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Estimation for nonignorable missing response or covariate using

semi-parametric quantile regression imputation and

a parametric response probability model

Emily Berg and Cindy Yu

Department of Statistics Iowa State University

Abstract: We address the problem of imputation when a response or covariate

may be subject to a nonignorable (or, equivalently, missing not at random) non-

response, meaning the response probability may depend on a variable that is not

always observed. We discuss model identification and develop a novel estimator

of the parameters of the response probability. We use a propensity score adjust-

ment to incorporate a subset for which both the response and the covariate are

missing. We derive an approximation for the large-sample variance and assess

the finite-sample properties of the variance estimator using simulations. The sim-

ulation results also show that a quantile regression offers a compromise between

fully parametric and nonparametric alternatives. In an application to data from

a 2011 survey of pet owners, a quantile regression allows us to model complex

relations between two types of veterinary expenditures, where we find evidence

a of nonignorable nonresponse.
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1. Introduction

A widely adopted remedy for missing data is to replace each miss-

ing value with one or more imputed values (Kim and Shao, 2014; Rubin,

1987). An imputation model defines (1) a relationship between a response

(y) and a covariate (x), and (2) the nature of the dependence between the

event of responding and (x, y). A common simplifying assumption is that

the data are missing at random (MAR), meaning that the probability of

responding is independent of the missing variable, after conditioning on the

fully observed variables. Under the MAR assumption, Kim and Yu (2011)

and Wang and Chen (2009) develop fully parametric and nonparametric

imputation procedures, respectively. Chen and Yu (2016) and Berg and Yu

(2019) construct imputed values under the assumptions of a semiparametric

quantile regression model, assuming an MAR nonresponse. When the event

of responding is not independent of missing values, given observed values,

the response mechanism is called missing not at random (MNAR) or non-

ignorable. (Hereafter, we use MNAR and nonignorable interchangeably.)

We extend Chen and Yu (2016) to a nonignorable nonresponse for a data

structure in which neither the response nor the covariate is fully observed.

A condition for model identification in the presence of an MNAR

nonresponse is the existence of a nonresponse instrument, a variable that is
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correlated with the response y, but conditionally independent of the event

of responding given y (Wang, Shao and Kim , 2014). Tang (2003) esti-

mates a fully parametric model for y given x, using x as an instrument,

without requiring a specific form for the response probability. Zhao (2015)

extends the framework of Tang (2003) to include an additional instrument.

Other approaches, such as those of Wang, Shao and Kim (2014) and Kott

(2008), use an instrumental variable to estimate a parametrized propensity

score model that depends on y, but not on the instrument. Shao and Wang

(2016) generalize the propensity score model of Wang, Shao and Kim (2014)

to include a nonparametric component. Riddles, Kim and Im (2016) use

likelihood-based methods to improve upon the efficiency of the calibration

estimation. Zhao and Ma (2019) use an instrumental variable, but avoid

estimating the response probability directly. Miao (2016) develops a dou-

bly robust estimator under the assumption that an instrumental variable

(called a “shadow variable” in their work) exists. Fang (2018) uses an in-

strumental variable assumption to estimate the coefficient associated with

a missing covariate when the response probability depends on the covari-

ate. However, it is well known that identifying an instrumental variable in

a given data set is nontrivial. Morikawa and Kim (2017) generalize the in-

strumental variable condition of Wang, Shao and Kim (2014) by deriving a
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necessary and sufficient condition for model identification under an MNAR

nonresponse. They develop an efficient propensity score estimator, assum-

ing a univariate response variable is missing and a univariate covariate is

fully observed. We extend the identification condition of Morikawa and

Kim (2017) to accommodate missing covariates and construct a completed

data set through imputation.

We propose generating imputed values from a semiparametric quantile

regression model, and then using estimates of the response probabilities

to approximate the required expectations for nonrespondents. We augment

the imputation procedure with a propensity score adjustment to incorporate

a subset for which both the response and the covariate are missing. In

our application, x and y represent two types of veterinary expenditures,

neither of which is fully observed, and either of which may influence the

probability of responding. The semiparametric quantile regression provides

the flexibility needed to model the nonlinear associations between the two

types of veterinary expenditures. We define parametric and nonparametric

alternatives for the purpose of comparison in the simulation study. Because

our data set has a univariate covariate, we focus on that case, and briefly

discuss an extension to multivariate covariates in Section 6.

We validate our proposed procedure by means of theory and sim-
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ulation, and then apply the method to data from a survey of pet owners.

In Section 2, we define the model assumptions and imputation and estima-

tion procedures. In Section 3, we define a variance estimator based on a

linear approximation. In Section 4, we conduct simulation studies to com-

pare alternative imputation models and assess the finite-sample properties

of the variance estimator. We apply the method to impute veterinary ex-

penditures in Section 5. We summarize and discuss future work in Section

6.

2. Model Assumptions and Imputation and Estimation Proce-

dures

Let xi and yi denote a continuous covariate and a continuous response

variable, respectively, with a compact support on the box [M1x,M2x] ×

[M1y,M2y], where i = 1, . . . , n. Let δi denote a response indicator variable

such that δi = 1 if both xi and yi are observed, δi = 2 if xi is observed and

yi is missing, and δi = 3 if yi is observed and xi is missing. We also use

δki = I[δi = k], for k = 1, 2, 3. Table 1 shows the data structure.
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Table 1: Structure of Missing Data

Covariate x Response y Response Indicator δ

X X 1

X ? 2

? X 3

Assume that (xi, yi, δi), for i = 1, . . . , n, are independent and iden-

tically distributed (iid) realizations of the random variable (X, Y,∆) with

joint cumulative distribution function (CDF) F (x, y, δ). Further, assume

X and Y are absolutely continuous, and denote their corresponding condi-

tional probability density functions by f(y|x, δ) and f(x|y, δ), respectively.

Assume ∆ has parametric conditional probability mass function given by

P (∆ = k | X = x, Y = y) =
exp(φk0 + φk1x+ φk2y)∑3
k=1 exp(φk0 + φk1x+ φk2y)

, (2.1)

for k = 1, 2, 3, where (φ10, φ11, φ12) = (0, 0, 0).

To identify the parameters of (2.1), we require an additional assump-

tion. By a direct extension of Theorem 3.1 of Morikawa and Kim (2017)

to missing covariates, the additional assumption is that F (x, y, δ) is a joint

CDF such that the condition

E[exp(−φ20 − φ21xi − φ22Y ) | xi, δi = 1] = E[exp(−φ′20 − φ′21xi − φ′22Y ) | xi, δi = 1]

(2.2)
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almost everywhere implies (φ20, φ21, φ22) = (φ′20, φ
′
21, φ

′
22), and the condition

E[exp(−φ30 − φ31X − φ32yi) | yi, δi = 1] = E[exp(−φ′30 − φ′31X − φ′32yi) | yi, δi = 1]

(2.3)

almost everywhere implies (φ30, φ31, φ32) = (φ′30, φ
′
31, φ

′
32). If φ31 = φ22 = 0,

then MAR holds and the model is automatically identified.

Sufficient conditions for (2.2) and (2.3) are that

hy(φ22, x) = −log(E[exp{−φ22Y } | x, δ = 1]) (2.4)

is not in the column space of x, and that

hx(φ31, y) = −log(E[exp{−φ31X} | y, δ = 1]) (2.5)

is not in the column space of y. If hy(φ22, x) is in the column space of x,

then φ21 is confounded with φ22. Similarly, we require that hx(φ31, y) not

be in the column space of y to prevent φ32 from being confounded with φ31.

Note that −hy(φ22, x) is the cumulant generating function of f(y | x, δ = 1),

and likewise for −hx(φ31, y). An aspect of (2.4) and (2.5) that is of practical

importance is that one can check these conditions using {(xi, yi) : δi = 1},

as we illustrate in the data analysis of Section 5.

Let the parameter of interest be θ0 = Eg(X, Y ) =
∑3

δ=1

∫∞
−∞

∫∞
−∞ g(x, y)dF (x, y, δ).

In the absence of any nonresponse, an estimator of Eg(X, Y ) is θ̂full =
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n−1
∑n

i=1 g(xi, yi). The estimator θ̂full is not directly applicable because of

the nonresponse. By Cheng (1994), a consistent estimator of θ0 is

θ̃ =
1

n

n∑
i=1

{δ1ig(xi, yi) + δ2iE[g(xi, Y )|xi, δi = 2] + δ3iE[g(X, yi)|yi, δi = 3]}.

(2.6)

We convert the expectations given δ = 2 or δ = 3 in (2.6) to expecta-

tions given δ = 1 using an “exponential tilting” relationship (Kim and Yu,

2011). Under (2.1), it is straightforward to show that

f(y|x, δ = 2) =
f(y|x, δ = 1)exp(φ22y)

E[exp(φ22Y ) | x, δ = 1]
(2.7)

and

f(x|y, δ = 3) =
f(x|y, δ = 1)exp(φ31x)

E[exp(φ31X) | y, δ = 1]
, (2.8)

where φ22 and φ31 are the tilting parameters. The equality in (2.7) allows

us to express the conditional expectation for the group with δ = 2 in (2.6)

as a function of different expectations given δ = 1 by

E[g(x, Y )|x, δ = 2] =
E[g(x, Y )exp(φ22Y )|x, δ = 1]

E[exp(φ22Y )|x, δ = 1]
. (2.9)

Similarly, the third conditional expectation for the group with δ = 3 in

(2.6) converts to a ratio of two expectations given δ = 1 as

E[g(X, y)|y, δ = 3] =
E[g(X, y)exp(φ31X)|y, δ = 1]

E[exp(φ31X)|y, δ = 1]
. (2.10)
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The expressions (2.9) and (2.10) show that we can estimate θ using (1)

estimates of f(y | x, δ = 1) and f(x | y, δ = 1), and (2) estimates of φ22 and

φ31. We focus on using a semiparametric quantile regression to estimate

f(y | x, δ = 1) and f(x | y, δ = 1). We compare the results to those from

nonparametric and fully parametric alternatives in the simulations. We

first define our estimation method for known (φ22, φ31) in Section 2.1, and

then explain how to estimate unknown (φ22, φ31) in Section 2.2.

2.1 Approximating Expectations Using Estimated Quantiles

We approximate f(y|x, δ = 1) and f(x|y, δ = 1) through their conditional

quantile regression functions, denoted by qτ (x) and qτ (y), respectively, for

τ ∈ (0, 1). By definition, the quantile regression functions satisfy τ =

P (Y ≤ qτ (x)|x, δ = 1) and τ = P (X ≤ qτ (y)|y, δ = 1). Assume qτ (x)

and qτ (y) are one-to-one functions of x and y, respectively, for every τ . A

well-known fact is that qτ (x) and qτ (y) satisfy qτ (x) = argmina
∫
ρτ (y −

a)f(y|x, δ = 1)dy and qτ (y) = argmina
∫
ρτ (x − a)f(x|y, δ = 1)dx, where

ρτ (u) is the “check function” defined by ρτ (u) = u(τ − I[u < 0]) (Koenker,

2005). We approximate qτ (x) and qτ (y) using a B-spline, allowing flexibility

and computational efficiency. Let B(x) be a B-spline of degree py|x and

with Kn1,y interior knots, where n1 is the sample size for δ = 1. For any
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τ ∈ (0, 1), we estimate qτ (x) by q̂τ (x) = B(x)′β̂y|x(τ), where

β̂y|x(τ) = argminβ{
n∑
i=1

δ1iρτ (yi −B(xi)
′β) +

λn1,y

2
β′D′mDmβ}, (2.11)

Dm is a difference matrix of order m, and λn1,y > 0 is the smoothing

parameter. See Chen and Yu (2016) and Berg and Yu (2019) for a precise

definition of the B-spline and the difference matrix Dm. In an analogous

fashion, define the estimate of qτ (y) by q̂τ (y) = B(y)′β̂x|y(τ), where

β̂x|y(τ) = argminβ{
n∑
i=1

δ1iρτ (xi −B(yi)
′β) +

λn1,x

2
β′D′mDmβ} for a given τ.

To approximate the full distributions of f(yi | xi, δi = 1) and f(xi |

yi, δi = 1), we obtain estimates β̂x|y(τ) and β̂y|x(τ) for a grid of τj defined

by τj = τ1 + (j − 1)/J , for j = 2, . . . , J , where τ1 ∼ Unif(0, 1/J). The

resulting estimated quantiles, defined as y∗i = {y∗ij = q̂τj(xi) : j = 1, . . . , J},

serve as imputed values for element i with δi = 2. Likewise, x∗i = {x∗ij =

q̂τj(yi) : j = 1, . . . , J} serve as imputed values for element i with δi = 3.

The sequence of estimated quantiles permits us to approximate the ex-

pectations defining θ̃. For any arbitrary function m(x, y), a variable trans-

formation implies

E[m(x, Y )|x, δ = 1] =

∫ 1

0

m(x, F−1y|x,δ=1(τ))
fy|x,δ=1(F

−1
y|x(τ) | x)

fy|x,δ=1(F
−1
y|x(τ) | x)

dτ =

∫ 1

0

m(x, qτ (x))dτ.

We approximateE[m(x, Y )|x, δ = 1] by Ê[m(x, Y )|x, δ = 1] = J−1
∑J

j=1m(x, q̂τj(x)).
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We approximate the numerator and denominator of (2.9) by replacing

m(x, Y ) with g(x, Y )exp(φ22Y ) and exp(φ22Y ), respectively. Specifically,

Ê[g(x, Y )exp(φ22Y )|x, δ = 1] = J−1
∑J

j=1 g(x, q̂τj(x))exp(φ22q̂τj(x)), and

Ê[exp(φ22Y )|x, δ = 1] = J−1
∑J

j=1 exp(φ22q̂τj(x)). Then, an approximation

for (2.9) is

Ê[g(xi, Y )|xi, δi = 2] =
J∑
j=1

w2ij(φ2,y
∗
i )g(xi, y

∗
ij), (2.12)

where φ2 = (φ20, φ21, φ22)
′ and

w2ij(φ2,y
∗
i ) =

exp(φ22y
∗
ij)∑J

j=1 exp(φ22y∗ij)
. (2.13)

Analogously, we estimate the expectation in (2.10) as

Ê[g(X, yi)|yi, δi = 3] =
J∑
j=1

w3ij(φ3,x
∗
i )g(x∗ij, yi), (2.14)

where φ3 = (φ30, φ31, φ32)
′ and

w3ij(φ3,x
∗
i ) =

exp(φ31x
∗
ij)∑J

j=1 exp(φ31x∗ij)
. (2.15)

2.2 Estimation of Response Probability

The estimated expectations in (2.12) and (2.14) require estimators of φ22

and φ31, the two tilting parameters. We estimate φ = (φ′2,φ
′
3)
′ using

conditional probabilities. Define for k = 2, 3,

πk1(xi, yi,φk) := P (δi = k | xi, yi,φk, δi ∈ {1, k}) =
exp(φk0 + φk1xi + φk2yi)

1 + exp(φk0 + φk1xi + φk2yi)
,
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and let π1k∞(v) := P (δ = 1|v, δ ∈ {1, k}) for v = x if k = 2, and v = y if

k = 3. Based on a result of Morikawa and Kim (2017), we can show that

π12∞(x) = E[1− π21(x, Y,φ2) | x, δ ∈ {1, 2}] =
exp(−φ20−φ21x+hy(−φ22,x))

1+exp(−φ20−φ21x+hy(−φ22,x))

(2.16)

and

π13∞(y) = E[1− π31(X, y,φ3) | y, δ ∈ {1, 3}] =
exp(−φ30+hx(−φ31,y)−φ32y)

1+exp(−φ30+hx(−φ31,y)−φ32y) ,

(2.17)

where hy(φ22, xi) and hx(φ31, yi) are defined in (2.4) and (2.5), respectively.

Note that π12∞(x) depends only on x and π13∞(y) depends only on y. Thus,

equation (2.16) suggests an estimator of φ2 defined as

φ̂2 = argmaxφ2

∑
i:δi=1

log

[
exp(−φ20 − φ21xi + ĥy(−φ22, q̂yi))

1 + exp(−φ20 − φ21xi + ĥy(−φ22, q̂yi))

]
(2.18)

+
∑
i:δi=2

log

[
1− exp(−φ20 − φ21xi + ĥy(−φ22, q̂yi))

1 + exp(−φ20 − φ21x+ ĥy(−φ22, q̂yi))

]
,

where ĥy(φ22, q̂yi) = −log
(
J−1

∑J
j=1 exp{−φ22y

∗
ij}
)
. Likewise, we estimate

φ3 as

φ̂3 = argmaxφ3

∑
i:δi=1

log

[
exp(−φ30 + ĥx(−φ31, q̂xi)− φ32yi)

1 + exp(−φ30 + ĥx(−φ31, q̂xi)− φ32yi)

]
(2.19)

+
∑
i:δi=3

log

[
1− exp(−φ30 + ĥx(−φ31, q̂xi)− φ32yi)

1 + exp(−φ30 + ĥx(−φ31, q̂xi)− φ32yi)

]
,

where ĥx(φ31, q̂xi) = −log
(
J−1

∑J
j=1 exp{−φ31x

∗
ij}
)
. Note that ĥx and

ĥy are estimates of hx and hy, respectively, using the imputed values y∗ij
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and x∗ij. In operation, we use the R function optim to find the max-

imum, where the initial value for φ2 is from the logistic regression of

1 − δ2i on (1, xi,B(xi)
′J−1

∑J
j=1 β̂y|x(τj))

′ for the set with δ3i = 0. We

define the initial value for φ3 from the logistic regression of 1 − δ3i on

(1,B(yi)
′J−1

∑J
j=1 β̂x|y(τj), yi)

′ for the set with δ2i = 0.

In summary, we define the basic steps of the estimation procedure as

follows:

1. Use {(xi, yi) : δi = 1} to estimate the quantile regression model, and

define imputed values y∗ij and x∗ij, as discussed in Section 2.1.

2. Estimate φ2 and φ3, as discussed in Section 2.2.

3. Define the imputed estimator θ̂ by

θ̂ = n−1
n∑
i=1

{δ1ig(xi, yi) + δ2i

J∑
j=1

w2ij(φ̂2,y
∗
i )g(xi, y

∗
ij) + δ3i

J∑
j=1

w3ij(φ̂3,x
∗
i )g(x∗ij, yi)}.

(2.20)

This completes the description of our imputation and estimation proce-

dures.

3. Large-Sample Theories and Variance Estimation

As a precursor to the statement of the large-sample distributions of φ̂2

and φ̂3, we give the large-sample distributions of the the estimates of the
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quantile regression coefficients as Lemma 1. We state Lemma 1 without

proof because it is essentially an application of Yoshida (2013) to the set

with δi = 1. We use the linear approximation in the lemma in the subse-

quent derivation of the asymptotic properties of (φ̂′2, φ̂
′
3)
′ and θ̂.

Lemma 1 uses the following property of Barrow and Smith (1978). The

result is that the best L∞ approximation to qτ (x) (as a function of x), de-

noted B(x)′β∗y|x(τ), satisfies supx∈[M1x,M2x] | qτ (x)+baτ (x)−B(x)′β∗y|x(τ) |=

o(K
−(py|x+1)
n1,y ), where baτ (x) is the bias due to using a B-spline to approximate

the true function qτ (x), and is defined as in Yoshida (2013).

Lemma 1. Assume q
(py|x+1)
τ (x) is continuous, where q

(py|x+1)
τ (x) denotes

the p + 1 derivative of qτ (x) with respect to x, Kn1,y = O(n
1/(2py|x+3)

1 ), and

λn1,y = O(n
νy
1 ) for νy < (py|x +m+ 1)/(2py|x + 3). Then,√

n1

Kn1,y

(
B(x)′β̂y|x(τ)− qτ (x)− baτ (x)− bλτ (x)

)
= Wn1 + op(1),

where

Wn1 =

√
n1

Kn1,y

B(x)′H−1n1,y|x(τ)
1

n1

∑
i:δi=1

B(xi)ψτ (ey|x,i(τ)),

ψτ (u) = τ − I[u < 0], ey|x,i(τ) = yi − qτ (xi),

Hn1,y|x(τ) = Φy|x(τ) + n−11 λn1,yD
′
mDm,

bλτ (x) = −λn1,y

n1

B(x)′
(

Φy|x(τ) +
λn1,y

n1

D′mDm

)−1
D′mDmβ

∗
y|x(τ), (3.1)
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and Φy|x(τ) = limn1→∞ n
−1
1

∑
i:δi=1 fy|(x,δ=1)(xi, qτ (xi))B(xi)B(xi)

′.

Lemma 1 holds for a given τ , but the order of the approximation does

not depend on τ . A result analogous to Lemma 1 holds for β̂x|y(τ). We

assume that the degree of B(y), denoted px|y, is such that px|y ·p−1y|x = O(1).

We also assume that the number of interior knots used to define B(y),

denoted by Kn1,x, satisfies Kn1,y ·K−1n1,x
= O(1).

3.1 Asymptotic Variance of φ̂ and θ̂

We state the large-sample distributions of φ̂2 and θ̂ as Theorems 1 and 2,

respectively. Section S1 of the Supplementary Material contains a result

for φ̂3 analogous to Theorem 1, as well as proofs.

Theorem 1. In addition to the assumptions of Lemma 1, assume φ̂2 −

φ2 = op(1), J = O(n0.5+δ) for some δ > 0, and the conditions in the

Supplementary Material hold. Then, φ̂2 − φ2 = Op(n
−0.5), φ̂2 − φ2 =

n−1
∑n

i=1 I
−1
φ2
Uφ2i + op(n

−0.5), and
√
nV

−1/2
φ2

(φ̂2 − φ2)
d→ N(0, I3), where

Vφ2 = lim
n→∞

n−1I−1φ2

(
n∑
i=1

Uφ2iU
′
φ2i

)
I−1φ2 , (3.2)

Iφ2 = limn→∞ In,φ2(qy), In,φ2(qy) = n−1
∑

i∈A12
π12i(φ2, qyi)(1−π12i(φ2, qyi))z2i(φ2, qyi)z2i(φ2, qyi)

′,

Uφ2i = (δ1i+δ2i)Si∞(φ2)+φ22δ1i
∫M2x

M1x
p−11 π12∞(x)(1−π12∞(x))z2∞(x)B(x)′

∫ 1
0 exp(φ22qτ (x))`i(τ)dτ∫ 1

0 exp(φ22qτ (x))dτ
dF (x |

δ1 + δ2 = 1), p1 = limn→∞n
−1n1, Si∞(φ2) = (δ1i − π12∞(xi))z2i∞, `i(τ) =
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3.1 Asymptotic Variance of φ̂ and θ̂ 16

H−1n1,y|x(τ)B(xi)ψτ (ey|x,i(τ)), z2∞(x) = (−1,−x,−E2(Y | x))′, z2i∞ = z2∞(xi), z2i(φ2, qyi) =

(−1,−xi,−E2,J(Y | xi;φ2, qyi)), qyi = {qτj(xi) : j = 1, . . . , J}, E2,J(Y |

xi;φ2, qyi) =
∑J

j=1w2ij(φ2, qyi)qτj(xi),

π12i(φ2, qyi) =

{
1 + exp

[
φ20 + φ21xi + log

(
J−1

J∑
j=1

exp{φ22qτj(xi)}

)]}−1
,

A12 = {i : δ1i + δ2i = 1}, qy = {qyi : δ1i + δ2i = 1}, and E2[Y | x] = E[Y |

x, δ = 2].

An estimator of the variance of φ̂2 is

V̂ {φ̂2} = n−2Î−1n,φ2

(
n∑
i=1

Ûφ2iÛ
′
φ2i

)
Î−1n,φ2 , (3.3)

where we substitute the unknown parameters with their corresponding es-

timators to define În,φ2 and Ûφ2i, as defined explicitly in Section S2 of the

Supplementary Material.

Theorem 2. Continue to assume the conditions of Theorem 1. In addition,

assume g(X, Y ) has bounded 2+c moments for c > 0, and has bounded sec-

ond derivatives with respect to both x and y. Let Kn1 = max{Kn1,y, Kn1,x}.

Then,
√
nV −0.5g (θ̂−E[g(X, Y )])

d→ N(0, 1), where Vg = limn→∞(n−1)−1
∑n

i=1(ri−
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3.1 Asymptotic Variance of φ̂ and θ̂ 17

r̄)2, r̄ = n−1
∑n

i=1 ri,

ri = g(xi, yi)− Eg(X, Y ) + δ2i(E2[g(xi, Y ) | xi]− g(xi, yi)) + δ3i(E3[g(X, yi) | yi]− g(xi, yi))

(3.4)

+ (δ1i + δ2i)
{
C̄2∞

}
e′2I

−1
φ2
Uφ2,i + (δ1i + δ3i)

{
C̄3∞

}
e′3I

−1
φ3
Uφ3,i

+ δ1i(

∫ 1

0

∫ M2x

M1x

Cy(x, τ)′`i(τ)dF (x | δ = 2)dτ +

∫ 1

0

∫ M2y

M1y

Cx(y, τ)′mi(τ)dF (y | δ = 3)dτ),

C̄2∞ = limn→∞ n
−1∑n

k=1 δ2kCov2(g(xk, Y ), Y | xk), C̄3∞ = limn→∞ n
−1∑n

k=1 δ3kCov3(g(X, yk), X |

yk), Cov2(g(x, Y ), Y | x) = Cov(g(x, Y ), Y | X = x, δ = 2), Cov3(g(X, y), X |

y) = Cov(g(X, y), X | Y = y, δ = 3), E2[g(x, Y ) | x] = E[g(x, Y ) | δ =

2, X = x], E3[g(X, y) | y] = E[g(X, y) | δ = 3, Y = y], e3 = (0, 0, 1)′,

Cy(x, τ) = c̃y(x, τ)B(x), Cx(y, τ) = c̃x(y, τ)B(y),

c̃y(x, τ) =
cy(x, τ)∫ 1

0
exp(φ22qτ (x))

− E2[g(x, Y ) | x]
φ22exp(φ22qτ (x))∫ 1

0
exp(φ22qτ (x))

c̃x(y, τ) =
cx(y, τ)∫ 1

0
exp(φ31qτ (y))dτ

− E3[g(X, y) | y]
φ31exp(φ31qτ (y))φ31∫ 1

0
exp(φ31qτ (y))dτ

,

cy(x, τ) = exp(φ22qτ (x))g′y(x, qτ (x))+g(x, qτ (x))exp(φ22qτ (x))φ22, cx(y, τ) =

exp(φ31qτ (y))g′x(qτ (y), y)+g(qτ (y), y)exp(φ31qτ (y))φ31, and mi(τ), Iφ3, and

Uφ3 are defined in the Supplementary Material for the linear approximation

for φ̂3.

A proof of Theorem 2 is presented in Section S1 of the Supplementary
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3.2 Propensity Score-Adjusted Imputed Estimator 18

Material. An estimator of the variance of the imputed estimator is

V̂ {θ̂} = (n(n− 1))−1
n∑
i=1

(r̂i − ¯̂r)2, (3.5)

where r̂i is a plug-in estimator of ri defined in Section S2.3 of the Supple-

mentary Material, and ¯̂r = n−1
∑n

i=1 r̂i. In the Supplementary Material

Section S2.4, we define how to use a Taylor linearization to estimate the

variance of “composite” estimators of the form θ̂ = h(θ̂1, . . . , θ̂K) of a pa-

rameter θ = h(θ1, . . . , θK), where each θk is of the form Egk(X, Y ), for some

function gk(X, Y ).

3.2 Propensity Score-Adjusted Imputed Estimator

The data set may contain a fourth group for which both xi and yi

are missing. Let δ4i = 1 if both xi and yi are missing. In this context,

we interpret the probabilities (2.1) as conditional probabilities, given that

δ4i = 0. We apply the imputation procedure to {i : δ4i = 0}, as described

in Section 2. We then apply a propensity score adjustment using a p-

dimensional covariate vi, known for all i = 1, . . . , n. Assume

P (δ4i = 0) = exp(φ40 + φ′41vi)[1 + exp(φ40 + φ′41vi)]
−1 := p4i(φ4). (3.6)

Estimate the (p + 1)-dimensional parameter φ′4 = (φ40,φ
′
41)
′ as φ̂4 =

(φ̂40, φ̂
′
41)
′ satisfying S4(φ̂4) = 0, where S4(φ4) =

∑n
i=1(1,vi)

′(1 − δ4i −
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p4i(φ4)). Then, let p̂4i = p4i(φ̂4). Assumption (3.6) justifies the propensity

score-adjusted imputed estimator defined by

θ̂PSA−IMP =
1

n

{
n∑
i=1

δ1i
g(yi, xi)

p̂4i
+ δ2i

∑J
j=1w2ij(φ̂2,y

∗
i )g(xi, y

∗
ij)

p̂4i
+ δ3i

∑J
j=1w3ij(φ̂3,x

∗
i )g(x∗ij, yi)

p̂4i

}
.

The propensity weights p̂−14i extrapolate the set {i : δ1i + δ2i + δ3i = 1}

onto the full sample {i = 1, . . . , n}. In the Supplementary Material Section

S3, we define an estimator of the variance of θ̂PSA−Imp as a straightforward

extension of (3.5), and we verify through simulation that θ̂PSA−Imp and the

corresponding variance estimator are approximately unbiased.

4. Simulation Study

We assess the finite-sample properties of the proposed estimator. We

first compare the estimator of Section 2 to competitive alternatives. We

then assess the properties of the variance estimator proposed in Section 3.

4.1 Comparison of Alternative Imputation Estimators

We consider two distributions for F (y, x, δ). For both, the parameter of

interest is θ = (EY,EX, V (Y ), V (X), C(X, Y ))′, where V (Y ) (or V (X))

and C(X, Y ) denote the variance of Y (or X) and the correlation between

X and Y , respectively. We compute the estimators for a Monte Carlo
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4.1 Comparison of Alternative Imputation Estimators 20

(MC) sample size of 500 and define θ based on a separate simulation of size

500,000.

We compare the estimator proposed in Section 2 (abbreviated “Imp”)

to three alternatives. To assess the impact of accounting for an MNAR

nonresponse, we consider an ignorable (Ign) estimator that is essentially

that of Chen and Yu (2016), and is obtained by setting φ = 0 so that

w2ij(φ2, qyi) = w3ij(φ3, qxi) = J−1. We define parametric (Par) and non-

parametric (NP) alternatives that involve implementing the three steps of

Section 2.3, including estimating φ, but generating the imputed values dif-

ferently. For Par, we assume that yi = β0,y + β1,yxi + β2,yx
2
i + β3,yx

3
i +

ei,y, where ei,y
iid∼ N(0, σ2

e,y), and likewise, xi = β0,x + β1,xyi + β2,xy
2
i +

β3,xy
3
i + ei,x, where ei,x

iid∼ N(0, σ2
e,x). The imputed values for Par are

v∗ij = v̂i + e∗vij, where for ν = x, y, e∗νij
iid∼ N(0, σ̂2

e,ν), v̂i is the predicted

mean using the ordinary least squares coefficients (β̂0,v, β̂1,v, β̂2,v, β̂3,v), and

σ̂2
e,ν = (n − 4)−1

∑n
i=1(νi − ν̂i)

2. For NP, we generate imputed values in-

dependently and with replacement from the set of observed values such

that P{y∗ij = yk} = K(xk − xi)[
∑n

`=1 δ1`K(x` − xi)]−1, and P{x∗ij = xk} =

K(yk−yi)[
∑n

`=1 δ1`K(y`−yi)]−1, where K(·) is a Gaussian kernel with band-

width defined by applying the R function bw.ucv to the sets {xi : δ1i = 1}

and {yi : δ1i = 1} individually. Owing to the adjustment for the MNAR
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4.1 Comparison of Alternative Imputation Estimators 21

nonresponse, by estimating φ, the Par and NP estimators proposed above

are themselves innovations upon Kim and Yu (2011) and Wang and Chen

(2009), respectively.

We define the FlippedExp simulation model by

yi = h(xi) + 1.25(1 + xi)(εi − 0.2) (4.1)

and εi
iid∼ Beta(1, 4), where h(xi) = {2exp(−2) − exp(−2(xi − 1))}I[xi <

2] + {2exp(2) − exp(−2(xi − 5))}I[2 < xi < 4] + exp(−2(xi − 3))I[4 <

xi < 6], xi
iid∼ Unif(0, 6), for i = 1, . . . , n, and (φ20, φ21, φ22, φ30, φ31, φ32) =

(−1, 0.033, 0.12,−0.800, 0.1, 0.033). We consider n = 100, 1000, and 5000.

The penalties (λn1,y, λn1,x) are (0.2, 2), (1, 10), and (3, 30) for n = 100,

1000, and 5000, respectively. They are based on a rule of (λn1,y, λn1,x) ≈

(0.1, 0.01)n6/9, determined from an exploratory analysis of simulated data

using generalized cross-validation (Chen and Yu, 2016) and the relation

between λn1,y and n in Lemma 1. We define J ≈ n0.5, giving J = 10,

30, and 70 for n = 100, 1000, and 5000, respectively. The knots are the

k/(K + 1) quantiles of {xi : δ1i + δ2i = 1, i = 1, . . . , n} and {yi : δ1i + δ3i =

1, i = 1, . . . , n}, where k = 1, . . . , K, and K = 20, 30, and 35 for n =100,

1000, and 5000, respectively. The values of K are based loosely on the rule

of thumb, K = min{n/4, 35} (Ruppert, 1987).

Tables 2 and 3 contain the MC biases and RMSEs of the estimators of
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4.1 Comparison of Alternative Imputation Estimators 22

θ and φ, respectively, with the smallest absolute value among competitors

shown in bold. For n = 100, variation from estimating additional param-

eters causes the RMSE of Imp to exceed those of Par and Ign, except for

EX and Cor(X, Y ). For n = 1000, the Imp procedure is efficient. As n

increases to 5000, the efficiency of NP improves. The Imp estimator of φ

typically has the smallest absolute bias and RMSE.

To construct a model that better satisfies the assumptions of the Par

estimator, we define the Exp configuration by (4.1) with h(xi) = exp(2xi),

where xi
iid∼ Unif(−1, 1), and (φ20, φ21, φ22, φ30, φ31, φ32) = (−0.9, 0.15, 0.2,−0.8, 0.15, 0.1).

A rule of λn1,y = λn1,x ≈ n6/9 gives penalties of 20 and 100 for n = 100

and 1000, respectively. We define the knots and τj in the same way as for

FlippedExp.

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0053



4.1 Comparison of Alternative Imputation Estimators 23

Table 2: MC bias and RMSE of alternative estimators of θ for FlippedExp.

Bias RMSE

True Ign Imp Par NP Ign Imp Par NP

n = 100

EY 4.412 -0.034 0.022 0.041 -0.125 0.637 0.644 0.751 0.751

EX 3.000 -0.838 -0.001 -0.010 -0.014 0.862 0.180 0.186 0.196

V (Y ) 42.865 -0.182 0.619 3.469 -1.610 5.545 6.235 14.460 5.575

V (X) 3.000 0.954 -0.018 0.011 -0.040 1.010 0.315 0.308 0.312

C(X, Y ) 0.939 -0.341 -0.000 -0.015 -0.039 0.352 0.014 0.030 0.059

n = 1000

EY 4.412 -0.039 0.004 -0.044 0.011 0.209 0.208 0.229 0.211

EX 3.000 -0.839 -0.000 -0.003 -0.002 0.841 0.053 0.056 0.053

V (Y ) 42.865 -0.564 0.003 -0.114 -0.038 1.472 1.430 1.809 1.441

V (X) 3.000 1.001 -0.002 0.015 -0.005 1.006 0.089 0.095 0.090

C(X, Y ) 0.939 -0.341 0.000 -0.003 -0.005 0.342 0.004 0.005 0.007

n = 5000

EY 4.412 -0.035 0.007 -0.037 0.007 0.101 0.097 0.110 0.096

EX 3.000 -0.838 0.001 0.001 0.001 0.838 0.025 0.025 0.025

V (Y ) 42.865 -0.574 0.011 -0.190 -0.010 0.833 0.654 0.833 0.637

V (X) 3.000 1.002 -0.004 0.012 -0.004 1.003 0.039 0.042 0.039

C(X, Y ) 0.939 -0.341 0.000 -0.002 -0.001 0.341 0.002 0.003 0.002
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Table 3: MC bias and RMSE of alternative estimators of φ for FlippedExp.

Bias RMSE

n True Imp Par NP Imp Par NP

φ20 100 -1.0000 0.1008 -0.2918 -0.3151 1.0756 1.3114 1.0886

φ21 100 0.0333 -0.0853 0.1236 0.1046 0.5482 0.6408 0.5548

φ22 100 0.1200 0.0277 -0.0323 -0.0176 0.1475 0.1712 0.1663

φ30 100 -0.8000 -0.0923 -0.0709 -0.0852 1.3860 1.5112 1.7724

φ31 100 0.1000 -0.0023 -0.0231 -0.0477 0.7272 0.7588 0.8893

φ32 100 0.0333 0.0061 0.0103 0.0223 0.1928 0.2037 0.2286

φ20 1000 -1.0000 0.0021 -0.1877 -0.0042 0.3077 0.4324 0.3001

φ21 1000 0.0333 -0.0049 0.0995 -0.0059 0.1531 0.2242 0.1510

φ22 1000 0.1200 0.0025 -0.0248 0.0042 0.0400 0.0598 0.0402

φ30 1000 -0.8000 0.0075 0.0664 0.0549 0.3613 0.4875 0.3721

φ31 1000 0.1000 -0.0045 -0.0379 -0.0296 0.1824 0.2535 0.1892

φ32 1000 0.0333 0.0014 0.0097 0.0078 0.0479 0.0669 0.0498

φ20 5000 -1.0000 0.0014 -0.1442 -0.0016 0.1411 0.2273 0.1402

φ21 5000 0.0333 -0.0012 0.0798 0.0000 0.0691 0.1198 0.0688

φ22 5000 0.1200 0.0006 -0.0199 0.0006 0.0180 0.0311 0.0179

φ30 5000 -0.8000 0.0057 0.0191 0.0221 0.1630 0.2210 0.1654

φ31 5000 0.1000 -0.0027 -0.0100 -0.0113 0.0829 0.1139 0.0843

φ32 5000 0.0333 0.0008 0.0025 0.0030 0.0214 0.0295 0.0218
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The results for Exp in Table 4 favor Par because the assumed cubic

approximates the Exp function well. An exception is for V ar(X), where

Imp has a smaller RMSE than Par for n = 100 and n = 1000. Imp and Par

are superior to NP in Table 4, owing to the small sample size. The results

for φ̂ and n = 5000 (omitted for brevity) lead to similar conclusions.

Table 4: Comparison of imputation procedures for Exp.

Bias RMSE

True Ign Imp Par NP Ign Imp Par NP

n = 100

EY 1.813 -0.012 0.000 0.007 -0.025 0.203 0.202 0.199 0.223

EX 0.000 -0.008 0.002 0.009 -0.015 0.053 0.059 0.063 0.069

V (Y ) 3.613 -0.211 -0.161 -0.069 -0.197 0.685 0.675 0.648 0.846

V (X) 0.333 -0.084 0.001 0.024 -0.005 0.089 0.032 0.095 0.033

C(X, Y ) 0.888 -0.129 0.004 0.005 -0.075 0.139 0.015 0.018 0.107

n = 1000

EY 1.813 -0.015 -0.007 -0.008 -0.006 0.063 0.062 0.061 0.062

EX 0.000 -0.009 -0.001 -0.001 -0.003 0.018 0.019 0.019 0.019

V (Y ) 3.613 -0.099 -0.069 -0.070 -0.046 0.216 0.208 0.200 0.206

V (X) 0.333 -0.084 -0.001 0.002 -0.002 0.084 0.009 0.010 0.010

C(X, Y ) 0.888 -0.124 0.001 0.001 -0.010 0.125 0.006 0.005 0.014
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4.2 Variance Estimator for Imputed Estimator

Table 5: Properties of variance estimator for Imp for FlippedExp.

n = 100 n = 1000 n = 5000

VMC(θ̂) RB% CR% VMC(θ̂) RB% CR% VMC(θ̂) RB% CR%

×103 ×103 ×103

EY 517.943 -9.061 93.4 43.164 2.387 94.6 8.854 0.771 95.6

EX 37.112 -10.713 93.8 3.102 -0.216 94.0 0.633 -2.467 94.8

V (Y ) 36090.740 -11.852 93.0 1962.765 -1.616 94.4 435.427 -10.830 93.6

V (X) 84.684 33.543 96.6 7.271 10.397 95.2 1.623 -3.466 94.2

C(X, Y ) 0.185 29.068 96.0 0.014 0.177 92.8 0.003 12.921 95.6

φ20 1121.574 5.837 97.4 100.770 -3.255 94.2 19.616 -2.589 95.2

φ21 298.448 1.864 97.0 25.131 -5.082 93.8 4.974 -6.440 94.6

φ22 21.847 -0.004 96.0 1.759 -5.536 93.6 0.343 -6.006 93.4

φ30 1707.902 -5.553 97.4 131.168 -3.995 95.0 25.236 -2.336 94.2

φ31 467.293 -8.326 96.2 33.185 -3.753 95.0 6.163 1.473 95.0

φ32 32.245 -5.849 97.0 2.351 -5.450 95.0 0.411 5.636 95.4

Table 5 contains the MC variances (VMC(θ̂)) of the Imp estimators,

the percent relative biases (RB%) of the variance estimator (100(EMC [V̂ ]−

VMC(θ̂))/VMC(θ̂), where EMC [V̂ ] denotes the MC mean of the variance es-

timator (3.5)), and the percent of normal theory confidence intervals that
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contain the true parameter values (CR%). For n = 100, the absolute RB%

can exceed 15% and CR% can exceed 97%. For n ∈ {100, 5000}, the abso-

lute RB% is below 15% and the CR% is within 2% of 95%.

5. Data Analysis

We analyze data from the 2011 Pet Demographic Survey (PDS), a national

survey that collects information about pet ownership. The Iowa State Cen-

ter for Survey Statistics and Methodology (CSSM) received the data as an

agreement to plan for the 2017 survey. Variables of interest on the PDS

include the number and type of pets owned, body types of those pets, and

expenditures on veterinary services. We consider X∗, the sum of the most

recent vet visit expenditures for a dog and cat combined, as a covariate for

Y ∗, the average vet visit expenditures in 2011 for dogs and cats. Table 6 has

the number of observations for X∗ and Y ∗, with four missing data patterns.

We apply the propensity-score-adjusted imputed estimator to estimate the

veterinary expenditures for dogs and cats.

Table 6: Number of records in each group for pet data.

Group Count Group Count

1: X∗ and Y ∗ observed 3338 3: Only Y ∗ observed 262

2: Only X∗ observed 2461 4: X∗ and Y ∗ missing 1169
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The nature of the relationship between X∗ and Y ∗, as well as extreme

values, preclude us from finding a quantile regression model that fits the

sample data well in the original scale. Furthermore, the 75 zeros for X∗

and 64 zeros for Y ∗ make a log transformation problematic. After exploring

several transformations, including the square root, cube root, and fifth root,

we find that the cube root transformation allows us to construct a quantile

regression model that appears adequate.

We apply the quantile regression procedure to first construct imputed

values for X = (X∗)1/3 and Y = (Y ∗)1/3 for groups 2 and 3. The generalized

cross-validation criterion of Chen and Yu (2016) suggests λn1,y = 100. The

rule used for the Exp configuration of λn1,y ≈ n
6/9
123, where n123 is the number

of observations in groups 1, 2, and 3, suggests λn1,y ≈ 330. First, we

tried the approximate mid-point of λn1,y ≈ 200, and obtained negative

estimated quantiles for yi for τ1 and small values of xi. Increasing the

penalty to λn1,y = 300 successfully avoided negatives. We present the results

for λn1,y = 300. We use a fixed sequence of τj = j/(J + 1), for j =

1, . . . , J , with J = 80 ≈ n0.5
123. The fixed sequence avoids extreme quantiles

and ensures that the data analysis is reproducible. (Chen and Yu (2016)

compare results for fixed and random τj.) We define knots at the k/(K+1)

quantiles of {xi : δ1i + δ2i = 1 : i = 1, . . . , n} and {yi : δ1i + δ3i = 1 : i =
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1, . . . , n}, for k = 1, . . . , K, where K = 35.

We assess the model identification conditions (2.4) and (2.5) using

the estimated functions ĥy(φ̂22, x) and ĥx(φ̂31, y) plotted in Figure 1. To

construct the left plot in Figure 1, we first define an estimate of hy(φ̂22, xi)

in equation (2.4) as the negative logarithm of the LOWESS regression of

exp(−φ̂22yi) on xi for the {i : δi = 1}, where φ̂22 is the estimated exponential

tilting parameter in (2.7) obtained using the method described in Section

2.3. The right plot is constructed analogously, interchanging the roles of

xi and yi, and replacing φ̂22 with φ̂31. The nonlinearities seen in Figure 1

support the model identification conditions (2.4) and (2.5).

Figure 1: Estimated ĥy(φ̂22, x) (left) and ĥx(φ̂31, y) (right).

Table 7 gives estimates and corresponding standard errors for the

propensity score model. The covariates, given in the column headings, are

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0053



30

selected using step-wise selection, starting with a model that contains all

fully observed covariates and using the BIC criterion. The gender variable is

one for females and zero for males. The other covariates (defined in Section

S3.3 of the Supplementary Material) are defined by ordered categories, and

are treated as numeric. The response variable is the indicator that unit i is

not in group 4. Therefore, a positive coefficient is associated with a higher

probability of providing a response. As such, we estimate that women with

higher income and education who live alone or with one other person are

more likely to provide a response to at least one of the questions about

veterinary expenses.

Table 7: Estimated φ̂4 and SE for propensity score model.

Intercept Age Gender Income Education Household Size

Est. 0.16252 0.10355 0.38652 0.38395 0.21250 -0.31212

SE 0.20897 0.02687 0.09208 0.03056 0.03671 0.05129

Table 8 contains estimates of φ2 and φ3 (obtained using (2.18)

and (2.19)), along with associated standard errors (defined in (3.3)). The

estimator of φ21 differs significantly from zero at the 5% level, but after

accounting for xi, yi is no longer significantly associated with the response

indicator, δ2i. Interestingly, the estimate of φ31 is more than double the
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standard error. The component of the model that accounts for a nonignor-

able nonresponse is important for δ3i.

Table 8: Estimates and standard errors for φ = (φ′2,φ
′
3)
′ for the pet data.

φ2j Est. φ2j SE φ3j Est. φ3j SE

j = 0 0.5136 0.2782 -1.0677 0.4484

j = 1 -0.0561 0.0271 -0.2590 0.1037

j = 2 -0.0810 0.0903 0.0609 0.0587

Table 9: Complete case and Imp-PSA estimators of selected parameters,

along with standard errors for the Imp-PSA estimator.

EY EX V ar(Y ) V ar(X) Cor(X, Y ) EY 3 EX3

Complete Case 5.210 7.359 3.729 7.073 0.420 208.336 575.560

SE Complete Case 0.032 0.035 0.161 0.225 0.033 5.664 11.409

Imp-PSA 5.052 7.274 3.269 6.979 0.442 185.164 566.653

SE Imp-PSA 0.077 0.035 0.184 0.218 0.016 7.297 10.912

Table 9 compares the propensity-score-adjusted imputed estimator (Imp-

PSA) to the complete case estimator, which naively ignores missing values.

The parameters EY 3 and EX3 represent the mean expenditures in the

original scale, and are defined by g(x, y) = y3 and g(x, y) = x3, respec-
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tively. We also estimate the means and the correlation in the cube root

scale. The comparison of the complete case and the imputed estimators

suggests that ignoring the missing data would overstate the expenditures

and understate the correlation between X and Y . As a result of the non-

ignorable nonresponse, the complete-case standard errors are also invalid.

Imputation requires estimating additional parameters, and can therefore

lead to an increase in the SE relative to the complete-case SE. The sample

size for the complete-case estimator of the correlation is smaller than that

used to estimate the other parameters, because the complete-case estima-

tor of the correlation only uses pairs where both xi and yi are observed

simultaneously.

6. Discussion

The theory, simulations, and data analysis demonstrate that the proposed

semiparametric quantile regression imputation procedure is a viable method

of constructing imputed values when the probability of responding may de-

pend on the value of a missing response or covariate. We prove that the

imputed estimator is asymptotically normal, and verify through simula-

tion that an estimate of the large-sample covariance matrix has reasonable

finite-sample properties. The simulations also show that failing to account
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for a nonignorable nonresponse can lead to severe bias. The squared bias of

the ignorable predictor can account for over 90% of the MSE. In contrast,

the ratio of the squared bias to the MSE for the proposed (Imp) estima-

tor is consistently below 1%. In our simulations, the quantile regression

is more robust than the fully parametric imputation, and more efficient

than the nonparametric imputation at small sample sizes. We do not have

theoretical support for the superiority of semiparametric quantile regres-

sion relative to the nonparametric regression, and therefore do not expect

these results to hold broadly. A further advantage of the quantile regres-

sion over the nonparametric estimator of Wang and Chen (2009) is that

the quantile regression permits a linearization-based variance estimator. In

the application, the proposed procedure allows us to use one type of vet-

erinary expenditure to impute the other, while allowing for a nonignorable

nonresponse and modeling complex patterns in the data. Furthermore, we

develop a propensity score adjustment to incorporate a set for which neither

veterinary expenditure is observed.

We have used a fully parametric model for the response probabil-

ity. As demonstrated in Robins (1997), identification for a nonignorable

nonresponse is elusive without any restrictions. Nonetheless, relaxing the

parametric assumptions of the response probability model, along the lines
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of Shao and Wang (2016), is a possible avenue for future work.

In principle, our approach of modeling the conditional distribution

of the covariate given a response extends to multivariate covariates. One

must ensure that the quantile regression model adequately describes each

full univariate conditional, and that identification conditions are satisfied.

We define an identification condition for multivariate covariates in Section

S4 of the Supplementary Material. An alternative approach for missing

covariates is to use Bayes’ rule to deduce f(x | y) from a specification of

f(y | x) and f(x) (Yang and Kim , 2017) . Our preliminary studies suggest

that an extension of Yang and Kim (2017) to a nonignorable nonresponse

and a quantile regression is a promising direction for future work.

Supplementary Material The online Supplementary Material pro-

vides proofs of theorems, details of variance estimation, and simulation

results for the propensity-score-adjusted imputed estimator.
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