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Abstract: In this work, we study the diagnostics of parametric regression models

when both the response variable and the covariates are distorted by errors.

We employ a projected empirical process to develop Cramér–von Mises and

Kolmogorov–Smirnov tests with dimension-reduction effects. We apply random

approximation to enable an expedient calculation of the Kolmogorov–Smirnov

test for checking the suitability of regression models. The proposed tests are

shown to be consistent and can detect an alternative hypothesis close to the null

hypothesis at the root-n rate. Simulation studies show that the proposed tests

outperform existing methods. A real data set is analyzed for illustration.
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1. Introduction

Data distortion is a common problem in the biomedical, public health,

and economics fields. Kaysen et al. (2002) presented a typical example in

which the fibrinogen level and the serum transferrin level are observed with

distortion owing to the existence of the body mass index (BMI) as a con-

founding variable. Şentürk and Müller (2005) showed that distortion fun-

damentally changes the relationship between the response and the predictor

variables, and were the first to introduce a linear covariate-adjustment mod-

el. They established an estimation procedure by connecting this model with

a varying-coefficient model. Since this pioneering work, a large body of lit-

erature has developed attempting to eliminate the adverse effects of distor-

tion measurement errors. However, most studies on the subject have been

restricted to the estimation of regression models; see Şentürk and Müller

(2006, 2009), Nguyen and Şentürk (2008), Cui et al. (2009), Zhang et al.

(2012), Delaigle et al. (2016), and Deng and Zhao (2019), among others.

The correct specification of a regression model suffering from data dis-

tortion is undoubtedly important to avoid misleading results in statistical

analyses. In this work, we study the diagnostics of parametric models when

both the response variable and the covariates are measured with distortion.
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The models are of the following form:
Y = g(X,Z, β) + ε,

Ỹ = ψ(U)Y,

X̃ = γ(U)X,

where Y is the response variable, X and Z are p- and q-dimensional co-

variates, respectively, U is a scalar confounding variable independent of

(Y,X⊤,Z⊤)⊤, β is the unknown parameter vector, and g is a known func-

tion. The variables Y andX are unavailable owing to the measurement error

caused by the confounding variable U . Instead of Y and X, the distorted

variables Ỹ and X̃ are observed. Here, the function ψ is unknown, and γ

is a p × p diagonal matrix with nonparametric diagonal element functions

γ1, . . . , γp. To ensure identifiability, let E{ψ(U)} = 1 and E{γr(U)} = 1 for

r = 1, . . . , p.

We write ε(Y,X,Z) = Y − g(X,Z, β) and aim to test

H0 : Pr {E{ε(Y,X,Z)|X,Z} = 0} = 1, for some β, (1.1)

against the alternative hypothesis that H0 does not hold. Zhang et al.

(2015) proposed a residual-based empirical process test for problem (1.1).

The test has the desired merit of dimension reduction, and is made highly

suitable for a directional test by choosing the deviation function as the

weighting function to maximize the power. However, the test is solely
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directional and depends on the prespecified weighting function. Recently,

Zhao and Xie (2018) developed a local test that is consistent, but suffers

from the dimension problem.

We propose omnibus tests rather than directional tests. Our goal is to

propose tests that are free of the dimension problem, are easy to calculate,

and perform well in terms of test power. We consider empirical process

tests with the linear indicator weighting function 1(ν⊤θ ≤ t), where ν =

(X⊤,Z⊤)⊤, for any vector θ ∈ Rp+q and any real number t ∈ R.

The empirical-process-based test was first introduced by Stute (1997),

and has been studied extensively in the field of regression model check-

ing. In recent years, empirical process tests that consider a linear indicator

weighting function and offer the advantage of dimensionality reduction have

attracted considerable attention (Escanciano, 2006; Conde-Amboage et al.,

2015; Colling and Van Keilegom, 2017). Additional efforts have been made

to eliminate the “curse of dimensionality” in the test methods. For example,

Ma et al. (2014) proposed a variant of the integrated conditional moment

test based on the linear projection approach, where the projection direction

was chosen by fitting a single-index model. Furthermore, Guo et al. (2016)

and Tan et al. (2018) developed dimension-reduction model-adaptive ap-

proaches to avoid the problems with dimensionality.
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The empirical process tests with a linear indicator weighting function

involve a nuisance parameter θ, also called a projection direction parameter.

To ensure the feasibility of the calculation and the consistency of the tests,

the nuisance parameter is assumed to be a random vector following a uni-

form distribution on the unit sphere. The resultant tests in the literature

are of the Cramér–von Mises (CvM) type, which can be transformed into a

simple summation by applying a critical transformation formula provided

by Escanciano (2006).

One may naturally wonder about the feasibility and effectiveness of d-

ifferent nuisance parameter choices. Furthermore, in addition to the CvM-

type tests, is it possible to construct other tests, such as the Kolmogorov–

Smirnov (KS) test? We investigate this possibility by applying random

approximation to make the estimated empirical process with the linear in-

dicator weighting function computationally convenient, and thus avoid ap-

plying the transformation formula in Escanciano (2006). Moreover, even if

the nuisance parameter follows distributions other than the uniform distri-

bution on the unit sphere, the tests are realizable.

The remainder of this paper is organized as follows. In Section 2, a CvM

test is built based on an empirical process with a linear indicator weighting

function. In Section 3, motivated by a random approximation algorithm,
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a KS test is established. The asymptotic properties of the proposed tests

and the determination of the critical values are presented in Section 4.

Simulation studies and a real-data analysis are conducted in Section 5. In

the Appendices, we provide the conditions needed in the proofs. The proofs

of the main results are presented in the online Supplementary Material.

2. CvM test

2.1 Estimation of the null hypothesis model

Assume that an independent and identically distributed (i.i.d.) sample

{(Ỹi, X̃i,Zi), i = 1, . . . , n} is obtained from (Ỹ , X̃,Z). Because the true

variables Y and X are unavailable, by calibrating the measurement errors,

we obtain their estimators: Ŷi = ỸiỸm,n/ψ̂n(Ui), X̂ri = X̃riX̃m,nr/γ̂nr(Ui),

for i = 1, . . . , n; r = 1, . . . , p, with Ỹm,n, X̃m,nr, ψ̂n(u) and γ̂nr(u) defined in

Appendix A. The calibrated method can also refer to that of Zhang et al.

(2015). Here, we apply the local linear method to estimate ψ(u) and γ(u).

Based on the calibrated sample {(Ŷi, X̂i,Zi), i = 1, . . . , n} with X̂i =

(X̂1i, . . . , X̂pi)
⊤, an estimator of β, denoted by β̂n, is defined as the mini-

mizer of the least squares objective function:

n∑
i=1

{
Ŷi − g(X̂i,Zi, β)

}2

. (2.1)
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The asymptotic normality of β̂n is presented in Lemma 3 in the online

Supplementary Material. It can be concluded that under the null hypothesis

model in (1.1), β̂n is
√
n-consistent.

2.2 CvM test statistic

A direct test of the conditional expectation in (1.1) involves a nonpara-

metric estimation of E{ε(Y,X,Z)|X,Z}, which would cause the “curse of

dimensionality.” Therefore, we examine an equivalent form of the null hy-

pothetical condition by transforming it into infinite equations of the uncon-

ditional expectations.

Proposition 1. The following statements are equivalent: (i) H0 in (1.1)

is true; (ii) E{ε(Y,X,Z)1(ν⊤θ ≤ t)} = 0, for any vector θ ∈ Rp+q and

any real number t ∈ R; (iii) E{ε(Y,X,Z)1(ν⊤θ ≤ t)} = 0, for any vector

θ ∈ Rp+q with ∥θ∥ = 1 and any real number t ∈ R.

The proof of the equivalence of (i) and (ii) is similar to that of Lemma

2.1 in Lavergne and Patilea (2008). The equivalence of (ii) and (iii) can be

obtained by the fact that for any θ ̸= 0, the σ-field generated by ν⊤θ is the

same as the σ-field generated by ν⊤θ/∥θ∥. This fact was also mentioned by

Lavergne and Patilea (2008).

Denote the estimated model error Ŷi−g(X̂i,Zi, β̂n) by ε̂n(Yi,Xi,Zi), for
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i = 1, . . . , n. Based on E{ε(Y,X,Z)1(ν⊤θ ≤ t)}, we construct an estimated

empirical process: Mn,pro(t) = n−1/2
∑n

i=1 ε̂n(Yi,Xi,Zi)1(V
⊤
i θ ≤ t), where

Vi = (X̂⊤
i ,Z

⊤
i )

⊤, for i = 1, . . . , n. Then, the CvM test is defined as

Tn,CvM =

∫ ∫
{Mn,pro(t)}2f(θ)Fnθ(dt)dθ, (2.2)

where f(θ) is the density function of θ, and Fnθ(t) = n−1
∑n

i=1 1(V
⊤
i θ ≤ t).

Under the null hypothesis in (1.1), the test statistic Tn,CvM tends to zero and

becomes larger under alternative hypotheses. Therefore, the null hypothesis

is rejected for a sufficiently large value of Tn,CvM .

Note that the test statistic Tn,CvM is equal to the following summation:

Tn,CvM =
1

n2

n∑
i=1

n∑
j=1

n∑
l=1

ε̂n(Yi,Xi,Zi)ε̂n(Yj,Xj,Zj)Aijl, (2.3)

where Aijl =
∫
1(V⊤

i θ ≤ V⊤
l θ)1(V

⊤
j θ ≤ V⊤

l θ)f(θ)dθ. In general, θ is

assumed to follow a uniform distribution on the unit sphere. As shown in

Escanciano (2006),

Aijl =
π

p+q
2

−1

Γ(p+q
2

+ 1)

∣∣∣∣π − arccos

{
(Vi −Vl)

⊤(Vj −Vl)

∥Vi −Vl∥∥Vj −Vl∥

}∣∣∣∣ , (2.4)

where Γ(·) is the gamma function. The proposed test Tn,CvM has the merit

of computational expedience because only simple algebraic operations are

involved.
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2.3 A new random approximation computation procedure

Although the uniform distribution assumption of the projection parameter

θ is generally accepted (Escanciano, 2006; Conde-Amboage et al., 2015), it

is interesting to investigate the effect of other distributions. Under these

circumstances, Aijl cannot be calculated using formula (2.4). However, it

is unclear whether an alternative expression for Aijl is available. There-

fore, we develop a new procedure to compute Aijl by employing random

approximation.

Note thatAijl =
∫
1(V⊤

i θ ≤ V⊤
l θ)1(V

⊤
j θ ≤ V⊤

l θ)f(θ)dθ= Eθ{1(V⊤
i θ ≤

V⊤
l θ)1(V

⊤
j θ ≤ V⊤

l θ)|Vi,Vj,Vl}, for i, j, l = 1, . . . , n, which means that

Aijl is represented as the conditional expectation of a function of θ. Gener-

ate an i.i.d. random sequence {θ1, . . . , θm} from the density function f(θ),

and define Âijl = m−1
∑m

k=1 1(V
⊤
i θk ≤ V⊤

l θk)1(V
⊤
j θk ≤ V⊤

l θk). Then, we

obtain an approximation of the test statistic Tn,CvM by calculating

T̂n,CvM =:
1

n2

n∑
i=1

n∑
j=1

n∑
l=1

ε̂n(Yi,Xi,Zi)ε̂n(Yj,Xj,Zj)Âijl. (2.5)

Remark 1. The above random approximation method is very similar to

the number theoretic method in Zhu et al. (1997). Comparatively, the ran-

dom approximation method is easier to implement, and the resulting test

maintains good theoretical properties by the law of large numbers.
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Remark 2. Formula (2.5) shows that even if θ follows distributions other

than the uniform distribution, the tests can be realized based on the ran-

dom sequence generated from f(θ). In many cases, however, it is difficult

to generate a random sequence from a known density function. This dif-

ficulty can be overcome with the aid of uniform random numbers. Note

too that Aijl = Eη{1(V⊤
i η ≤ V⊤

l η)1(V
⊤
j η ≤ V⊤

l η)f(η)|Vi,Vj,Vl}Cp+q,

for i, j, l = 1, . . . , n, where η is a uniformly distributed random vector

on the unit sphere, and Cp+q denotes the volume of the unit sphere in

Rp+q. Generate an i.i.d. random sequence {η1, . . . , ηm} of η, and let Ãijl =

m−1
∑m

k=1 1(V
⊤
i ηk ≤ V⊤

l ηk)1(V
⊤
j ηk ≤ V⊤

l ηk)f(ηk)Cp+q. For some large m,

Ãijl can approximate Aijl well. Then, we obtain the value of the test statis-

tic Tn,CvM by calculating T̃n,CvM =: n−2
∑n

i=1

∑n
j=1

∑n
l=1 ε̂n(Yi,Xi,Zi)ε̂n(Yj,

Xj,Zj)Ãijl.

3. KS test statistic

The KS test is another popular option for checking the adequacy of regres-

sion models. As for problem (1.1), together with the CvM test in (2.2), the

KS test statistic should be built as

Tn,KS = sup
t

∫
|Mn,pro(t)| f(θ)dθ =: sup

t
Bn(t).

Though the linear indicator weighting function is widely used to con-
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struct CvM-type tests with dimension-reduction effects (Escanciano, 2006;

Conde-Amboage et al., 2015; Colling and Van Keilegom, 2017), the main

reason that there is no KS-type test with the linear indicator weighting

function is that its calculation is challenging and cannot be achieved anal-

ogously to Tn,CvM with the help of (2.4). We fill this gap and propose

a strategy for calculating Tn,KS that employs a random approximation to

avoid a direct application of (2.4). The strategy is stated as follows.

First, generate an i.i.d. random sequence {θ1, . . . , θm} from the density

function f(θ). Then, for given t, define B̂n(t) = m−1n−1/2
∑m

k=1

∣∣∑n
i=1 ε̂n(Yi,

Xi,Zi)1(V
⊤
i θk ≤ t)

∣∣. By the law of large numbers, it is clear that B̂n(t) is

an appropriate approximation of Bn(t). Thus, Tn,KS can be estimated by

T̂n,KS =: sup
t

{
1

m
√
n

m∑
k=1

∣∣∣∣∣
n∑

i=1

ε̂n(Yi,Xi,Zi)1(V
⊤
i θk ≤ t)

∣∣∣∣∣
}
. (3.1)

Remark 3. Similarly to the discussion in Remark 2, an alternative method

to computing Bn(t) is to compute B̃n(t) =: m−1n−1/2
∑m

k=1 |
∑n

i=1 ε̂n(Yi,Xi,

Zi)1(V
⊤
i ηk ≤ t)|f(ηk)Cp+q, where the i.i.d. random sequence {η1, . . . , ηm}

follows a uniform distribution on the unit sphere, and Cp+q denotes the

volume of the unit sphere in Rp+q.
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4. Asymptotic distributions and determining critical values

4.1 Asymptotic distributions under the null hypothesis

In this subsection, we investigate the asymptotic properties of the tests

under the null hypothesis in (1.1).

Theorem 1. Suppose that Conditions (C1)–(C8) in Appendix B hold. Und-

er the null hypothesis in (1.1), Mn,pro(t) converges in distribution to Mpro(t),

where Mpro(t) is a centered Gaussian process with covariance function

Cov{Mpro(t1),Mpro(t2)} = Cov{IF (t1,θ)(Y,X,Z, ν, U), IF (t2,θ)(Y,X,Z, ν,

U)}. Here, IF (t,θ)(Y,X,Z, ν, U) is defined in Appendix A. Furthermore,

we have

Tn,CvM
L−→

∫ ∫
{Mpro(t)}2f(θ)Fθ(dt)dθ,

Tn,KS
L−→ sup

t

∫
|Mpro(t)|f(θ)dθ,

where Fθ(t) is the conditional distribution of ν⊤θ given θ.

Theorem 1 indicates that the asymptotic distributions of the test statis-

tics Tn,CvM and Tn,KS are the distributions of
∫ ∫

{Mpro(t)}2f(θ)Fθ(dt)dθ

and supt

∫
|Mpro(t)|f(θ)dθ, respectively.

Let Fm(θ) be the empirical distribution function based on {θ1, . . . , θm}.

Then, T̂n,CvM and T̂n,KS can be written as T̂n,CvM =
∫ ∫

{Mn,pro(t)}2Fnθ(dt)
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Fm(dθ) and T̂n,KS = supt

∫
|Mn,pro(t)|Fm(dθ), respectively. From the re-

sults of Theorem 1, the following conclusion holds.

Corollary 1. Suppose that Conditions (C1)–(C8) in Appendix B hold. Un-

der the null hypothesis in (1.1), we have T̂n,CvM
L−→

∫ ∫
{Mpro(t)}2f(θ)

Fθ(dt)dθ and T̂n,KS
L−→ supt

∫
|Mpro(t)|f(θ)dθ.

4.2 Determination of the critical values

The distributions of
∫ ∫

{Mpro(t)}2f(θ)Fθ(dt)dθ and supt

∫
|Mpro(t)|f(θ)dθ

are very complex. Thus, their upper quantiles and, in turn, the critical

values of the proposed tests cannot be obtained directly. In assessing the

adequacy of general parametric models, Stute (1997) approximates the crit-

ical values of CvM tests using a principal component decomposition of the

covariance operator. We apply a data-driven bootstrap method to deter-

mine the critical values that perform well for both the CvM and the KS

tests. The rationale for the bootstrap method can be found in Stute et al.

(1998). Our implementation is described as follows.

Step 1: Generate an i.i.d. random variable sequence {e1, . . . , en} with mean

zero, variance one and a finite third moment. Let Ỹ ∗
i = g(X̂i,Zi, β̂n)+

{Ŷi − g(X̂i,Zi, β̂n)}ei, for i = 1, . . . , n.

Step 2: Calculate the statistics Tn,CvM and Tn,KS.
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Step 3: Based on the bootstrap sample {(Ỹ ∗
i , X̂i,Zi), i = 1, . . . , n}, calculate

the statistics Tn,CvM and Tn,KS, denoted by T ∗
n,CvM and T ∗

n,KS, respec-

tively.

Step 4: Repeat Step 3 ρ times and obtain {T ∗
n1,CvM , . . . , T ∗

nρ,CvM} and {T ∗
n1,KS,

. . . , T ∗
nρ,KS}. Calculate the 1−α empirical quantiles based on {T ∗

n1,CvM ,

. . . , T ∗
nρ,CvM} and {T ∗

n1,KS, . . . , T ∗
nρ,KS}, which are taken as the α-level

critical values.

The above scheme is easy to implement without estimating other quan-

tities, such as the complicated influence function IF (t,θ)(Y,X,Z, ν, U) in

(A.1). In addition, it is acceptable to take the number of repetitions ρ to

be 300, 500, or 1000, in general.

4.3 Asymptotic distributions under alternative hypotheses

In this subsection, the asymptotic distributions of the test statistics Tn,CvM

and Tn,KS are established under the alternative hypothetical models:

H1,local : Y = g(X,Z, β) + CnS(X,Z) + ε, (4.1)

where E(ε|X,Z) = 0 and S(·, ·) is a measurable function that satisfies

0 < E{S2(X,Z)} <∞ and cannot take the form of g(X,Z, β).

Theorem 2. Suppose that Conditions (C1)–(C8) in Appendix B hold.
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(1) Under the local alternative hypothetical models (4.1) with Cn = n−1/2,

Tn,CvM
L−→

∫ ∫
{Mpro(t) +DRt}2f(θ)Fθ(dt)dθ,

Tn,KS
L−→ sup

t

∫
|Mpro(t) +DRt|f(θ)dθ,

with DRt defined in Appendix A.

(2) Under the local alternative hypothetical models (4.1) with Cnn
1/2 →

∞, we have Tn,CvM → ∞ and Tn,KS → ∞.

Remark 4. Similarly to the arguments of Corollary 1, we can conclude

that T̂n,CvM (T̂n,KS) has the same asymptotic property as Tn,CvM (Tn,KS)

under the alternative hypotheses (4.1).

Remark 5. Let H1n : Y = g(X,Z, β) + n−1/2S(X,Z) + ε, H2n : Y =

g(X,Z, β) + S(X,Z) + ε, and H3n : Y = g(X,Z, β) + CnS(X,Z) + ε, with

Cnn
1/2 → ∞. For both Tn,CvM and Tn,KS, the powers Pr{Reject H0|H1n}

are larger than the test level α. Therefore, the proposed tests can detect

the Pitman alternative hypothesis models converging to the null hypothesis

model at a rate of n−1/2. Under H2n and H3n, the tests Tn,CvM and Tn,KS

converge to infinity, and therefore have asymptotic power one.

Remark 6. Zhang et al. (2015) also investigated the model checking prob-

lem (1.1). For the alternative hypothesis models (4.1) with Cn = n−1/2,
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the asymptotic expansion for the test statistic in Zhang et al. (2015) also

includes a drift function Cov{l(X), S(X,Z)}F ′
ε, where l(X) is a weighting

function and F ′
ε is the derivative of the distribution of the model error ε. If

l(X) is orthogonal to the deviation function S(X,Z), the test of Zhang et al.

(2015) loses effect. Therefore, the choice of the weighting function is crit-

ical. For the proposed tests, the drift function DRt is nonzero, and the

deficit is effectively avoided.

Remark 7. Assume that the null hypothesis is not true and the data are

generated from H4n : Y = G(X,Z) + ε, where the nonzero measurable

function G(X,Z) cannot take the form of g(X,Z, β). Let Y = g(X,Z, β)+

{G(X,Z)− g(X,Z, β)}+ ε =: g(X,Z, β) + S∗(X,Z) + ε. The results that

Tn,CvM → ∞ and Tn,KS → ∞ under the alternative hypothesis models in

H4n can be proved from the results of Theorem 2. The tests Tn,CvM and

Tn,KS have asymptotic power one for any alternative model in H4n, and are

consistent in terms of Pr{Reject H0|H0 is false} → 1 as n→ ∞.

5. Numerical studies

5.1 Simulation studies

In this subsection, simulation studies are carried out to evaluate the perfor-

mance of the proposed tests. The following three settings are considered.
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Setting 1. We first consider two-dimensional models of the following forms:

Y = β1X1 + β2X2 + C exp(0.5X2) + ε, (5.1)

Y = β1 +X1(1 +X2)
β2 + C exp(0.5X2) + ε, (5.2)

where X ∼ U2[1, 2]. These models are also considered by Zhang et al.

(2015). Set (β1, β2) = (2, 3), C = 0.0, 0.2, 0.4, 0.6, 0.8 and (β1, β2) = (1, 2), C

= 0.0, 0.1, 0.2, 0.3, 0.4 for models (5.1) and (5.2), respectively. We further

let the distorting functions related to X be γ1(U) = 1 + 0.3 cos(2πU) and

γ2(U) = 1 + 0.2(U2 − 1/3).

Setting 2. Consider the following five-dimensional linear candidate models:

Y = β⊤X+ 2C exp(0.5X2) + ε, (5.3)

where X ∼ U5[1, 2], β = (1, 1, 1, 1, 1)⊤. The distorting functions related to

X are chosen to be γ1(U) = 1 + 0.3 cos(2πU), γ2(U) = 1 + 0.2(U2 − 1/3),

γ3(U) = U + 1/2, γ4(U) = 1 + 0.2(U2 − 1/3), and γ5(U) = U2 + 2/3. The

constant C is equal to 0.0, 0.1, 0.2, 0.3, 0.4.

Setting 3. Consider the following 10-dimensional linear candidate models:

Y = β⊤
1 X+ β⊤

2 Z+ 0.1C exp(β⊤
3 X) + ε, (5.4)

where X ∼ U6[1, 2], Z ∼ U4[1, 2], β1 = (1, 1, 1, 1,−1,−1)⊤, β2 = (−1,−1,

−1,−1)⊤, and β3 = (1, 1, 0, 0, 0, 0)⊤. The distorting functions follow the
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forms of γ1(U) = γ2(U) = γ3(U) = 1 + 0.3 cos(2πU) and γ4(U) = γ5(U) =

γ6(U) = 1+0.2(U2− 1/3). The constant C is set to be 0.0, 0.1, 0.2, 0.3, 0.4.

In Settings 1–3, the distorting function related to the response variable

Y is set to be ψ(U) = 1 + 0.2 cos(2πU), with the confounding variable

U ∼ U [0, 1], and the model error ε is generated from a normal distribution

with mean zero and standard deviation 0.15. The null hypothesis holds

if and only if C = 0. Moreover, X and ε are independent. To obtain

ψ̂n(u) and γ̂nr(u) for r = 1, . . . , p, the Epanechnikov kernel function is

employed. A significance level of 0.05 and sample sizes of n = 100, 200, 300

are considered. In the bootstrap operation, the number of replications ρ

is set to 1000. The empirical sizes and powers are computed based on 500

repetitions.

The following five test methods are considered: the CvM test Tn,CvM

in (2.3) with Aijl computed from (2.4), and the proposed CvM and KS

tests with θ following the uniform distribution, denoted by (T U
n,CvM , T U

n,KS),

and with θ following the standard normal distribution, denoted by (T N
n,CvM ,

T N
n,KS). The approximate formulae (2.5) and (3.1) are employed when cal-

culating the empirical sizes and powers of the last four tests.

Choice of bandwidth: Instead of considering all five tests, we take

test Tn,CvM as an example to examine the impact of the bandwidth. Let σ̂U

 
Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0038



5.1 Simulation studies19

be the sample deviation of the confounding variable U . For the Epanech-

nikov kernel function, the optimal bandwidth for the local constant kernel

estimation of the mean regression function is 2.34σ̂Un
−1/5, according to the

rule of thumb (Silverman, 1986). For the considered model checking prob-

lem, undersmoothing is necessary, and 2.34σ̂Un
−1/3 may be a reasonable

choice.

Based on the above considerations, for the two-dimensional model (5.1),

the five-dimensional model (5.3), and the 10-dimensional model (5.4), we

calculate the empirical sizes and powers by choosing hn = Chσ̂Un
−1/3 and

letting Ch be 11 grid points from 1.34 to 3.34 at equal intervals of 0.2.

Figure 1 displays the rejection frequencies of the null hypothesis for the

test Tn,CvM with different values of Ch and C. When C = 0, these rejection

frequencies are empirical sizes that approximate the type-I error of the test.

When C > 0, these rejection frequencies refer to the empirical power.

Figure 1 shows that with different values of Ch, the empirical type-I

error of the test can be controlled well and the empirical power remains

almost unchanged for low-dimensional models (5.1) and (5.3). For the 10-

dimensional model (5.4), the choice of Ch does affect the empirical size and

power, although this effect weakens gradually as C and n increase. The

same phenomenon was also reported in Wang et al. (2020).
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Figure 1: Rejection frequencies of the null hypothesis for the test Tn,CvM

against different values of C and Ch at the 5% significance level, with sample

sizes 100 (left panel) and 300 (right panel) for models (5.1) (upper row),

(5.3) (middle row), and (5.4) (lower row). The horizontal plane corresponds

to the 5% significance level.

As shown in Zhu et al. (2017) and Wang et al. (2020), the optimal

bandwidth choice in studies on model adequacy tests remains an open prob-
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lem that requires further research. We employ a bandwidth of 2.34σ̂Un
−1/3

in the following simulation studies for all settings.

Choice of m in random approximation procedures: Random

approximation procedures are employed to calculate the empirical sizes and

powers of the tests T U
n,CvM , T N

n,CvM , T U
n,KS, and T N

n,KS. We consider the two-

dimensional model (5.1) and the 10-dimensional model (5.4) as examples to

illustrate the impact of m. Specifically, m is taken as evenly spaced points

in the interval [25, 300] with a spacing of 25.

Figures 2 and 3 show the empirical sizes and powers of the tests T U
n,CvM ,

T N
n,CvM , T U

n,KS, and T N
n,KS against different values of m and C at the 5%

significance level with sample size n = 100 and bandwidth h = 2.34σ̂Un
−1/3

for models (5.1) and (5.4). All four tests are not sensitive to the choice of

m. We set m = 50, for the sake of simplicity.

We calculate the empirical sizes and powers for models (5.1)–(5.4) and

present the results in Tables 1 and 2. For comparison purposes, the tests in

Zhang et al. (2015) and Zhao and Xie (2018) are also considered, which are

called T ZLF
n and T ZX

n , respectively. For the test of Zhang et al. (2015), the

weighting function is set to l(X) = exp(0.5X2). The Epanechnikov kernel

function and a bandwidth of σ̂Un
−1/3 were used. These choices are the same

as those in Zhang et al. (2015). The results are also listed in Tables 1 and 2.
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Figure 2: Rejection frequencies of the null hypothesis for the tests T U
n,CvM ,

T N
n,CvM , T U

n,KS, and T N
n,KS against different values of m and C at the 5%

significance level with sample size n = 100 and bandwidth h = 2.34σ̂Un
−1/3

for model (5.1). The horizontal plane corresponds to the 5% significance

level.

The naive method, which ignores the measurement error, is not considered

here, because Zhao and Xie (2018) showed that it performs poorly.

From Tables 1 and 2, we observe that the empirical sizes of the five

proposed tests are close to the nominal levels in all settings, whereas tests
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Figure 3: Rejection frequencies of the null hypothesis for the tests T U
n,CvM ,

T N
n,CvM , T U

n,KS, and T N
n,KS against different values of m and C at the 5%

significance level with sample size n = 100 and bandwidth h = 2.34σ̂Un
−1/3

for model (5.4). The horizontal plane corresponds to the 5% significance

level.

T ZLF
n and T ZX

n tend to yield lower empirical sizes, especially for settings

2 and 3, that is, the five-dimensional and 10-dimensional models. Second,

with increases in the sample size and the value of C, the empirical power of

all seven tests increases, and the five proposed tests perform better than the
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Table 1: Results for Setting 1. Empirical sizes and powers of Tn,CvM , T U
n,CvM ,

T N
n,CvM , T U

n,KS, T N
n,KS, T ZLF

n , and T ZX
n at the 5% significance level for the

two-dimensional models (5.1) and (5.2).

Model n C Tn,CvM T U
n,CvM T N

n,CvM T U
n,KS T N

n,KS T ZLF
n T ZX

n

(5.1) 100 0.0 0.058 0.058 0.058 0.058 0.056 0.028 0.004

0.2 0.146 0.148 0.146 0.148 0.150 0.064 0.006

0.4 0.420 0.420 0.418 0.430 0.426 0.214 0.048

0.6 0.728 0.726 0.728 0.742 0.742 0.476 0.222

0.8 0.950 0.948 0.946 0.956 0.954 0.732 0.428

200 0.0 0.046 0.044 0.046 0.058 0.052 0.032 0.004

0.2 0.272 0.268 0.262 0.288 0.278 0.128 0.040

0.4 0.756 0.752 0.748 0.768 0.760 0.488 0.220

0.6 0.970 0.970 0.970 0.976 0.974 0.822 0.682

0.8 0.996 0.996 0.996 0.996 0.996 0.962 0.952

300 0.0 0.048 0.050 0.050 0.052 0.058 0.030 0.006

0.2 0.410 0.404 0.400 0.406 0.416 0.206 0.074

0.4 0.902 0.902 0.902 0.912 0.916 0.620 0.460

0.6 0.996 0.996 0.996 0.996 0.996 0.976 0.922

0.8 1 1 1 1 1 1 1

(5.2) 100 0.0 0.054 0.056 0.058 0.052 0.058 0.040 0.002

0.1 0.132 0.142 0.136 0.138 0.152 0.102 0.006

0.2 0.418 0.420 0.426 0.422 0.408 0.224 0.014

0.3 0.730 0.726 0.722 0.718 0.722 0.422 0.062

0.4 0.904 0.904 0.904 0.876 0.914 0.630 0.090

200 0.0 0.054 0.056 0.054 0.044 0.044 0.040 0.002

0.1 0.308 0.304 0.302 0.268 0.286 0.182 0.012

0.2 0.716 0.712 0.708 0.712 0.720 0.448 0.078

0.3 0.964 0.964 0.964 0.956 0.962 0.728 0.226

0.4 0.994 0.994 0.994 0.996 0.996 0.934 0.572

300 0.0 0.052 0.052 0.054 0.056 0.048 0.056 0.010

0.1 0.418 0.414 0.426 0.390 0.402 0.232 0.032

0.2 0.896 0.904 0.892 0.894 0.888 0.642 0.160

0.3 0.994 0.994 0.994 0.994 0.994 0.920 0.590

0.4 1 1 1 1 1 0.998 0.916
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Table 2: Results for Settings 2 and 3. Empirical sizes and powers of Tn,CvM ,

T U
n,CvM , T N

n,CvM , T U
n,KS, T N

n,KS, T ZLF
n , and T ZX

n at the 5% significance level

for the five-dimensional model (5.3) and 10-dimensional model (5.4).

Model n C Tn,CvM T U
n,CvM T N

n,CvM T U
n,KS T N

n,KS T ZLF
n T ZX

n

(5.3) 100 0.0 0.054 0.058 0.052 0.056 0.060 0.020 0

0.1 0.062 0.060 0.068 0.088 0.086 0.036 0.002

0.2 0.202 0.194 0.208 0.188 0.208 0.060 0.004

0.3 0.302 0.294 0.308 0.312 0.326 0.092 0

0.4 0.564 0.558 0.570 0.578 0.582 0.158 0

200 0.0 0.042 0.052 0.042 0.048 0.048 0.022 0.002

0.1 0.136 0.134 0.136 0.140 0.132 0.046 0

0.2 0.378 0.376 0.384 0.384 0.394 0.104 0

0.3 0.698 0.682 0.700 0.726 0.728 0.218 0.002

0.4 0.888 0.886 0.886 0.892 0.888 0.376 0.002

300 0.0 0.052 0.048 0.048 0.054 0.044 0.026 0

0.1 0.212 0.204 0.212 0.206 0.206 0.048 0.004

0.2 0.548 0.546 0.558 0.566 0.564 0.144 0

0.3 0.888 0.888 0.892 0.886 0.894 0.350 0

0.4 0.984 0.980 0.982 0.982 0.984 0.580 0

(5.4) 100 0.0 0.062 0.054 0.052 0.058 0.058 0.026 0

0.1 0.296 0.286 0.290 0.310 0.320 0.080 0

0.2 0.658 0.622 0.656 0.668 0.672 0.108 0

0.3 0.874 0.862 0.840 0.890 0.878 0.164 0

0.4 0.936 0.930 0.926 0.958 0.958 0.188 0.006

200 0.0 0.058 0.052 0.056 0.048 0.058 0.024 0

0.1 0.684 0.654 0.668 0.692 0.694 0.112 0

0.2 0.984 0.978 0.980 0.986 0.978 0.250 0.004

0.3 0.996 0.998 0.996 0.998 0.996 0.448 0.020

0.4 0.998 0.998 0.998 1 1 0.480 0.056

300 0.0 0.052 0.056 0.052 0.042 0.056 0.028 0

0.1 0.848 0.818 0.826 0.840 0.834 0.168 0.006

0.2 1 0.998 1 1 1 0.436 0.014

0.3 1 1 1 1 1 0.720 0.088

0.4 1 1 1 1 1 0.768 0.228
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tests T ZLF
n and T ZX

n in terms of empirical power. Moreover, the proposed

tests are barely affected by the dimensions of the covariates, whereas the

local smoothing test T ZX
n performs poorly for the five-dimensional and 10-

dimensional models. It can be concluded that the proposed methods have

advantages in terms of power performance and dealing with the “curse of

dimensionality.”

As mentioned above, this study is the first to apply the KS test with

the dimension-reduction effect to check the adequacy of regression models.

The simulation results show that the proposed KS tests can control the

type-I error and yield satisfactory empirical power. As a useful test type, it

is worthwhile investigating the performance of KS tests with the dimension-

reduction effect when checking other regression models.

Another issue is the effect of the projection parameter selection. The

simulation results show that the tests Tn,CvM and T U
n,CvM yield almost the

same results. Note that the tests Tn,CvM and T U
n,CvM are based on the

formula of Escanciano (2006) and on the random approximation to compute

Aijl for i, j, l = 1, . . . , n, respectively. Furthermore, the empirical sizes

and powers are very similar for the CvM test and the KS test, regardless

of whether the projection parameter follows the uniform or the normal

distribution. Therefore, the random approximation method is a feasible way
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of eliminating the calculation difficulties caused by the unknown nuisance

parameter θ.

5.2 Analyses of diabetes data

In this subsection, we conduct a real-data analysis of a diabetes data set

(Schorling et al., 1997; Willems et al., 1997)(http://biostat.mc.vanderbilt.e

du/wiki/pub/Main/DataSets/diabetes.html). This data set has also been

analyzed by Şentürk and Nguyen (2006) and Delaigle et al. (2016), where

covariate-adjusted linear and nonparametric regression models, respectively,

were employed. Our aim is to check whether the following linear model is

suitable for these data on 380 individuals:

Y = β0 + β1X1 + β2X2 + β3Z + ε, (5.5)

where Y is the glycosolated haemoglobin level (GlyHb), and X1, X2, and Z

are the systolic blood pressure (SBP), diastolic blood pressure (DBP), and

gender indicator (0, male; 1, female), respectively.

As in Şentürk and Nguyen (2006) and Delaigle et al. (2016), the vari-

ables GlyHb, SBP, and DBP are believed to be distorted by the BMI. The

settings of the proposed methods are the same as those in the simulation

studies. The p-values of the tests Tn,CvM , T U
n,CvM , T N

n,CvM , T U
n,KS, and T N

n,KS

are calculated and shown to be 0.005, 0.008, 0.003, 0.007, and 0.002, respec-
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Figure 4: Scatter plots of calibrated GlyHb (a) and the estimated residuals

(b) versus the estimated regression function, along with estimated linear

(thick lines) and nonparametric (solid lines) regression curves with 95%

confidence bands (dotted lines).

tively. The method of Zhang et al. (2015) was also applied to analyze this

data set, yielding p-values of 0.830, 0.265, and 0.599 for different choices of

weighting functions sin(X), exp(X), and cos(X). The p-value of the method

of Zhao and Xie (2018) was computed to be 0.425. Therefore, the proposed

tests suggest rejecting the null hypothesis linear model (5.5), whereas the

tests of Zhang et al. (2015) and Zhao and Xie (2018) cannot reject the null

hypothesis. We show scatter plots of the calibrated variable GlyHb and the

estimated residuals versus the estimated regression function in Figure 4.

The estimated residual curve deviates significantly from a horizontal line,
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which indicates that the linear model (5.5) is inadequate for this data set.

Supplementary Material

The online Supplementary Material includes the preliminary lemmas,

proofs of Theorems 1 and 2, additional simulation studies, and real data

analyses.
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Appendices

Appendix A: Notations

(I) Define Ỹm,n = n−1
∑n

i=1 Ỹi, X̃m,nr = n−1
∑n

i=1 X̃ri, r = 1, . . . , p, and

Sl(u, hn) = n−1
∑n

j=1(Uj−u)lKhn(u−Uj), l = 0, 1, 2, where K(·) is a

kernel function, hn is a bandwidth sequence andKhn(u) = h−1
n Kh(u/hn).

(II) Denote the derivative of g related to β by ġβ. Furthermore, g̈β,x, g̈x,β
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and g
(3)
β,x,β can be defined similarly.

(III) Define

ψ̂n(u) = n−1

n∑
j=1

{S2(u, hn)− S1(u, hn)(Uj − u)}Khn(u− Uj)Ỹj
S0(u, hn)S2(u, hn)− S2

1(u, hn)
,

γ̂n(u) = n−1

n∑
j=1

{S2(u, hn)− S1(u, hn)(Uj − u)}Khn(u− Uj)X̃j

S0(u, hn)S2(u, hn)− S2
1(u, hn)

,

Γ1(t) = E{ġβ(X,Z, β)⊤1(ν⊤θ ≤ t)}, Σ = E{ġβ(X,Z, β)ġβ(X,Z, β)⊤},

DRt = E{S(X,Z)1(ν⊤θ ≤ t)} − Γ1(t)Σ
−1E{ġβ(X,Z, β)S(X,Z)},

Ω = (X1ġx1(X,Z, β)/E(X1), . . . , Xpġxp(X,Z, β)/E(Xp))
⊤,

Σx = E{ġβ(X,Z, β)Ω⊤}.

(IV) Let the symbols ⊗ and ⊘ indicate multiplying and dividing compo-

nentwise, respectively. Denote

IF (t,θ)(Y,X,Z, ν, U) = {1(ν⊤θ ≤ t)− Γ1(t)Σ
−1ġβ(X,Z, β)}ε

+
{
E{Y 1(ν⊤θ ≤ t)|U} − Γ1(t)Σ

−1E{Y ġβ(X,Z, β)}
} Ỹ − Y

E(Y )

+
{
E
{
(X⊗ ġx(X,Z, β)⊘ E(X))⊤ 1(ν⊤θ ≤ t)|Uj

}
−Γ1(t)Σ

−1Σx

}(
X̃−X

)
. (A.1)

(V) Let ∆ni = (∆n1i, . . . ,∆npi)
⊤ with ∆nri = Xri{γr(Ui)X̃m,nr−γ̂nr(Ui)}/γ̂nr(Ui)

for i = 1, . . . , n and r = 1, . . . , p. Define ∆̃ij = (∆̃1ij, . . . , ∆̃pij)
⊤ with

∆̃rij = Xri{γr(Uj)E(Xr)−Xrj}/E(X̃r|U = Ui) for i, j = 1, . . . , n and

r = 1, . . . , p.
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Appendix B: Conditions

(C1) The density function of U , fu(u), is bounded away from zero and

satisfies Lipschitz condition of order 1 on the support of U .

(C2) (i) The functions ψ(u) and γr(u), r = 1, . . . , p, have bounded and con-

tinuous derivatives. (ii) The functions ψ(u) and γr(u), r = 1, . . . , p,

are non-zero on the support set of U .

(C3) E(Y ) and E(Xr), r = 1, . . . , p, are bounded away from zero. E(|Y |3) <

∞ and E(|Xr|3) <∞, r = 1, . . . , p.

(C4) The matrix Σ = E{ġβ(X,Z, β)ġβ(X,Z, β)⊤} is positive finite.

(C5) The partial derivatives of g(X,Z, β) with respect to x and β exist and

are continuous; the second-order and third-order partial derivatives of

g(X,Z, β) with respect to x and β exist and are bounded.

(C6) The objective function (2.1) has a unique minimizer.

(C7) (i) The kernel function K(u) is a bounded univariate kernel function

of order 2 with a bounded support. (ii) The second derivative of K(u)

is bounded and satisfies Lipschitz condition.

(C8) The bandwidth hn satisfies the following conditions: hn → 0, nh4n →

0 and lnn/(nhn) → 0 as n→ ∞.
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Remark 8. Conditions (C1)-(C3) are also employed in Şentürk and Müller

(2006) and Zhang et al. (2015) aiming for avoiding the case where the de-

nominator is zero. Conditions (C4)-(C6) are necessary for the asymptotic

normality of the nonlinear least squares estimator. Conditions (C7) and

(C8) are common for the nonparametric kernel method.
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