china. Frontiers of Economics in China 15 (4), 521.

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0165



REFERENCES36

Hirano, K., G. Imbens, and G. Ridder (2003, July). Efficient estimation of average treatment

effects using the estimated propensity score. Econometrica 71 (4), 1161–1189.

Huang, M.-Y. and K. C. G. Chan (2017). Joint sufficient dimension reduction and estimation

of conditional and average treatment effects. Biometrika 104 (3), 583–596.

Imai, K. and M. Ratkovic (2014). Covariate balancing propensity score. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 76 (1), 243–263.

Imbens, G. W. and J. D. Angrist (1994). Identification and estimation of local average treatment

effects. Econometrica 62 (2), 467–475.

Imbens, G. W. and J. M. Wooldridge (2009). Recent developments in the econometrics of

program evaluation. Journal of Economic Literature 47 (1), 5–86.

Kang, J. and J. Schafer (2007). Demystifying double robustness: a comparison of alternative

strategies for estimating a population mean from incomplete data. Statistical Science 22 (4),

523–539.

Rosenbaum, P. R. (2002). Covariance adjustment in randomized experiments and observational

studies. Statistical Science 17 (3), 286–327.

Rosenbaum, P. R. and D. B. Rubin (1983). The central role of the propensity score in observa-

tional studies for causal effects. Biometrika 70 (1), 41–55.

Wang, L. and E. Tchetgen Tchetgen (2018). Bounded, efficient and multiply robust estimation

of average treatment effects using instrumental variables. Journal of the Royal Statistical

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0165



REFERENCES37

Society: Series B (Statistical Methodology) 80 (3), 531–550.

Zhao, Q. (2019). Covariate balancing propensity score by tailored loss functions. Annals of

Statistics 47 (2), 965–993.

School of Management and Economics and Shenzhen Finance Institute, Chinese University of

Hong Kong, Shenzhen, China

Hubei University of Economics, Wuhan, China

E-mail: chunrongai@cuhk.edu.cn

Institute of Statistics and Big Data, Renmin University of China, Beijing, China

E-mail: huanglukang@ruc.edu.cn

Center for Applied Statistics, Institute of Statistics and Big Data, Renmin University of China,

Beijing, China

E-mail: zhengzhang@ruc.edu.cn

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0165


	Basic Framework
	The ATE
	The LATE

	Estimation of the ATE
	Motivation
	Estimation

	blackLarge-Sample Properties
	Estimation of Veff
	Estimation of the LATE
	blackData-Driven Smoothing Parameter
	Simulation Studies
	Empirical Application
	Discussion



