
 

 

 

 

 

 

 

 

 

Statistica Sinica Preprint No: SS-2020-0110 

Title Construction of strong group-orthogonal arrays 

Manuscript ID SS-2020-0110 

URL http://www.stat.sinica.edu.tw/statistica/ 

DOI 10.5705/ss.202020.0110 

Complete List of Authors Chunyan Wang,  

Jinyu Yang and  

Min-Qian Liu 

Corresponding Author Min-Qian Liu 

E-mail mqliu@nankai.edu.cn 



Statistica Sinica

1

CONSTRUCTION OF STRONG GROUP-ORTHOGONAL

ARRAYS

Chunyan Wang, Jinyu Yang and Min-Qian Liu

Nankai University

Abstract: Space-filling designs with low-dimensional stratifications are desirable choices for

computer experiments. In addition, column orthogonality is an important property of designs

for such experiments, because it allows the estimates of the main effects in linear models to be

uncorrelated with each other. However, few works have examined space-filling designs with both

properties. This paper proposes a new class of designs called strong group-orthogonal arrays, the

columns of which can be partitioned into groups, with the columns from different groups being

column orthogonal and enjoying attractive low-dimensional stratifications. In addition, the

overall arrays collapse to fully orthogonal arrays that accommodate large numbers of factors,

making them particularly suitable for computer experiments. Methods for constructing this

class of arrays based on both regular and nonregular designs are proposed. Difference schemes

play a key role in the construction. Lastly, the proposed methods are easy to implement.

Key words and phrases: Column orthogonality, computer experiment, space-filling design,

strong orthogonal array.

1. Introduction

Computer experiments are widely used in many fields, and space-filling designs

are appropriate for such experiments (Fang, Li and Sudjianto (2006)). A space-filling

design spreads its points in the design region uniformly, where the uniformity can
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CONSTRUCTION OF STRONG GROUP-ORTHOGONAL ARRAYS 2

be evaluated using some distance or discrepancy criteria. For a design in a high-

dimensional region, it may be more reasonable to consider its space-filling properties

in low-dimensional projections. Numerous approaches have been proposed for con-

structing space-filling designs with good properties in low-dimensional projections us-

ing orthogonal arrays (OAs), or other arrays that can be collapsed into OAs, such as

strong orthogonal arrays (SOAs) and mappable nearly orthogonal arrays (MNOAs).

McKay, Beckman and Conover (1979) introduced Latin hypercube designs (LHDs),

which are OAs of strength one. Owen (1992) and Tang (1993) considered randomized

OAs and OA-based LHDs. Recently, He and Tang (2013, 2014) introduced SOAs and

Mukerjee, Sun and Tang (2014) proposed MNOAs. Both arrays are better space-filling

designs than those based on ordinary OAs. In addition to the space-filling property,

column orthogonality is a desirable property for computer experiment designs, because

it guarantees that the estimates of the main effects are uncorrelated with each other

when polynomial modeling is considered.

Motivated by MNOAs and SOAs, we propose a new class of arrays called strong

group-orthogonal arrays (SGOAs), the columns of which can be partitioned into group-

s, with the columns from different groups being column orthogonal and enjoying at-

tractive low-dimensional space-filling properties. This class of arrays performs well in

terms of both the space-filling property and column orthogonality, and can accom-

modate large numbers of factors. To see the benefits of such an array, consider the

four arrays in Table 1; detailed definitions of these arrays are provided in Section 2.

The column orthogonal SOA(8, 3, 4, 3−), denoted as OSOA(8, 3, 4, 3−), constructed in
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Table 1: The OA(8,7,2,2), OSOA(8, 3, 4, 3−), SOA(8,3,8,3), and SGOA(8,6,4,2).

OA(8, 7, 2, 2) OSOA(8, 3, 4, 3−) SOA(8,3,8,3) SGOA(8,6,4,2)

0 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 0 0 0

0 0 1 0 1 1 1 0 3 0 2 3 6 0 0 3 3 3 3

0 1 0 1 0 1 1 3 0 0 3 6 2 3 3 0 0 3 3

0 1 1 1 1 0 0 0 0 3 1 5 4 3 3 3 3 0 0

1 0 0 1 1 0 1 1 1 1 6 2 3 1 2 1 2 1 2

1 0 1 1 0 1 0 2 1 2 4 1 5 1 2 2 1 2 1

1 1 0 0 1 1 0 1 2 2 5 4 1 2 1 1 2 2 1

1 1 1 0 0 0 1 2 2 1 7 7 7 2 1 2 1 1 2

Zhou and Tang (2019) can accommodate three factors, achieving stratifications (to be

defined in Section 2) on 2×4 and 4×2 grids in any two dimensions, and a stratification

on a 2 × 2 × 2 grid in the three dimensions. This also holds for the SOA(8, 3, 8, 3).

The SOA(8, 3, 8, 3) has eight levels and cannot guarantee column orthogonality. The

SGOA(8, 6, 4, 2) constructed in this paper can accommodate six factors, each of four

levels. It guarantees stratifications on 2× 4 and 4× 2 grids and column orthogonality

in 12 of the 15 two dimensions (80.00%), and stratifications on 2× 2× 2 grids in 16 of

the 20 three dimensions (80.00%). As summarized in Table 2, the SGOA(8, 6, 4, 2) is

nearly an OSOA of strength 3−, and can accommodate twice as many columns as the

latter, making it a more economical choice.

Table 2: Properties of the OSOA(8, 3, 4, 3−), SOA(8,3,8,3), and SGOA(8,6,4,2).

Two-dimensional Three-dimensional

Design Column orthogonality stratification stratification

OSOA(8, 3, 4, 3−) 1 2× 4 and 4× 2 2× 2× 2

SOA(8, 3, 8, 3) No 2× 4 and 4× 2 2× 2× 2

SGOA(8, 6, 4, 2) 80% 2× 4 and 4× 2 (80%) 2× 2× 2 (80%)

The SGOA(8, 6, 4, 2) can be regarded as an intermediate between the OA(8, 7, 2,
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2) and the OSOA(8, 3, 4, 3−). Correspondingly, an LHD based on the SGOA(8,6,4,2)

can be regarded as an intermediate between those based on the OA(8, 7, 2, 2) and the

SOA(8, 3, 8, 3), where the SOA(8, 3, 8, 3) is actually an LHD. According to Mukerjee,

Sun and Tang (2014), an MNOA of eight runs with four levels is not available, implying

that SGOAs have more flexible run sizes than MNOAs. These attractive properties

make the SGOA(8, 6, 4, 2) a better choice for computer experiments.

The remainder of this paper is organized as follows. Section 2 introduces the

definitions and notation used in this paper. In Section 3, we construct SGOAs of

strength 2, and Section 4 constructs SGOAs of strength 3. Concluding remarks are

provided in Section 5. All proofs and two large tables are deferred to the Supplementary

Material.

2. Definitions and Notation

An n×m matrix is called an OA with strength t and s1, . . . , sm levels, denoted by

OA(n,m, s1 × · · ·×sm, t), if all possible level combinations for any t columns occur with

the same frequency. When all sj are equal to s, the array is symmetric and denoted by

OA(n,m, s, t). Two vectors are called combinatorial-orthogonal if they form an OA of

strength 2. The correlation between two vectors a = (a1, . . . , an)T and b = (b1, . . . , bn)T

is defined as

ρ(a, b) =
n∑
i=1

(ai − ā)(bi − b̄)

/[
n∑
i=1

(ai − ā)2

n∑
i=1

(bi − b̄)2

]1/2

,

where ā =
∑n

i=1 ai/n and b̄ =
∑n

i=1 bi/n. Two vectors are called column orthogonal if

the correlation between them is zero. The correlation matrix of a design D is denoted

by ρ(D) = (ρ(di, dj))m×m, where di and dj are the ith and jth columns, respectively,
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of D, for 1 ≤ i, j ≤ m. A design is called column orthogonal if any two of its columns

are column orthogonal.

For an array with n runs and m factors, we say it achieves a stratification on an

s1 × · · · × st grid in some t (t ≥ 2) dimensions if its corresponding t columns can be

collapsed into an OA(n, t, s1 × · · · × st, t).

A design is called a regular design if any two of its factorial effects are either

combinatorial-orthogonal to each other or are fully aliased.

An LHD of n runs and m factors is an n × m matrix in which each column is a

permutation of 0, 1, . . . , n − 1. An LHD based on a q-level design of n runs, with n

being a multiple of q, can be obtained by replacing the n/q entries for level j of each

factor by any permutation of jn/q, jn/q + 1, ..., (j + 1)n/q − 1, for j = 0, 1, ..., q − 1.

Let GF (s) denote the Galois field with order s. An r× c matrix with entries from

GF (s) is called a difference scheme based on GF (s), denoted by D(r, c, s), if it satisfies

that for any i and j with 1 ≤ i 6= j ≤ c, the vector difference of the ith and jth columns

contains every element of GF (s) equally often.

For two matrices A = (aij)m×n and B = (bij)u×v with entries from GF (s), their

Kronecker sum and Kronecker product are defined as

A⊕B=


a11

·
+B · · · a1n

·
+B

...
...

am1

·
+B · · · amn

·
+B

 and A⊗B =


a11

·
×B · · · a1n

·
×B

...
...

am1

·
×B · · · amn

·
×B

 , (2.1)

respectively, where
·

+ and
·
× are the addition and multiplication, respectively, defined

on GF (s).

The operator ∗ is a right circular shift of the columns of a design, which means
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that for a design D = (d1, . . . , ds), D
∗ = (ds, d1, . . . , ds−1).

An MNOA, denoted by MNOA{n; (sµ)φ, (pµ)φ}, is an n×µφ array in which the µφ

columns can be partitioned into φ disjoint groups of µ columns, each with the following

properties:

(i) every column is populated by s levels from GF (s);

(ii) any two columns from different groups form an OA(n, 2, s, 2);

(iii) the whole design can be collapsed into an OA(n, µφ, p, 2), where the s levels of

each column are collapsed into p levels by bx/(s/p)c, for x = 0, 1, . . . , s − 1,

with s/p being an positive integer, and bzc representing the largest integer not

exceeding z.

In such an array, each column is combinatorial-orthogonal to at least a proportion

π̃ = (φ− 1)µ/(φµ− 1) of the other columns.

An n×m matrix with entries from {0, 1, . . . , st − 1} is called an SOA of strength

t, denoted by SOA(n,m, st, t), if any n× f submatrix, for 1 ≤ f ≤ t, can be collapsed

into an OA(n, f, sµ1 × · · · × sµf , f) for any positive integers µ1, . . . , µf , with µ1 + · · ·+

µf = t, where the st levels of a factor are collapsed into sµj levels by bx/st−µjc, for

x = 0, 1, . . . , st − 1, 1 ≤ j ≤ f. Furthermore, an n × m matrix with entries from

{0, 1, . . . , s2 − 1} is called an SOA of strength 2+, denoted by SOA(n,m, s2, 2+), if

any submatrix of two columns can be collapsed into an OA(n, 2, s2 × s, 2) and an

OA(n, 2, s × s2, 2). An n ×m matrix with entries from {0, 1, . . . , s2 − 1} is called an

SOA of strength 3−, denoted by SOA(n,m, s2, 3−), if any submatrix of two columns

Statistica Sinica: Preprint 
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can be collapsed into an OA(n, 2, s2×s, 2) and an OA(n, 2, s×s2, 2), and any submatrix

of three columns can be collapsed into an OA(n, 3, s, 3).

For an SOA(n,m, st, t), if it is column orthogonal, we call it a column orthogonal

SOA of strength t, denoted by OSOA(n,m, st, t). Similarly, we have OSOA(n,m, s2, 2+)

and OSOA(n, m, s2, 3−).

Table 3: An SGOA(27, 12, 9, 2).

Pre-collapsing Post-collapsing
T1 T2 T3 T4 A1 A2 A3 A4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 4 4 4 4 4 4 8 8 8 0 0 0 1 1 1 1 1 1 2 2 2
0 0 0 8 8 8 8 8 8 4 4 4 0 0 0 2 2 2 2 2 2 1 1 1
4 4 4 0 0 0 4 4 4 4 4 4 1 1 1 0 0 0 1 1 1 1 1 1
4 4 4 4 4 4 8 8 8 0 0 0 1 1 1 1 1 1 2 2 2 0 0 0
4 4 4 8 8 8 0 0 0 8 8 8 1 1 1 2 2 2 0 0 0 2 2 2
8 8 8 0 0 0 8 8 8 8 8 8 2 2 2 0 0 0 2 2 2 2 2 2
8 8 8 4 4 4 0 0 0 4 4 4 2 2 2 1 1 1 0 0 0 1 1 1
8 8 8 8 8 8 4 4 4 0 0 0 2 2 2 2 2 2 1 1 1 0 0 0
2 3 7 2 3 7 2 3 7 2 3 7 0 1 2 0 1 2 0 1 2 0 1 2
2 3 7 3 7 2 3 7 2 7 2 3 0 1 2 1 2 0 1 2 0 2 0 1
2 3 7 7 2 3 7 2 3 3 7 2 0 1 2 2 0 1 2 0 1 1 2 0
3 7 2 2 3 7 3 7 2 3 7 2 1 2 0 0 1 2 1 2 0 1 2 0
3 7 2 3 7 2 7 2 3 2 3 7 1 2 0 1 2 0 2 0 1 0 1 2
3 7 2 7 2 3 2 3 7 7 2 3 1 2 0 2 0 1 0 1 2 2 0 1
7 2 3 2 3 7 7 2 3 7 2 3 2 0 1 0 1 2 2 0 1 2 0 1
7 2 3 3 7 2 2 3 7 3 7 2 2 0 1 1 2 0 0 1 2 1 2 0
7 2 3 7 2 3 3 7 2 2 3 7 2 0 1 2 0 1 1 2 0 0 1 2
1 6 5 1 6 5 1 6 5 1 6 5 0 2 1 0 2 1 0 2 1 0 2 1
1 6 5 5 1 6 5 1 6 6 5 1 0 2 1 1 0 2 1 0 2 2 1 0
1 6 5 6 5 1 6 5 1 5 1 6 0 2 1 2 1 0 2 1 0 1 0 2
5 1 6 1 6 5 5 1 6 5 1 6 1 0 2 0 2 1 1 0 2 1 0 2
5 1 6 5 1 6 6 5 1 1 6 5 1 0 2 1 0 2 2 1 0 0 2 1
5 1 6 6 5 1 1 6 5 6 5 1 1 0 2 2 1 0 0 2 1 2 1 0
6 5 1 1 6 5 6 5 1 6 5 1 2 1 0 0 2 1 2 1 0 2 1 0
6 5 1 5 1 6 1 6 5 5 1 6 2 1 0 1 0 2 0 2 1 1 0 2
6 5 1 6 5 1 5 1 6 1 6 5 2 1 0 2 1 0 1 0 2 0 2 1

Before giving the definition of the new class of SGOAs, first consider the array in
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the left part of Table 3. It has twelve columns, each of which is populated by nine

levels. If we partition these columns into four disjoint groups of three columns each in

column order, the array has the following interesting properties:

(i) any two distinct columns can be collapsed into an OA(27, 2, 3, 2);

(ii) any two columns from different groups are column orthogonal, and they can be

collapsed into an OA(27, 2, 3 × 9, 2) and an OA(27, 2, 9 × 3, 2) using different

collapsing methods;

(iii) any three distinct columns from two different groups can be collapsed into an

OA(27, 3, 3, 3).

Definition 1. An SGOA of strength t, denoted by SGOA(n, gc, st, t), is an n × gc

matrix with entries from {0, 1, . . . , st−1} that can be partitioned into g disjoint groups

of c columns, each with the following properties:

(i) any two distinct columns can be collapsed into an OA(n, 2, s × st−1, 2) and an

OA(n, 2, st−1 × s, 2) using different collapsing methods;

(ii) any two columns from different groups are column orthogonal, and they can

be collapsed into an OA(n, 2, s × st, 2) and an OA(n, 2, st × s, 2) using different

collapsing methods;

(iii) any three distinct columns from two different groups can be collapsed into an

OA(n, 3, s, 3).

The array in Table 3 is an SGOA(27, 12, 9, 2). Because an SGOA(n, gc, st, t) with

t ≥ 2 can be collapsed into an OA(n, gc, s, 2), we must have n = λs2, for some integer

Statistica Sinica: Preprint 
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λ. We call λ the index of an SGOA in the same way as that of an OA. Note that

the strength t of an SGOA is an index that measures the space-filling property in

two dimensions, where a larger t indicates that an SGOA is more space-filling in two

dimensions. For an SGOA(n, gc, s2, 2), if c = 1 (i.e., each group has only one column),

it becomes an OSOA(n, g, s2, 2+). Thus, an SGOA of strength 2 can be seen as a

generalization of an OSOA of strength 2+. Furthermore, in an SGOA(n, gc, st, t), each

column is column orthogonal to gc − c columns among all other gc − 1 columns, and

the corresponding pairs of columns can be collapsed into an OA(n, 2, s × st, 2) and

an OA(n, 2, st × s, 2). For an SGOA(n, gc, st, t) with t ≥ 2, we use π to denote the

proportion of two-tuples that achieve stratifications on s × st and st × s grids and

column orthogonality simultaneously; here,

π = (gc− c)/(gc− 1).

Similarly, we use δ to denote the proportion of three-tuples that achieve stratifica-

tions on s × s × s grids. From the definition, any three distinct columns from t-

wo different groups can be collapsed into an OA(n, 3, s, 3). Thus, the δ-value of any

SGOA(n, gc, st, t) is at least δ0, with

δ0 = 3c(c− 1)(g − 1)/{(gc− 1)(gc− 2)}.

In fact, after some calculations, we find that the δ-value of an SGOA is often larger

than δ0, and under some conditions, we obtain SGOAs with much larger δ-values.

3. Construction of SGOAs of Strength 2

In this section, we provide a general construction method for SGOAs of strength

Statistica Sinica: Preprint 
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2. Because the general method may not be easy to understand without examples, we

first present two examples to illustrate the main idea.

Table 4: The OA(9, 4, 3, 2) in Example 1.

c1 c2 c3 c4

0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
2 2 1 0

Example 1. Given an OA(9, 4, 3, 2) with entries fromGF (3), denoted by C = (c1, c2, c3,

c4), as shown in Table 4, we obtain an SGOA(27, 12, 9, 2) as follows. For i = 1, 2, 3, 4,

let

Ai =

ci ci ci

ci ci
·

+ 1 ci
·

+ 2

ci ci
·

+ 2 ci
·

+ 1

 and Bi =

 ci ci ci

ci
·

+ 2 ci ci
·

+ 1

ci
·

+ 1 ci ci
·

+ 2

 ,

where
·

+ is the addition defined on GF (3). Treat all entries as numbers, and define

Ti = 3Ai + Bi, for i = 1, 2, 3, 4. Then, we obtain an SGOA(27, 12, 9, 2) by taking

T̃ = (T1, T2, T3, T4), which is shown in the left part of Table 3 and has the properties

mentioned before Definition 1. It is easy to check that after level-collapsing by bx/3c,

T̃ becomes A = (A1, A2, A3, A4), which is an OA(27, 12, 3, 2), as shown in the right part

of Table 3. For the resulting T̃ , we have the proportion π = 81.82%. Furthermore,

by checking all three-tuples, we find that T̃ achieves stratifications on 3 × 3 × 3 grids

in 180 of the 220 three dimensions, that is, δ = 81.82%, which is much larger than

δ0 = 49.09%.
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Table 5: The OA(16, 5, 4, 2) in Example 2.

c1 c2 c3 c4 c5

0 0 0 0 0
0 1 1 1 1
0 2 2 2 2
0 3 3 3 3
1 0 1 2 3
1 1 0 3 2
1 2 3 0 1
1 3 2 1 0
2 0 2 3 1
2 1 3 2 0
2 2 0 1 3
2 3 1 0 2
3 0 3 1 2
3 1 2 0 3
3 2 1 3 0
3 3 0 2 1

Example 2. We now construct an SGOA(64, 20, 16, 2). Let C = (c1, . . . , c5) be an

OA(16, 5, 4, 2) with entries from GF (4), as shown in Table 5. For i = 1, . . . , 5, define

Ai =


ci ci ci ci

ci ci
·

+ 1 ci
·

+ 2 ci
·

+ 3

ci ci
·

+ 2 ci
·

+ 3 ci
·

+ 1

ci ci
·

+ 3 ci
·

+ 1 ci
·

+ 2

 and Bi =


ci ci ci ci

ci
·

+ 3 ci ci
·

+ 1 ci
·

+ 2

ci
·

+ 1 ci ci
·

+ 2 ci
·

+ 3

ci
·

+ 2 ci ci
·

+ 3 ci
·

+ 1

 ,

where
·

+ is the addition defined on GF (4). Treat all entries as numbers, and create

Ti = 4Ai + Bi, for i = 1, . . . , 5. We obtain an SGOA(64, 20, 16, 2) by taking T̃ =

(T1, T2, T3, T4, T5), which is shown in the left part of Table S.1 in the Supplementary

Material. It is easy to check that after level-collapsing by bx/4c, T̃ becomes A =

(A1, A2, A3, A4, A5), which is an OA(64, 20, 4, 2), as shown in the right part of Table

S.1 in the Supplementary Material. For T̃ , we can check that any two columns from

different groups are column orthogonal and can be collapsed into an OA(64, 2, 4×16, 2)

Statistica Sinica: Preprint 
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and an OA(64, 2, 16× 4, 2), where the proportion π is 84.21%. We can also check that

any three distinct columns from two different groups of T̃ can be collapsed into an

OA(64, 3, 4, 3) with δ0 = 480/1140 = 42.11%. Furthermore, by checking all three-

tuples, we find that T̃ achieves stratifications on 4×4×4 grids in 960 of the 1140 three

dimensions; that is, δ = 84.21%.

Next, we present the construction of SGOAs of strength 2 and investigate their

properties. The construction method is given in the following algorithm.

Algorithm 1.

Step 1. For a prime power s, let C = (c1, . . . , cg) be an OA(n0, g, s, 2) with entries from

GF (s) and D be a difference scheme D(s, s, s). For i = 1, . . . , g, create

Ai = D ⊕ ci, Bi = D∗ ⊕ ci,

where ⊕ is defined in (2.1), and D∗ is the right circular shift design of D, as given

in Section 2.

Step 2. Treat all entries as numbers, and define

Ti = sAi +Bi, for i = 1, . . . , g.

Step 3. Combine Ti by column juxtaposition, and get T̃ = (T1, . . . , Tg).

For the resulting design, we have the following theorem.

Theorem 1. The obtained T̃ in Algorithm 1 is an SGOA(sn0, gs, s
2, 2); that is, T̃ has

the properties mentioned in Definition 1 with n = sn0, c = s, and t = 2.

Statistica Sinica: Preprint 
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Remark 1. In Algorithm 1, if D is a difference scheme D(s, h, s), where h ≤ s, then T̃

is an SGOA(sn0, gh, s
2, 2). In particular, if D is (0, 1, . . . , s− 1)T , a difference scheme

D(s, 1, s), then T̃ is an OSOA(sn0, g, s
2, 2+).

From Remark 1, there is a close relationship between the SGOA of strength 2 and

the OSOA of strength 2+. Actually, if we take one column from each group of an

SGOA(n, gc, s2, 2) and put these columns together, we obtain an OSOA(n, g, s2, 2+).

In this sense, SGOAs of strength 2 can be regarded as a generalized version of OSOAs

of strength 2+, where the proportion π measures the degree of proximity in terms of

both column orthogonality and the two-dimensional space-filling property.

Remark 2. Let

ζ = (0, . . . , 0, 1, . . . , 1, . . . , s− 1, . . . , s− 1)T ,

where each of 0, 1, . . . , s− 1 repeats n0 times. In Algorithm 1, if C is saturated, then

after collapsing all factors into s levels, T̃ augmented by ζ is a saturated OA with s

levels as well. This implies that the number of columns of the resulting SGOA is one

less than that of the saturated OA with s levels and the same number of runs.

From Theorem 1, we know that T̃ achieves stratifications on s×s2 and s2×s grids

in any two columns from different groups, and a stratification on an s×s×s grid in any

three distinct columns from two different groups. In general, for an SGOA of strength

2, the δ-value is usually smaller than the π-value. When taking C to be some specified

OAs, we get some SGOAs with large δ-values, which means that the resulting designs

enjoy a better space-filling property in three dimensions. We are ready to present the

next theorem.

Statistica Sinica: Preprint 
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Theorem 2. If C in Algorithm 1 is saturated and regular, then the resulting T̃ achieves

stratifications on s× s× s grids with a proportion π; that is, δ = π.

From Theorem 2, many SGOAs enjoy the attractive space-filling properties in both

two and three dimensions. The OAs and difference schemes needed in Algorithm 1 are

available in Hedayat, Sloane and Stufken (1999) and the library of OAs maintained

by Dr. N.J.A. Sloane (http://neilsloane.com/oadir/index.html). Table 6 summarizes

some generated SGOAs of strength 2. Here, the symbol ] means that the number of

columns of the resulting SGOA is one less than that of the saturated OA with s levels

and the same number of runs. The symbol ‡ means that if C is a saturated regular

design, then the resulting SGOA can achieve stratifications on s × s × s grids with

a proportion π. As shown in Table 6, most of the values of π are very close to one,

implying that the resulting designs enjoy attractive space-filling properties and column

orthogonality.

Table 7 compares SGOAs, the MNOAs in Mukerjee, Sun and Tang (2014), and the

SOAs in He, Cheng and Tang (2018), Liu and Liu (2015), and Zhou and Tang (2019).

As discussed, SGOAs of strength 2 can be regarded as a generalized version of

OSOAs of strength 2+, where the proportion π measures the degree of proximity in

terms of both column orthogonality and the two-dimensional space-filling property.

From Table 7, we can see that the values of π are very close to one, which means

that these SGOAs of strength 2 have almost the same desirable column orthogonality

and two-dimensional space-filling properties as those of the OSOAs of strength 2+. In

addition, they can accommodate s times as many columns as the latter can, and they
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Table 6: Some SGOAs of strength 2.

C: OA(n0, g, s, 2) T̃ : SGOA(sn0, gs, s
2, 2) π(%)

OA(4, 3, 2, 2) SGOA(8, 6, 4, 2)]‡ 80.00
OA(8, 7, 2, 2) SGOA(16, 14, 4, 2)]‡ 92.31
OA(12, 11, 2, 2) SGOA(24, 22, 4, 2)] 95.24
OA(16, 15, 2, 2) SGOA(32, 30, 4, 2)]‡ 96.55
OA(20, 19, 2, 2) SGOA(40, 38, 4, 2)] 97.30
OA(24, 23, 2, 2) SGOA(48, 46, 4, 2)] 97.78
OA(28, 27, 2, 2) SGOA(56, 54, 4, 2)] 98.11
OA(32, 31, 2, 2) SGOA(64, 62, 4, 2)]‡ 98.36
OA(36, 35, 2, 2) SGOA(72, 70, 4, 2)] 98.55
OA(40, 39, 2, 2) SGOA(80, 78, 4, 2)] 98.70
OA(44, 43, 2, 2) SGOA(88, 86, 4, 2)] 98.82
OA(48, 47, 2, 2) SGOA(96, 94, 4, 2)] 98.92
OA(52, 51, 2, 2) SGOA(104, 102, 4, 2)] 99.01
OA(56, 55, 2, 2) SGOA(112, 110, 4, 2)] 99.08
OA(60, 59, 2, 2) SGOA(120, 118, 4, 2)] 99.15
OA(64, 63, 2, 2) SGOA(128, 126, 4, 2)]‡ 99.20
OA(68, 67, 2, 2) SGOA(136, 132, 4, 2)] 99.25
OA(72, 71, 2, 2) SGOA(144, 142, 4, 2)] 99.29
OA(76, 75, 2, 2) SGOA(152, 150, 4, 2)] 99.33
OA(80, 79, 2, 2) SGOA(160, 158, 4, 2)] 99.36
OA(84, 83, 2, 2) SGOA(168, 166, 4, 2)] 99.39
OA(88, 87, 2, 2) SGOA(176, 174, 4, 2)] 99.42
OA(92, 91, 2, 2) SGOA(184, 182, 4, 2)] 99.45
OA(96, 95, 2, 2) SGOA(192, 190, 4, 2)] 99.47
OA(100, 99, 2, 2) SGOA(200, 198, 4, 2)] 99.49
OA(9, 4, 3, 2) SGOA(27, 12, 9, 2)]‡ 81.82
OA(18, 7, 3, 2) SGOA(54, 21, 9, 2) 90.00
OA(27, 13, 3, 2) SGOA(81, 39, 9, 2)]‡ 94.74
OA(54, 25, 3, 2) SGOA(162, 75, 9, 2) 97.30
OA(81, 40, 3, 2) SGOA(243, 120, 9, 2)]‡ 98.32
OA(16, 5, 4, 2) SGOA(64, 20, 16, 2)]‡ 84.21
OA(32, 9, 4, 2) SGOA(128, 36, 16, 2) 91.43
OA(64, 21, 4, 2) SGOA(256, 84, 16, 2)]‡ 96.39
OA(25, 6, 5, 2) SGOA(125, 30, 25, 2)]‡ 86.21
OA(50, 11, 5, 2) SGOA(250, 55, 25, 2) 92.59

perform better in three dimensions. OSOAs of strength 2 are better than SGOAs of

strength 2 in terms of column orthogonality, and can accommodate more (or equally

many) factors; SGOAs of strength 2 enjoy better two- and three-dimensional space-

filling properties. Compared with the MNOAs constructed in Mukerjee, Sun and Tang

(2014), the resulting SGOAs have a better three-dimensional space-filling property

when the MNOAs are available. Furthermore, SGOAs are particularly useful when the
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Table 7: Comparisons between SGOAs of strength 2, MNOAs, SOAs, and OSOAs.

SGOA(n, gs, s2, 2) MNOA1 SOA(2+)2 OSOA(2)3 OSOA(p)4

s n π(%) gs π̄(%) µφ m m m p
2 8 80.00 6 − − − − 3 3−
2 24,40,48 n−4

n−3
n− 2 − − − − n/2− 1 3−

56,72,80
88,96,104
112,120

136,144,152
160,168,176
184,192,200

2 16 92.31 14 85.71 15 10 14 7 3−
2 32 96.55 30 82.76 30 22 30 15 3−
2 64 98.36 62 96.77 63 50 62 31 3−
2 128 99.20 126 98.36 123 106 126 63 3−
3 27 81.82 12 − − 6 12 4 2+
3 54 90.00 21 − − − 24 7 2+
3 81 94.74 39 92.31 40 25 40 13 2+
3 162 97.30 75 91.30 70 − 78 25 2+
3 243 98.32 120 90.76 120 90 120 40 2+
4 64 84.21 20 − − 8 20 5 2+
4 128 91.43 36 − − − 40 9 2+
4 256 96.39 84 95.24 85 45 84 21 2+
5 125 96.39 30 − − 10 30 6 2+
5 250 92.59 55 − − − 60 11 2+

1MNOA{n, µm, ((s2)µ)φ, (sµ)φ} in Mukerjee, Sun and Tang (2014); 2SOA(n,m, s2, 2+) in He, Cheng and Tang

(2018); 3OSOA(n,m, s2, 2) in Liu and Liu (2015); 4OSOA(n,m, s2, p) in Zhou and Tang (2019); Symbol −

indicates that the corresponding array is not available.

run size n is a multiple of s3, but not of s4, when the MNOAs are not available. That

is, SGOAs can fill the gap between the run sizes of the available MNOAs. For example,

we can construct SGOAs of 27 and 54 runs, whereas such MNOAs are not available.

These desirable properties ensure that SGOAs are competitive designs for computer

experiments. Figure 1 summaries the sizes of the designs listed in Table 7 for s = 2,

where each point represents the design of the corresponding type with n runs and m
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Figure 1: Comparison of SGOAs of strength 2 with some related designs for s = 2.

factors. We can see that SGOAs have flexible run sizes and can accommodate large

numbers of factors.

4. Construction of SGOAs of Strength 3

In this section, we consider SGOAs of strength 3, in the sense that the factors

have s3 levels and their two-dimensional space-filling properties are better than those

of SGOAs of strength 2. From Definition 1, we know that an SGOA of strength 3,

denoted by SGOA(n, gc, s3, 3), is an n× gc matrix with entries from {0, 1, . . . , s3 − 1}

that can be partitioned into g disjoint groups of c columns, each with the following

properties:

(i) any two distinct columns can be collapsed into an OA(n, 2, s × s2, 2) and an

Statistica Sinica: Preprint 
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OA(n, 2, s2 × s, 2) using different collapsing methods;

(ii) any two columns from different groups are column orthogonal, and can be col-

lapsed into an OA(n, 2, s × s3, 2) and an OA(n, 2, s3 × s, 2) using different col-

lapsing methods;

(iii) any three distinct columns from two different groups can be collapsed into an

OA(n, 3, s, 3).

Example 3. In Table S.2 in the Supplementary Material, the design T = (T1, T2, T3, T4)

in the left part is an SGOA(81, 12, 27, 3), where each of the 12 columns is populated

by 27 levels. It is easy to check that any two distinct columns can be collapsed into an

OA(81, 2, 3 × 9, 2) and an OA(81, 2, 9 × 3, 2). Any two columns from different groups

are column orthogonal, and they can be collapsed into an OA(81, 2, 3 × 27, 2) and an

OA(81, 2, 27× 3, 2); thus, we have π = 81.82%. In addition, the maximum correlation

coefficient between any two distinct columns from one group is 0.033, implying that T

is nearly column orthogonal. Collapsing each factor into three levels, we get an OA,

which is displayed in the right part of Table S.2 in the Supplementary Material. We can

see that any three distinct columns from two different groups form an OA(81, 3, 3, 3).

Thus, T achieves stratifications on 3 × 3 × 3 grids in at least 108 of the 220 three

dimensions; that is, δ0 = 49.09%. In fact, by checking all three-tuples, we find that T

achieves stratifications on 3 × 3 × 3 grids in 207 of the 220 three dimensions; that is,

δ = 94.09%. Thus, the design enjoys attractive space-filling properties in both two and

three dimensions, as well as near column orthogonality.
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Now, we introduce the method for constructing SGOAs of strength 3 in the follow-

ing algorithm, and then discuss the properties of the resulting designs.

Algorithm 2.

Step 1. For a prime power s, let C = (c1, . . . , cg) be an OA(n0, g, s, 2) with entries from

GF (s) and D be a difference scheme D(s, s, s). For i = 1, . . . , g, create

Ei = (DT , DT
1 , . . . , D

T
s−1)T ⊕ ci, Fi = (1s ⊗D∗)⊕ ci, and Gi = (1s ⊗D∗∗)⊕ ci,

where Dk = D
·

+ k, for k = 1, . . . , s − 1, 1s is an s × 1 vector with all elements

unity, the operators ⊕ and ⊗ are defined in (2.1), D∗ is the right circular design

of D, and D∗∗ is the right circular design of D∗, as given in Section 2.

Step 2. Treat all entries as numbers, and define

Ti = s2Ei + sFi +Gi, for i = 1, . . . , g.

Step 3. Combine Ti by column juxtaposition, and get T = (T1, . . . , Tg).

Here is an illustrative example.

Example 4. Let C = (c1, c2, c3, c4) be the OA(9, 4, 3, 2) with entries from GF (3) in

Table 4. For i = 1, 2, 3, 4, create

Ei =



0 0 0

0 1 2

0 2 1

1 1 1

1 2 0

1 0 2

2 2 2

2 0 1

2 1 0


⊕ ci, Fi =



0 0 0

2 0 1

1 0 2

0 0 0

2 0 1

1 0 2

0 0 0

2 0 1

1 0 2


⊕ ci, and Gi =



0 0 0

1 2 0

2 1 0

0 0 0

1 2 0

2 1 0

0 0 0

1 2 0

2 1 0


⊕ ci.
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Treat all entries as numbers, and define Ti = 9Ei + 3Fi + Gi for i = 1, 2, 3, 4. Then,

we get an SGOA(81, 12, 27, 3) by taking T = (T1, T2, T3, T4), as shown in the left part

of Table S.2 in the Supplementary Material.

For the resulting design T in Algorithm 2, we have the following theorem.

Theorem 3. The obtained T in Algorithm 2 is an SGOA(s2n0, gs, s
3, 3); that is, T

has the properties mentioned in Definition 1 with n = s2n0, c = s, and t = 3.

Remark 3. In particular, if D is a difference scheme D(s, h, s) in Algorithm 2, where

h ≤ s, then T is an SGOA(s2n0, gh, s
3, 3).

According to the proof of Theorem 3, any SGOA(s2n0, gs, s
3, 3) generated by Al-

gorithm 2 becomes an SGOA(s2n0, gs, s
2, 2) after collapsing the factors into s2 levels.

In addition, the rows of this SGOA(s2n0, gs, s
2, 2) can be partitioned into s parts, each

of which is an SGOA(sn0, gs, s
2, 2). Furthermore, we can get SGOAs of strength 3

with a better three-dimensional space-filling property by taking C to be some specific

OAs.

Theorem 4. If C in Algorithm 2 is a regular OA(sp, g1, s, 2) with g1 = 2p−1, in which

each generated column can be represented as the sum of q independent columns, where

2 ≤ q ≤ p, then the resulting T , an SGOA(sp+2, g1s, s
3, 3), achieves a stratification on

an s×s×s grid in any three columns that do not belong to a same group, which implies

that

δ =

[(
g1s

3

)
− g1

(
s

3

)]/(g1s

3

)
= 1− (s− 2)(s− 1)/ {(g1s− 2)(g1s− 1)} . (4.1)
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We call the resulting design an improved SGOA of strength 3, owing to its better

three-dimensional space-filling property. From (4.1), we can see that δ is quite close to

one for a large g1. The following is an illustrative example.

Example 5 (Example 4 continued). Let C be the first three columns of the OA

shown in Table 4, in which the third column can be represented as the sum of the

first two columns. Then, we get an improved SGOA(81, 9, 27, 3), that is, the first

nine columns of the SGOA(81, 12, 27, 3) shown in the left part of Table S.2 in the

Supplementary Material. We can check that any three of its columns can be collapsed

into an OA(81, 3, 3, 3), except for all three columns in T1, T2, or T3 simultaneously.

Thus, it achieves stratifications on 3 × 3 × 3 grids in 81 of the 84 three dimensions;

that is, δ = 96.43%.

Similarly, taking C in Algorithm 2 to be a regular OA(27, 7, 3, 2), OA(81, 15, 3, 2),

OA(16, 3, 4, 2), and OA(25, 3, 5, 2) that satisfy the requirements in Theorem 4, we

obtain the improved SGOA(243, 21, 27, 3), SGOA(729, 45, 27, 3), SGOA(256, 12, 64, 3),

and SGOA(625, 15, 125, 3), respectively. The δ-values are 99.47%, 99.89%, 94.55%, and

93.41%, respectively. These designs all enjoy attractive three-dimensional space-filling

properties.

Remark 4. In particular, if C is a regular OA(sp, g1, s, 2) with g1 = 2p−1 that satisfies

the requirements in Theorem 4 and D is (0, 1, . . . , s−1)T , a difference scheme D(s, 1, s),

then the resulting T in Algorithm 2 is an OSOA(sp+2, g1, s
3, 3).

Remark 4 indicates that there is a close relationship between the improved SGOAs

of strength 3 and OSOAs of strength 3. In fact, if we take one column from each
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group of an improved SGOA(sp+2, g1s, s
3, 3) and put these columns together, we get

an OSOA(sp+2, g1, s
3, 3). In addition, the resulting array has a better two-dimensional

space-filling property than that of an ordinary OSOA of strength 3.

Table 8: Some SGOAs and OSOAs of strength 3.

C: OA(n0, g, s, 2) T : SGOA(s2n0, gs, s
3, 3) π(%) δ(%) corrmax

1 OSOA(s2n0,m, s
3, 3)2

OA(4, 3, 2, 2) SGOA(16, 6, 8, 3) 80.00 100 0.190 OSOA(16, 4, 8, 3)
OA(8, 7, 2, 2) SGOA(32, 14, 8, 3) 92.31 100 0.190 OSOA(32, 8, 8, 3)
OA(12, 11, 2, 2) SGOA(48, 22, 8, 3) 95.24 100 0.190 OSOA(48, 12, 8, 3)
OA(16, 15, 2, 2) SGOA(64, 30, 8, 3) 96.55 100 0.190 OSOA(64, 16, 8, 3)
OA(20, 19, 2, 2) SGOA(80, 38, 8, 3) 93.70 100 0.190 OSOA(80, 20, 8, 3)
OA(24, 23, 2, 2) SGOA(96, 46, 8, 3) 97.78 100 0.190 OSOA(96, 24, 8, 3)
OA(28, 27, 2, 2) SGOA(112, 54, 8, 3) 98.11 100 0.190 OSOA(112, 28, 8, 3)
OA(32, 31, 2, 2) SGOA(128, 62, 8, 3) 98.36 100 0.190 OSOA(128, 32, 8, 3)
OA(36, 35, 2, 2) SGOA(144, 70, 8, 3) 98.55 100 0.190 OSOA(144, 36, 8, 3)
OA(40, 39, 2, 2) SGOA(160, 78, 8, 3) 98.70 100 0.190 OSOA(160, 40, 8, 3)
OA(44, 43, 2, 2) SGOA(176, 86, 8, 3) 98.82 100 0.190 OSOA(176, 44, 8, 3)
OA(48, 47, 2, 2) SGOA(192, 94, 8, 3) 98.92 100 0.190 OSOA(192, 48, 8, 3)
OA(52, 51, 2, 2) SGOA(208, 102, 8, 3) 99.01 100 0.190 OSOA(208, 52, 8, 3)
OA(56, 55, 2, 2) SGOA(224, 110, 8, 3) 99.08 100 0.190 OSOA(224, 56, 8, 3)
OA(60, 59, 2, 2) SGOA(240, 118, 8, 3) 99.15 100 0.190 OSOA(240, 60, 8, 3)
OA(64, 63, 2, 2) SGOA(256, 126, 8, 3) 99.20 100 0.190 OSOA(256, 64, 8, 3)
OA(68, 67, 2, 2) SGOA(272, 134, 8, 3) 99.25 100 0.190 OSOA(272, 68, 8, 3)
OA(72, 71, 2, 2) SGOA(288, 142, 8, 3) 99.29 100 0.190 OSOA(288, 72, 8, 3)
OA(76, 75, 2, 2) SGOA(304, 150, 8, 3) 99.33 100 0.190 OSOA(304, 76, 8, 3)
OA(80, 79, 2, 2) SGOA(320, 158, 8, 3) 99.36 100 0.190 OSOA(320, 80, 8, 3)
OA(84, 83, 2, 2) SGOA(336, 166, 8, 3) 99.39 100 0.190 OSOA(336, 84, 8, 3)
OA(88, 87, 2, 2) SGOA(352, 174, 8, 3) 99.42 100 0.190 OSOA(352, 88, 8, 3)
OA(92, 91, 2, 2) SGOA(368, 182, 8, 3) 99.45 100 0.190 OSOA(368, 92, 8, 3)
OA(96, 95, 2, 2) SGOA(384, 190, 8, 3) 99.47 100 0.190 OSOA(384, 96, 8, 3)
OA(100, 99, 2, 2) SGOA(400, 198, 8, 3) 99.49 100 0.190 OSOA(400, 100, 8, 3)
OA(9, 4, 3, 2) SGOA(81, 12, 27, 3) 81.82 94.09 0.033 OSOA(81, 4, 27, 3)
OA(27, 13, 3, 2) SGOA(243, 39, 27, 3) 94.74 98.58 0.033 OSOA(243, 10, 27, 3)
OA(81, 40, 3, 2) SGOA(729, 120, 27, 3) 98.32 99.57 0.033 OSOA(729, 28, 27, 3)
OA(16, 5, 4, 2) SGOA(256, 20, 64, 3) 84.21 92.63 0.015 OSOA(256, 8, 64, 3)
OA(25, 6, 5, 2) SGOA(625, 30, 125, 3) 86.21 66.50 0.008 OSOA(625, 12, 125, 3)

1corrmax represents the maximum correlation coefficient between any two distinct columns in one group; 2OSOA

of strength 3 generated using the method in Liu and Liu (2015).

Table 8 lists some SGOAs of strength 3 obtained using Algorithm 2 and the cor-
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responding OSOAs of strength 3 with the same run sizes; the OAs used are available

in the library of OAs (http://neilsloane.com/oadir/index.html). Note that if s = 2,

we have δ = 1, which means that any three columns guarantee a stratification on an

s×s×s grid. Actually, SGOAs of strength 3 can be regarded as generalized versions of

OSOAs of strength 3, where the proportion δ measures the degree of proximity of the

three-dimensional space-filling property, and the proportion π characterizes the degree

of proximity of the column orthogonality. As shown in Table 8, the values of π and δ

are very close to one or just equal to one (for δ when s = 2), which means that these

SGOAs of strength 3 have almost the same three-dimensional space-filling property and

column orthogonality as those of the OSOAs of strength 3. Furthermore, the SGOAs of

strength 3 have better space-filling properties in the sense of the stratifications on s×s3

and s3 × s grids, with a large proportion π. At the same time, the values of corrmax

are very small, implying that even if any two columns in the same group are usually

not column orthogonal, the correlation between them is acceptable. In addition, for

s = 2, the SGOA of strength 3 with n runs accommodates n/2 − 2 columns, which

is nearly twice the number (n/4) of the corresponding OSOA. For s > 2, they can

have far more columns than the corresponding OSOAs do. For example, for a given

run size 243, an OSOA of strength 3 can accommodate ten columns. Furthermore,

it guarantees stratifications on 3 × 9 and 9 × 3 grids in any two dimensions, and a

stratification on a 3× 3× 3 grid in any three dimensions. The corresponding SGOA of

strength 3 can accommodate 39 columns, and it guarantees stratifications on 3×9 and

9× 3 grids in any two dimensions, and enjoys column orthogonality and stratifications
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on 3 × 27 and 27 × 3 grids, with a large proportion 94.74%. Even if any two columns

in the same group are usually not column orthogonal, the correlation between them is

no larger than 0.033. In terms of the three-dimensional space-filling property, it enjoys

stratifications on 3× 3× 3 grids in a large proportion of 98.58%. Compared with the

nine-level MNOA, the SGOA of strength 3 has better one-dimensional stratification,

and can guarantee stratifications on 3 × 9 and 9 × 3 grids in any two dimensions. In

contrast, the MNOA can only guarantee a stratification on a 3 × 3 grid in any two

dimensions. Therefore, the SGOAs of strength 3 are more economical and suitable for

computer experiments.

5. Conclusion

In this paper, we propose a new class of designs called SGOAs that enjoy attractive

column orthogonality and space-filling properties in both two and three dimensions.

Construction methods for this class of arrays based on both regular and nonregular de-

signs are developed. The resulting designs have flexible run sizes that are not restricted

to prime powers. At the same time, the methods are easy to implement.

Compared with MNOAs, the proposed SGOAs have flexible run sizes and better

three-dimensional space-filling properties. The SGOAs have similar or better (in the

case of strength 3) low-dimensional space-filling properties compared with those of the

OSOAs, and can accommodate more factors. In addition, the SGOAs perform well in

terms of column orthogonality, because they satisfy column orthogonality with large

proportions. These desirable properties make SGOAs competitive designs for computer

experiments.
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Supplementary Material

The online Supplementary Material includes proofs of the theorems and two large

tables.
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