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Abstract: We consider variable screening in high-dimensional binary classification. First,

we propose nonparametric test statistics for the problem of the two-sample distribution

comparison. These test statistics combine the merits of the chi-squared and Kolmogorov–

Smirnov statistics, and provide new insights into the equality test of the unspecified distributions

underlying the two independent samples. Based on our new statistics, we propose a

marginal screening procedure and a pairwise joint screening procedure for detecting important

variables in high-dimensional binary classification. Both screening procedures have the

consistent screening property, which is stronger than the sure screening property of most

existing methods. The marginal screening procedure is much more powerful than other

methods over a broad range of cases, and the pairwise joint screening procedure provides a

way of detecting variables with a joint effect, but no marginal effect. Extensive simulations
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and a real-data application show the effectiveness and advantages of the proposed methods.

Key words and phrases: Two-sample distribution comparison; Variable screening; Binary

classification; Non-parametric test; Consistency

1. Introduction

Variable screening aims to screen important variables out of thousands of candidates,

and is a fundamental statistical problem in many applied areas. For example, in

case-control disease studies, researchers want to find important disease factors

out of numerous environmental, clinical, epigenetic, or gene expression variables.

For continuous responses, many variable screening methods have been proposed;

see, for example, Fan & Li (2001), Fan & Lv (2008), Fan et al. (2012), Hall &

Miller (2012), Huang & Zhu (2016), Li et al. (2012b), Li et al. (2012a), and the

references therein. Fewer methods have been proposed for the binary response

case, and include the marginal t-test screening (Fan & Fan, 2008), maximum

marginal likelihood screening (Fan & Song, 2010), and Kolmogorov Filter (KF),

based on the Kolmogorov–Smirnov (K–S) statistic (Mai & Zou, 2013). The

method proposed by Cui et al. (2017) can be seen as a generalization of the

KF to the multi-class problem. These methods all screen variables according

to their marginal effect, which means they may lose important variables that

are marginally undetectable, but jointly detectable. Furthermore, the K–S test



1. INTRODUCTION3

has low statistical power in detecting densities with bumps or high-frequency

components (Fan, 1996; Eubank & LaRiccia, 1992). As a result, the KF may lose

some important variables, even if they are marginally detectable. Finally, the

model size produced by the KF is difficult to interpret in terms of true positives

and false positives. These issues motivate us to propose new screening methods

for binary classification that are consistent and have a screening threshold that

directly controls the false positive rate. Essentially, we reconsider the following

two-sample distribution testing problem, based on independent observations of

two continuous Rd-valued random vectors, X and Y:

H0 : F = G versus H1 : F 6= G, (1.1)

where F and G are the distribution functions of X and Y, respectively, and

d ≥ 1 is a positive integer. This fundamental statistical testing problem has

received considerable attention in the statistical literature, and has a wide range

of applications (see Thas (2010) for a review).

For the univariate case (d = 1), classical tests such as the K–S test, Cramér-

von Mises (CvM) criterion, and Anderson–Darling (A–D) statistic (Darling,

1957) are widely used. However, they usually suffer from low power when

detecting densities containing high-frequency components or local features such

as bumps (Fan, 1996; Eubank & LaRiccia, 1992). To deal with these problems,

smoothing-based tests (Neyman, 1937; Fan, 1996; Bera et al., 2013) have been
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shown to be more powerful than classical tests over a broad range of realistic

alternatives.

The multivariate case (d > 1) has also been studied extensively; see, for

example, Weiss (1960), Friedman & Rafsky (1979), Schilling (1986), Henze

(1988), Hall & Tajvidi (2002), Ludwig & Carsten (2004), Rosenbaum (2005),

Ludwig & Carsten (2010), Székely & Rizzo (2013), Biswas & Ghosh (2014),

Chen & Friedman (2017), Kim et al. (2020), and the references therein. Most

existing tests are nonparametric. For a review and numerical comparison of

these tests, refer to Biswas & Ghosh (2014), who find that most tests have poor

power in high-dimensional settings, but that the method of Ludwig & Carsten

(2004) performs well. Kim et al. (2020) generalized the CvM statistic (denoted

as gCvM) to the multivariate case by using projection-averaging, and established

asymptotic theories for the proposed statistics based on U-statistic theory. The

gCvM has good scalability when the dimension increases, but it inherits the

weakness of the CvM. Thus it has low power when detecting densities containing

high-frequency components or local features such as bumps.

Zhou et al. (2017) recently developed a new two-sample smoothing-based

test that outperforms the K–S test, CvM criterion, and smooth test of Bera

et al. (2013) in univariate settings, and outperforms the method of Ludwig &

Carsten (2004) in multivariate settings. However, their method has three main
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limitations: (a) their complex parametric assumption is relatively restrictive and

not easy to check in real applications; (b) the number of orthogonal directions

used to construct the test statistic is critical, but difficult to determine; and (c)

the optimization problem is not easy to solve for high-dimensional cases.

We first propose a new class of nonparametric test statistics, namely, the

maximum adjusted chi-squared (MAC) statistics, for the two-sample distribution

comparison problem (1.1). The proposed tests have the following advantages:

(a) they are consistent for all kinds of continuous alternatives (see Theorem 1);

(b) their finite-sample performance is better than that of existing methods in

many cases, as shown in simulation studies; and (c) they are straightforward to

compute, without complicated optimization.

Based on the MAC statistics, we propose consistent and model-free screening

procedures for variable screening in ultrahigh-dimensional binary classification.

The new marginal screening procedure has three major advantages over existing

methods: (1) it enjoys the consistent screening property, instead of the sure

screening property; (2) the screening threshold can be chosen to explicitly control

false positives; (3) it is more powerful than other methods, as shown in the

simulations in Section 4.2. In addition, our new pairwise joint screening procedure

enables us to find variables that are jointly detectable, but marginally undetectable.

The rest of the paper is organized as follows. In Section 2, we introduce the
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new MAC statistics for the two-sample distribution comparison, and establish

their consistency. In Section 3, based on the MAC statistics, we propose new

procedures for variable screening in ultrahigh-dimensional binary classification,

and establish their consistent screening property. In Section 4, we present our

simulation studies and a real-data application. Section 5 concludes the paper.

Additional simulations and all proofs are provided in the online Supplementary

Material.

2. Two-sample Distribution Comparison

In this section, we present the proposed MAC test statistics for the two-sample

distribution comparison under different settings. Before that, we introduce some

notation. Let x = {xi ∈ Rd, i = 1, 2, · · · , n} be n independent and identically

distributed (i.i.d.) observations of X ∈ Rd following an unknown distribution

F , and let y = {yi ∈ Rd, i = 1, 2, · · · ,m} be m i.i.d. observations of Y ∈ Rd

following the unknown distribution G. Here, n may not be equal to m. Our goal

is to test the problem given in (1.1) based on these two independent samples, x

and y. Let d(a,b) =
√∑d

i=1(ai − bi)2 be the Euclidean distance between any

two vectors a ∈ Rd and b ∈ Rd, and let I(·) be the indicator function.



2. TWO-SAMPLE DISTRIBUTION COMPARISON7

2.1 Univariate Case: d = 1

The MAC statistics are motivated by two key observations. The first comes

from the chi-squared statistic for the goodness-of-fit test in the one-sample case,

that is, testing F = G with a known continuous distribution G. The chi-squared

statistic is defined asX2 =
∑k

i=1
(npi−nqi)2

nqi
, where pi is the estimated probability

of the event {X ∈ Ai}, qi is the true probability of this event under H0, and

{A1, · · · , Ak} is a partition of the support of G. Although this statistic can be

generalized to the two-sample test problem (1.1), it is difficult to find the optimal

k and optimal partition in real applications. A larger or smaller k, relative to the

optimal value, may lead to a test with lower power. Our MAC statistic avoids

these problems by focusing on local bi-partitions around sample points instead

of globally dividing the support into k partitions.

The second motivating observation comes from the K–S test statistic, KS(F,G) =

supx∈R |F (x) − G(x)|. Computing the K–S statistic requires two steps: (1)

compute the cumulative difference at each sample point x between two distributions

according to the partition (−∞, x); and (2) determine the maximal difference

over all sample points. However, focusing only on a single partition (−∞, x)

leads to the low-resolution problem, which results in the weakness in detecting

local features such as bumps and high-frequency components (Fan, 1996). To

address this problem, our MAC statistic scans all data-dependent partitions at
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each sample point, which increases the resolution.

Given any observations x0 and y0 of X and Y, respectively, we define A1 =

Ax0,y0 = {x ∈ R : d(x, x0) ≤ d(x0, y0)} and A2 = Ac1, that is, the complement

ofA1. Define Pi =
∑n

j=1 I(xj ∈ Ai),Qi =
∑m

j=1 I(yj ∈ Ai), andRi = Pi+Qi,

for i = 1, 2. Then, we construct the local statistic at (x0, y0) as

T1(x0, y0) =
2∑
i=1

(Pi − n
n+m

Ri)
2

n
n+m

Ri

+
(Qi − m

n+m
Ri)

2

m
n+m

Ri

.

In the above formula, if Ri = 0 in a denominator, we define the corresponding

ratio term as zero. Lemma S.1 in Section S4 in the Supplementary Material

shows that T1(x0, y0)→ χ2
1, as n→∞, when the null hypothesis in the problem

(1.1) is true. Thus, it is called an adjusted chi-squared statistic. According to

the definition of A1 and A2, T1(x0, y0) measures the distribution difference in a

neighborhood of x0. By changing the value of y0, T1(x0, y0) scans over different

neighborhoods of x0, checking the distribution difference under different resolutions.

On the other hand, by changing the value of x0, T1(x0, y0) scans the distribution

difference at different locations. The MAC statistic for the problem (1.1) is

defined as the maximum of all local statistics:

MAC1(X, Y ) = max
1≤i≤n,1≤j≤m

max{T1(xi, yj), T1(yj, xi)}. (2.1)

We reject the null hypothesis in the problem (1.1) when MAC1(X, Y ) > c0,

where c0 is a positive threshold. In the notation MAC1, the subscript 1 indicates
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that it applies to the one-dimensional case. Its consistency is studied in Section

2.4.

2.2 Two-dimensional Case: d = 2

For the two-dimensional case, similarly to the univariate case, we first define

the corresponding local test statistic at each sample point, and then take their

maximum.

Given any observations x0 = (x10, x20) and y0 = (y10, y20) of X and Y,

respectively, we define Ax0,y0 = {x = (x1, x2) ∈ R2 : d(x1, x10) ≤ d(x10, y10)}

and Bx0,y0 = {x = (x1, x2) ∈ R2 : d(x2, x20) ≤ d(x20, y20)}. Similarly to the

one-dimensional case, we check the distribution difference at different locations

by changing the value of x0, and check the difference at different resolutions by

changing the value of y0. Define A11 = Ax0,y0
⋂
Bx0,y0 , A12 = Acx0,y0

⋂
Bx0,y0 ,

A21 = Ax0,y0
⋂
Bc

x0,y0 , A22 = Acx0,y0
⋂
Bc

x0,y0 , Pij =
∑n

k=1 I(xk ∈ Aij), Qij =∑m
k=1 I(yk ∈ Aij), and Rij = Pij + Qij , for i = 1, 2 and j = 1, 2, the local

adjusted chi-squared statistic at (x0, y0) is given by

T2(x0, y0) =
2∑
i=1

2∑
j=1

(Pij − n
m+n

Rij)
2

n
m+n

Rij

+
(Qij − m

m+n
Rij)

2

m
m+n

Rij

.

If any Rij = 0, we define the corresponding ratio term in the above formula as

zero. We show in Lemma S.1 in Section S4 in the Supplementary Material

that T2(x0, y0) → χ2
3, as n → ∞, when the null hypothesis in problem (1.1) is
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true.

The MAC test statistic for the two-dimensional case in problem (1.1) is

defined as

MAC2(X,Y) = max
1≤i≤n,1≤j≤m

max{T2(xi, yj), T2(yj, xi)}. (2.2)

We reject H0 in the problem (1.1) if MAC2(X,Y) > c0, where c0 is a positive

threshold. Its consistency is studied in Section 2.4.

2.3 Multi-dimensional Case: d > 2

The way to construct the test statistic for the multi-dimensional case is a bit

different from the two-dimensional case. We first transform the problem into a

two-dimensional problem by partitioning the d variables into two groups, and

then apply the idea for the two-dimensional case. Let S = {1, 2, · · · , d} be

the index set. For any nonempty set s $ S, we define Xs as the corresponding

subset of X. For example, when s = {1, 2}, X is partitioned into two groups, as

Xs = (X1, X2) and Xc
s = (X3, X4, · · · , Xd).

Now, we construct the test statistic for the multi-dimensional case. Given

any nonempty set s $ S, any observation x0 = (x01, · · · , x0d) of X and y0 =

(y01, · · · , y0d) of Y, we first get the grouping x0 = (x0s, xc0s) and y0 = (y0s, yc0s),
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and then define the local test statistic at (x0, y0) as

Ts(x0, y0) =
2∑
i=1

2∑
j=1

(P s
ij − n

m+n
Rs
ij)

2

n
m+n

Rs
ij

+
(Qs

ij − m
m+n

Rs
ij)

2

m
m+n

Rs
ij

,

with P s
ij, Q

s
ij and Rs

ij defined according to (x0, y0) in a way similar to Pij, Qij ,

and Rij in the two-dimensional case. If Rs
ij = 0, we define the corresponding

ratio term as zero.

The MAC test statistic for the multi-dimensional case in problem (1.1) is

defined as

MAC3(X,Y) = max
s 6=∅,s$S

max
1≤i≤n,1≤j≤m

max{Ts(xi, yj), Ts(yj, xi)}. (2.3)

We reject H0 in (1.1) if MAC3(X,Y) > c0, where c0 is a positive threshold.

The consistency of this test is studied in Section 2.4.

Remark 1. Note that the asymptotic distribution of Ts(x0, y0) underH0 does not

depend on s when the sample sizes go to infinity (see Lemma S.1 in Section S4

in the Supplementary Material). This is the key to the consistency of MAC3.

Remark 2. Although we have proposed MAC3 for problem (1.1) in the high-

dimensional case, and its performance is much better than other methods (see the

simulations in the Supplementary Material), it is, in general, not a good choice

for d > 10 because of its computational inefficiency. Thus, it is still interesting

to investigate how to define more computationally efficient and powerful test

statistics for problem (1.1) in the high-dimensional case.
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2.4 Consistency

To establish the consistency of the proposed test statistics, we need the following

assumption, which requires that the sample sizes of these two samples be comparable.

Assumption A. There exists a positive number C, such that 1/C ≤ n/m ≤

C.

This assumption excludes extremely unbalanced cases, and ensures that the

sample sizes n and m go to infinity at the same rate. The consistency of MACi,

for i = 1, 2, 3, is established in the following theorem, which states that as long

as there are sufficient observations, we always reject the null hypothesis if a fixed

alternative hypothesis is true. The proof of the theorem is given in Section S4 in

the Supplementary Material.

Theorem 1. Assume that {xi, i = 1, 2, . . . , n} and {yi, i = 1, 2, . . . ,m} are

independent observations of the continuous random variables X ∈ Rd and Y ∈

Rd, respectively. If there exists a positive number C such that 1/C ≤ n/m ≤

C, then for MACi (i = 1, 2, 3), defined in Equations (2.1)–(2.3), we have the

following:

(I). UnderH0, as n,m→ +∞, the following inequalities hold with probability

going to one: (a) MAC1(X, Y ) < 8 log(2nm) + 1; (b) MAC2(X,Y) <

8 log(2nm) + 3; (c) MAC3(X,Y) < 8 log(2d+1nm) + 3.
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(II). Under H1, there exists a positive constant ci, such that MACi(X,Y) >

ci(n+m), for i = 1, 2, 3.

Theorem 1 tells us that MACi, for i = 1, 2, 3, has an upper bound of

order O(log(nm)) under H0, which is much smaller than its lower bound of

order O(n + m) under H1. Thus, all of these tests are consistent. When the

dimensions of X and Y grow with the sample size N = n + m, say, d = dN =

O(Nα), MAC3 is still consistent if α < 1. That is, it is consistent for the cases

where the dimension dN grows more slowly than N , that is, dN/N → 0. The

computation of MAC3 will be time consuming when d is large, say, d > 10.

However, for relatively lower-dimensional problems, MAC3 can be computed in

a straightforward manner.

To show the intuitions behind the limiting distribution of the proposed statistics,

we show the empirical distribution of MAC1 and MAC2 under the null hypothesis

when n = m = 200 in Figure S4 in Supplementary Material. It is difficult

to obtain analytically the limit distributions of the MAC statistics under the

null hypothesis, owing to the unknown dependence structure among the local

statistics. Thus, the corresponding p-value is computed using aK-times permutation.

In this study, we set K as 1000.

The following Gaussian example illustrates the performance of MAC1, comparing

it with that of the K–S test, A–D statistic and CvM, as well as the latest method
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proposed in Zhou et al. (2017) (denoted as ZZZ). This example fits for the K–S

test, A–D statistic and CvM because there are neither bumps nor high-frequency

components. The performance of the MAC statistics on examples with bumps

and high-frequency components is shown in Section S1 in the Supplementary

Material, which also shows the advantage of MAC3 over ZZZ in multi-dimensional

cases.
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Figure 1: Power of K–S ( ), A–D ( ), CvM ( ), MAC1 ( ), and ZZZ

( ) for the Gaussian example based on 2000 replications with significance

level 0.05. The vertical dashed line ( ) corresponds to the case when the null

hypothesis is true.

Gaussian Example. (1) X ∼ F = 0.5N(−µ, 1) + 0.5N(µ, 1) and Y ∼
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G = N(0, 1), with µ ranging from zero to two. (2) X ∼ F = N(0, σ2) and

Y ∼ G = N(0, 1), with σ ranging from one to two.

In this example, we set n = m = 200, and the power of each method is

estimated based on 2000 independent replications with significance level 0.05.

The results under various parameters are shown in Figure 1. All five methods

control the type-I error rate at the targeted significance level of 0.05. MAC1

performed the best in these two examples. The performance of A–D is similar

to that of ZZZ in these two examples, and the performance of the K-S test is

the worst. These results show the lower power of the K–S test, and thus the

weakness of the KF for variable screening in binary classification. They also

suggest the potential power of MAC1 in the later problem.

3. Variable Screening

In this section, we consider variable screening in binary classification. First, we

introduce some additional notation. For any set A, |A| denotes the number of

elements it contains. Let Y ∈ {0, 1} be a binary response, n be the sample size

of Y = 0, andm be the sample size of Y = 1. Let S1 = {Zj : 1 ≤ j ≤ p} be the

set of input variables, and S∗1 = {Zj : P (Z0
j ) 6= P (Z1

j )} be the set of variables

with a marginal effect, where q = |S∗1 | � p. For any random variable U , denote

the two conditional random variables of U , (U |Y = 0) and (U |Y = 1), as U0
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and U1, respectively.

3.1 Marginal Screening

It is well known that covariate Z is associated with the binary response Y if Z0

and Z1 have different distributions. The KF uses the K–S statistic to measure

the distance between these two distributions, and claims that the covariate with a

larger distance is an important variable. However, the K–S statistic is powerless

in many cases, as discussed previously and shown in the simulations in Section

S1 of the Supplementary Material, which means the KF may miss important

variables. In addition, the model size from the KF is difficult to determine.

Usually, it provides a set of potentially important variables, which should be

further refined in the formal model building step. There are two main concerns

in this screening and refining framework: (1) if the KF provides a model size

smaller than the true model size, one may lose true variables in this screening

step; and (2) the refining step relies on strong model assumptions, which may

lead to the loss of important variables, owing to the model misspecification.

In the following, we propose a new marginal screening procedure to overcome

these drawbacks. As suggested by Theorem 1, we define the new marginal

screening procedure as

M1(c) = {Zj : MAC1(Z
1
j , Z

0
j ) ≥ c}, (3.1)
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where c is a threshold. Because it is based on the MAC test statistic MAC1, we

call it the MAC1 filter (MAC1-F). In the following, we establish the consistent

screening property of MAC1-F, which is a more desirable property than the sure

screening property of existing screening procedures. Its proof is given in Section

S4 of the Supplementary Material.

Corollary 1. Following the notation defined above, let S∗c1 = S1\S∗1 . When

assumption A holds, maxZj∈S∗c1 MAC1(Z
1
j , Z

0
j ) < MAC1

1(n,m) ≡ 8 log(2pnm)+

1 holds with probability going to one, as n,m → +∞. Furthermore, if p =

e(n+m)η with 0 < η < 1, for the screening procedure in Equation (3.1), we have

P (M1(MAC1
1(n,m)) = S∗1)→ 1 as n,m→ +∞.

Remark 3. Denote w as the minimal positive value such that MAC1(Z
1
j , Z

0
j ) >

(n + m)w, for all Zj ∈ S∗1 . As long as wn > 8 log(2pnm) + 1, the consistent

screening property of MAC1-F (M1(c)), according to Theorem 1, actually holds

for any c ∈ [8 log(2pnm) + 1, w(n+m)).

As one can see from the proof of Corollary 1 (see Section S4 in the Supplementary

Material) and Figure S1, the threshold MAC1
1(n,m) is usually too large for

finite sample problems. Thus we suggest setting the threshold in the screening

procedure as the (1−α) quantile, MACα
1 (n,m), of MAC1 underH0, with sample



3. VARIABLE SCREENING18

sizes n and m. This procedure is denoted as

Mα
1 = {Zj : MAC1(Z

1
j , Z

0
j ) ≥ MACα

1 (n,m)}. (3.2)

Thus, our procedure can determine the threshold according to a required false

positive rate. This procedure indeed control the false positive rate at α when

all variables are independent. In contrast, the KF and other existing screening

methods provides only the order of the threshold or an ad hoc default model size.

Thus they may produce unexpected false positives.

3.2 Pairwise Joint Screening

Both MAC1-F and the KF screen variables according to their marginal effect, and

thus may miss associated variables that are marginally undetectable. Here, we

consider pairwise joint-effect screening. Similarly to marginal-effect screening,

it is natural to claim the joint effect of two variables Zi and Zj on a binary

response Y if they satisfy the inequality P ((Zi, Zj)|Y = 0) 6= P ((Zi, Zj)|Y =

1); that is, they have different conditional joint distributions. However, a marginally

associated variable and a non-associated variable may also lead to this inequality,

thus producing false discoveries. There are four conditions of Zi and Zj that

lead to this inequality: (J1) one variable is marginally detectable, and the other

is associated with Y , but marginally undetectable; (J2) one variable is marginally

detectable, and the other is not associated with Y ; (J3) both variables are marginally
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undetectable, but are jointly detectable; and (J4) both variables are marginally

detectable. Marginal screening methods, such as MAC1-F, can read out variables

in (J4), but miss both the variables in (J3) and the marginally undetectable

variable in (J1). On the other hand, selecting variable pairs solely according to

P ((Zi, Zj)|Y = 0) 6= P ((Zi, Zj)|Y = 1) mistakenly selects the non-associated

variable in (J2). Thus, a desired pairwise joint screening procedure should

include pairs in (J1) and (J3), and should exclude the non-associated variable

in (J2).

To retrieve the variable pairs satisfying condition (J3), we propose a new

screening procedure, as follows:

M21(c) = {Xij = (Zi, Zj) : Zi, Zj ∈M c
1 and MAC2(X

1
ij, X

0
ij) > c}, (3.3)

where M c
1 = S1\M1, with M1 given by Equation (3.1), and c is a screening

threshold. This procedure is called the MAC2 Filter 1 (MAC2-F1).

Now, we consider the method for retrieving the variable pairs satisfying

condition (J1). Assume that Zi is marginally detectable and Zj is not. We

test P (F 1(Zi), Zj|Y = 1) = P (F 0(Zi), Zj|Y = 0), where F 1 and F 0 are

the cumulative distribution functions of Z1
i and Z0

i , respectively. Because U1
Zi

=

(F 1(Zi)|Y = 1) and U0
Zi

= (F 0(Zi)|Y = 0) are uniformly distributed random

variables, Zj is associated with Y if P ((U1
Zi
, Zj)|Y = 1) 6= P (U0

Zi
, Zj|Y = 0).
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Therefore, we define the screening procedure for this case as follows:

M22(c) = {Xij = (Zi, Zj) : Zi ∈M1, Zj ∈M c
1 and MAC2(X

1
ij,F , X

0
ij,F ) > c},

(3.4)

where X1
ij,F = ((F̂1(Zi), Zj)|Y = 1), X0

ij,F = ((F̂0(Zi), Zj)|Y = 0), F̂1 and F̂0

are the empirical cumulative distribution functions of Z1
i and Z0

i , respectively,

and c is a screening threshold. This procedure is called the MAC2 Filter 2

(MAC2-F2). Note that M22 excludes automatically the non-associated variable

in the condition (J2).

To establish the consistent screening property of M21 and M22, we define

• S∗21 = {(Zi, Zj) : Zi, Zj ∈ S∗c1 and P (Zi, Zj|Y = 0) 6= P (Zi, Zj|Y =

1), 1 ≤ i < j ≤ p};

• S∗22 = {(Zi, Zj) : Zi ∈ S∗c1 , Zj ∈ S∗1 and P (Zi, Zj|Y = 0) 6= P (Zi, Zj|Y =

1)};

• S21 = {(Zi, Zj) : Zi, Zj ∈ S∗c1 , 1 ≤ i < j ≤ p};

• S22 = {(Zi, Zj) : Zi ∈ S∗c1 , Zj ∈ S∗1};

• S∗c21 = S21\S∗21;

• S∗c22 = S22\S∗22.
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Based on this notation, we have the following results; see Section S4 in the

Supplementary Material for the proof.

Corollary 2. Following the notation given above, when assumption A holds, we

have that (a) maxXij=(Zi,Zj)∈S∗c21 MAC2(X
1
ij, X

0
ij) < MAC1

2(n,m) = 8 log(2p2nm)+

3 and (b) maxXij=(Zi,Zj)∈S∗c22 MAC2(X
1
ij,F , X

0
ij,F ) < MAC2

2(n,m) = 8 log(2pqnm)+

3 hold with probability going to one as n,m → +∞. Furthermore, if p =

e(n+m)η , with 0 < η < 1, for the screening procedure in Equation (3.3) and

(3.4), we have P (M21(MAC1
2(n,m)) = S∗21)→ 1 and P (M22(MAC2

2(n,m)) =

S∗22)→ 1 as n,m→ +∞.

Remark 4. The consistency ofM21(c) andM22(c) can be understood in a similar

way to that of M1(c) (see Remark 3).

Similarly to MAC1-F, in practice, we set the thresholds for M21 and M22

as the (1 − α) quantile, MACα
2 (n,m), of MAC2 under H0. The corresponding

procedures are specified by

Mα
21 = {Xij = (Zi, Zj) : Zi, Zj ∈M c

1 and MAC2(X
1
ij, X

0
ij) > MACα

2 (n,m)},

(3.5)

Mα
22 = {Xij = (Zi, Zj) : Zi ∈M1, Zj ∈M c

1 and MAC2(X
1
ij,F , X

0
ij,F ) > MACα

2 (n,m)}.

(3.6)
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In summary, we propose a three-step procedure for pairwise joint screening:

(1) use MAC1-F to selectM1; (2) use MAC2-F1 to select variables pairs satisfying

condition (J3); and (3) use MAC2-F2 to select the marginal nondetectable variable

satisfying condition (J1). We call this three-step procedure the MAC filter (MAC-

F).

4. Numerical Studies

In this section, we explore the power of our new screening procedures through

simulations. In the first part, we compare MAC1-F with KF because both are

marginal screening methods. In the second part, we show the power of our

pairwise joint screening method, MAC-F, by comparing it with the marginal

screening procedure MAC1-F.

4.1 Marginal Screening

In this section, we compare the performance of our new screening procedure

MAC1-F and that of the KF using five examples. Examples 4.1–4.4 are designed

to show the weakness of the KF in cases where the K–S test is powerless.

Example 4.5 is taken from Mai & Zou (2013) to show the comparable performance

of MAC1-F when the KF performs well. Other examples from Mai & Zou

(2013) are also tested (see Section S2 in the Supplementary Material). In these
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simulations, we follow Mai & Zou (2013) by setting p = 2000 and n = m =

200. For each case, 500 independent experiments are performed. Because the

KF has difficulty in choosing the screening threshold, the smallest model size

required to contain all the true variables is used to evaluate the performance of

these two methods (Mai & Zou, 2013; Li et al., 2012b).

Example 4.1

• Xj|Y = 1 ∼ uniform(−1, 1), Xj|Y = 0 ∼ gc(x) = 0.5 + 0.5 sin(2πcx),

with c = 1.5 and j = 1, · · · , 5.

• Xj : j = 6, · · · , p ∼i.i.d. N(0, 1)

Example 4.2

• Xj|Y = 1 ∼ f(x) = lognormal(0, 1), Xj|Y = 0 ∼ gc(x) = f(x)(1 +

c sin(2π log x)), with c = 1 and j = 1, · · · , 5.

• Xj : j = 6, · · · , p ∼i.i.d. N(0, 1)

Example 4.3

• Xj|Y = 1 ∼ uniform(0, 1), Xj|Y = 0 ∼ gc(x) = exp{c sin(5πx)}, with

c = 1.5 and j = 1, · · · , 5.

• Xj : j = 6, · · · , p ∼i.i.d. N(0, 1)

Example 4.4
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Table 1: Smallest model size required to contain all true variables for sample

sizes n = m = 200. The numbers are medians from 500 replicates with the

standard errors (estimated by bootstrap) given in parentheses.

Method Example 4.1 Example 4.2 Example 4.3 Example 4.4 Example 4.5

KF 36(2.2) 679(28.7) 210(9.9) 280(6.0) 5(0)

MAC1-F 14.0(0.6) 26(1.3) 5(0) 5(0) 5(0)

• Xj|Y = 1 ∼ uniform(0, 1), Xj|Y = 0 ∼ gc(x) = 1 + c cos(5πx), with

c = 1.5 and j = 1, · · · , 5.

• Xj : j = 6, · · · , p ∼i.i.d. N(0, 1)

Example 4.5

• Xj|Y = 1 ∼ t4, Xj|Y = 0 ∼ 0.5N(2.5, 1) + 0.5N(−2.5, 1), for j =

1, · · · , 5

• Xj : j = 6, · · · , p ∼i.i.d. N(0, 1).

The simulation results are shown in Table 1. As expected, for Examples

4.1–4.4, where the K–S test has relatively lower power as showed in Examples

2–5 in the Supplementary Material, the KF selects more noisy variables than

MAC1-F does. For Example 4.5, the two methods perform similarly. The results

given in Table S4 in the Supplementary Material show that MAC1-F and the
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KF both perform well for other examples from Mai & Zou (2013). More details

are provided in Section S2.2 in the Supplementary Material. In addition, we

show the simulation results for smaller sample sizes in Tables S1–S3 of Section

S2.1 of the Supplementary Material, which show that MAC1-F outperforms

the KF when the sample sizes are smaller.

A key advantage of our screening procedure is that we can determine the

threshold according to a required false positive rate, whereas other methods

usually cut off at ad hoc model sizes. Table 2 compares the effects of these

two thresholding approaches. For a targeted false positive rate α, the threshold

for MAC1-F is chosen as the 1 − α quantile of MAC1, simulated under the

null hypothesis. We use 500000 simulations, which actually could be much

smaller, to accurately estimate the quantile. Another reason why we use so many

simulations is to provide a numerical validation of theoretical results in Theorem

1 and Corollary 1. For the KF, as suggested in Li et al. (2012b), the threshold is

chosen such that the resulting model size is equal to dn/ log(n)e or its multiple.

As shown in Table 2, to obtain the same true positives, the KF yields more

false positives than MAC1-F does. By taking different values of α, we show

that MAC1-F controls the false positives reasonably well. Taking α = 5% as

an example, the expected number of false positives is 99.75, with a theoretical

standard deviation equal to 9.73, which are close to the values estimated by
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Table 2: The true/false positives (TP/FP) of the KF and MAC1-F under different

thresholds. The numbers are the mean values from 500 replicates, with standard

errors given in parentheses.

Threshold Example 4.1 Example 4.2 Example 4.3 Example 4.4 Example 4.5

†α for MAC1-F

5% 5.0(0.14)/96.5(9.8) 4.9(0.3)/96.7(9.5) 5(0)/97.3(9.6) 5.0(0)/96.7(9.9) 5(0)/96.8(10.0)

1% 4.6(0.6)/16.8(4.2) 4.3(0.8)/16.9(4.1) 5.0(0.1)/17.4(4.4) 5(0)/17.0(4.0) 5(0)/16.8(4.6)

0.1% 3.5(1.1)/3.4(1.7) 3.1(1.1)/3.5(1.7) 4.9(0.3)/3.4(1.9) 4.9(0.2)/3.4(1.9) 5(0)/3.4(2.0)

dn for KF

dn/ log(n)e 2.4(1.1)/40.8(4.5) 0.8(0.8)/43.4(4.7) 2.7(1.1)/41.7(4.7) 1.7(1.1)/42.2(4.6) 5(0)/39.0(4.2)

2dn/ log(n)e 3.1(1.1)/81.2(7.3) 1.3(1.0)/85.2(7.8) 3.5(1.2)/82.2(7.6) 2.7(1.1)/83.1(7.6) 5(0)/81.1(7.4)

3dn/ log(n)e 3.5(1.1)/125.1(10.7) 1.8(1.1)/126.0(10.4) 4.0(0.9)/125.1(11.4) 3.3(1.1)/124.9(10.7) 5(0)/123.6(10.9)

† The (1− α) quantile of MAC1 is estimated based on 500000 simulations.

MAC1-F. For the KF, we cannot find an explicit relationship between the chosen

model size and the false positives. Thus the accuracy of the resulting model is

uncertain.

4.2 Pairwise Joint Screening

In this section, we evaluate the power of our new pairwise joint screening method

using three simple, but representative examples. In Example 4.6, there is only

the joint effect of the condition (J3). In Example 4.7, we test the power of

joint effect screening when we have both a main effect and a joint effect of the
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condition (J1). In Example 4.8, we have main and joint effects for conditions

(J1) and (J3). Because we focus on joint screening here, we set p = 300 and

n = m = 200 in the simulation. Under this setting, there are 44850 possible

pairwise joint effects, which cannot be handled by a penalized method, in which

we assume that the pairwise joint effect is of the form X1X2. However, we do

not put any assumption on the form of the pairwise joint effect in order to use

MAC-F.

Furthermore, we set α1 = 0.5% and 5% in Mα1
1 , as defined by Equation (3.2)

for MAC1-F, α21 = 0.01% in Mα21
21 , as defined by Equation (3.5) and α22 =

0.1% in Mα22
22 , as defined by Equation (3.6). We use 500000 simulations to

accurately estimate these quantiles. Another reason for using so many simulations

is to provide a numerical validation for theoretical results in Theorem 1 and

Corollary 2.

Example 4.6

• log(P (Y=1|X)
P (Y=0|X)

) = X1X2

• Xj : j = 1, · · · , p ∼i.i.d. N(0, 1)

Example 4.7

• log(P (Y=1|X)
P (Y=0|X)

) = X1 +X1X2

• Xj : j = 1, · · · , p ∼i.i.d. N(0, 1)
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Table 3: The true/false positives (TP/FP) for Examples 4.6–4.8, with n =

m = 200. The numbers are from 500 replicates, with standard errors given

in parentheses.

Example 4.6 Example 4.7 Example 4.8

MAC1-F† MAC-F† MAC1-F MAC-F MAC1-F MAC-F

α1 = 5%

TP 0.38(0.61) 2(0) 1.2(0.37) 2(0) 1.3(0.51) 4(0)

FP 15(3.8) 4.8(2.1)+9(0.68)§ 16(3.9) 4.9(2.2)+9.5(0.67) 16(3.8) 5.4(2.4)+9(0.68)

α1 = 0.5%

TP 0.1(0.42) 2(0) 1.1(0.25) 2(0) 1.0(0.19) 4(0)

FP 1.8(1.22) 1.2(1.1)+9(0.67) 1.7(1.21) 1.3(1.0)+8.5(0.69) 1.6(1.22) 1.8(1.3)+9(0.67)

† Quantile of MAC1 and MAC2 is estimated based on 500000 simulations

§ FP of MAC-F is represented by FP of MAC2-F2 + FP of MAC2-F1

Example 4.8

• log(P (Y=1|X)
P (Y=0|X)

) = X1 +X1X2 +X3X4

• Xj : j = 1, · · · , p ∼i.i.d. N(0, 1).

As shown in Table 3, the performance of MAC1-F for these examples is

poor, owing to the existence of the pairwise joint effect. For Example 4.6, both

X1 and X2 are marginally undetectable. Thus the true positive of MAC1-F, as

expected, is very small (the TP is less than one). For Example 4.7, the true
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variable X1 is marginally detectable, but X2 is not. Thus MAC1-F selects X1

and misses X2 very often (the TP is almost one). For Example 4.8, the true

variable X1 is marginally detectable, but the other three variables are not. Thus

MAC1-F selects X1 and misses other variables very often (the TP is almost

one). However, MAC-F always finds the true variables in these examples, while

keeping the false positives under control. Similar conclusions can be drawn from

the simulation results for these examples under smaller sample sizes (see Section

S2.3 in the Supplementary Material).

4.3 Real-Data Application

In this section, we apply the proposed screening method to an in-house DNA

CpG methylation array data set of diabetes patients. The study investigates

which genetic and epigenetic factors drive a diabetes patient to develop coronary

heart disease (CHD) or end-stage renal disease (ESRD). The specific scientific

goal here is to check which CpG sites are associated with the development of

CHD or ESRD among Chinese Type-2 diabetes (T2D) patients. We perform

a matched case-control study from the Hong Kong Diabetes Registry, which

includes thousands of patients with T2D and prospective follow-up. For control,

the patient should have had T2D for≥ 10 years, but should have neither cardiovascular

disease nor chronic kidney disease at both baseline and follow-up. For the CHD
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case, the patient should have neither CHD nor chronic kidney disease at baseline,

but must have developed CHD during follow-up. For the ESRD case, the patient

should have neither ESRD nor cardiovascular disease at baseline, but should

have developed ESRD during follow-up. Infinium Human Methylation 450K

BeadChip is used to measure the methylation levels for each patient. After

screening for quality control and phenotype availability, 435 CHD patients and

436 corresponding controls are used for the CHD study, and 363 ESRD patients

and 362 corresponding controls are used for the ESRD study. We use 468034

CpG sites as the candidate variables for screening.

Figure S5 in the Supplementary Material shows the K–S statistic values

and their corresponding MAC statistic values for all CpG sites. It shows that

MAC1-F found more CpG sites associated with CHD than the KF did. For

example, the adjusted p-value of the K–S statistic for the CpG site cg13359998, a

reported site contributing to CHD, is one. This means that the KF cannot detect

this important site. However, the adjusted p-value of the corresponding MAC

statistic is 0.0003. Thus MAC-F successfully found this site. For ESRD, the KF

also tends to miss some important CpG sites. The top 40 CpG sites found by the

KF and MAC1-F are provided in the Supplementary Material.

We also use our pairwise joint screening procedure to check the joint effect

or interaction among the CpG sites. We focus first on detecting pairs of CpG sites
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under CHD satisfying condition (J1), where the marginally detectable CpG sites

are chosen as the top nine CpG sites detected by MAC1-F (sorted according to

the difference in mean methylation level): cg10501210, cg0620273, cg0759483,

cg13359998, cg13471990, cg09586924, cg09648727, cg16867657 and cg03139435.

The null distribution of log(MAC2) is shown in Figure S6 in the Supplementary

Material, and is well approximated by a normal distribution. The screening

threshold for Mα
22 is set as 52.32, which is the (1− 0.05/(40 ∗ 468034)) quantile

of MAC2 calculated from the normal approximation. The detected CpG sites

are provided in the Supplementary Material. Interestingly, we find that the

CpG site cg19083407, which may strongly interact with CpG site cg09586924,

is reported as a potential mediator of genetic association with mRNA expression

in human pancreatic islets (Olsson et al., 2014).

Next, we focus on detecting pairs of CpG sites under CHD that satisfy

condition (J3). Because there are as many as 4679942 pairs of CpG sites to

be detected, we focus on the joint effect of the top 150 from the undetected

list of CpG sites. The screening threshold for Mα
21 is set as 64.74, which is

the (1− 0.1/(467994 ∗ 467993)) quantile of MAC2, calculated from the normal

approximation. We found that three pairs are significant: cg08985282–cg01287975,

cg06655216–cg01287975 and cg26203883–cg08280341. Of these, cg08985282

has been reported to be associated with a mood disorder (Byrne et al., 2013).
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Note that many of our detected CpG sites are novel, and have not been

reported as biomedical markers in the current literature. They may provide

new insights into studies on diabetes, but independent experiments are needed to

validate them. We shall report the validation part of the novel findings in future

work.

5. Discussion

We have considered variable screening in high-dimensional binary classification.

To this end, we have proposed consistent non-parametric test statistics for the

two-sample distribution comparison under different settings. Based on the new

statistics, we have proposed new variable screening procedures for ultrahigh-

dimensional binary classification, which are much more powerful than existing

methods. Importantly, our new pairwise joint screening procedure enables us

to find variables with a pairwise joint effect, but no marginal effect. Both the

simulation results and the real-data application show the effectiveness and advantages

of the proposed methods.

As shown in Theorem 1, our test statistics are consistent under all continuous

alternatives when the sample sizes are comparable. Intuitively, the MAC statistics

combine the merits of the chi-squared statistic and the K–S statistic. Compared

with the chi-squared statistic, the MAC statistics avoid the problem of selecting
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the number of partitions and constructing the partitions, which are critical, but

treated rather arbitrarily in real applications. In comparison with the K–S statistic,

the MAC statistics improve the resolution by considering different scales of the

neighborhood for each sample point. Our simulation studies showed that MAC1

outperforms classical methods (K–S, A–D and CvM) in univariate cases, and

MAC3 outperforms ZZZ in high-dimensional cases. However, in univariate

cases, where the parametric assumption on the alternatives of ZZZ holds, ZZZ

performed slightly better than MAC1, owing to its parametric efficiency. The

improved performance of MAC for the two-sample distribution comparison shows

its potential for variable screening in high-dimensional binary classification.

As illustrated in our examples, the K–S test is powerless in many cases,

which leads to the low true positives of the KF. Another drawback of the KF is

that there is no way to determine the number of variables that should be included

in the model. Our MAC-based screening procedure, MAC1-F, overcomes these

drawbacks, owing to its consistent screening property rather than the sure screening

property. The threshold for screening variables can be set according to the Type-

I error in practice. This is another advantage of MAC1-F over the KF. However,

the power gain comes at the cost of computational efficiency.

Considering that MAC1-F screens variables according to marginal effect,

we proposed a new joint screening procedure based on MAC2 and MAC1, called
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MAC-F. As shown in our examples, marginal screening methods, such as MAC1-

F, may miss some important variables that are not marginally detectable. MAC-F

enables us to find these kinds of variables. If there are p input variables, we shall

compute
(
p
2

)
MAC2 values, which is time-consuming when p is large. Although

this problem cannot be avoided by other screening methods, parallel techniques

can be used to reduce the computation time. Furthermore, we only consider

second-order joint screening in this work. It is still interesting to develop higher-

order joint screening methods based on MAC3, which is left to future work.

Although the MAC statistics are powerful for both the two-sample distribution

comparison and variable screening in binary classification, their computation

may be time-consuming. Note that the computation time of MAC1 and MAC2

are bothO(nm(n+m)), whereas the computation time of MAC3 isO(
(
d
2

)
nm(n+

m)). Thus, MAC3 has the limitation of higher computation complexity when d

becomes large. As an example, the computation time of MAC3 for Example 9

(d = 5) in Section S1.2 in the Supplementary Material, with sample size n =

m = 200, is 3.6 seconds on a Windows7 PC with an Intel Core i7-2600 3.4GHz

processor. There are several possible approaches to reduce the computing time

of the MAC statistics without significant sacrifice of accuracy. For example, in

Equations (2.1)-(2.3), max{Tk(xi, yj), Tk(yj, xi)} can be replaced by Tk(xi, yj),

which results in only a minor decrease of accuracy, but halves of the computing
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time. One can also compute the MAC statistics on a sub-sample instead of

scanning all sample points with all sample-based resolutions. In addition, the

MAC statistics can be computed in a parallel manner by computing the local

statistics separately, which would save a lot of time. However, additional research

is needed to extend the idea behind MAC2 in a more efficient way to cases with

d > 2, rather than using the naive exhaustive bi-partition approach currently

adopted by MAC3. When the sample sizes are not big, but the increasing dimension

causes a computational problem, gCvM may be a good alternative, as long as we

are aware of its weakness.

Supplementary Material

The online Supplementary Material provides additional simulation results and

proofs of the theoretical results.
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