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Abstract: When studying two-level factorial designs, factorial e↵ects are usu-

ally defined as a set of orthogonal treatment contrasts, which we refer to as

the orthogonal parameterization (OP). While most design results and analysis

strategies have been developed and understood within the scope of the OP, a

more appropriate alternative in some situations is the baseline parameterization

(BP). In this study, we examine the relationship between the OP and the BP,

which allows us to better understand the relatively unexplored BP. In addition

to being insightful, this relationship is useful in design construction. The design

properties considered here are estimability, optimality, and robustness. We find

that a general class of Rechtscha↵ner designs exhibit robust properties under the

BP.

Key words and phrases: E↵ect hierarchy, e�ciency criterion, minimum aberra-

tion, orthogonal array, Rechtscha↵ner design, robust design.

1. Introduction In many industrial and scientific investigations, the ob-

jective is to build a model that can adequately describe how the response of
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a system changes when the levels of the input factors change. The impact

on the mean response caused by changing the levels of one or more factors

is called a factorial e↵ect. The most commonly adopted definition of fac-

torial e↵ects for a 2m factorial, given by Box and Hunter (1961), is a set

of mutually orthogonal treatment contrasts, called the orthogonal parame-

terization (OP). Despite having received less attention, a more appropriate

alternative in some situations is the baseline parameterization (BP). Under

the BP, experimenters are more interested in the e↵ects when non-involved

factors are kept at their intrinsic baseline levels.

The BP is relatively underexplored, but is becoming more import. Yang

and Speed (2002), Kerr (2006), and Banerjee and Mukerjee (2008) inves-

tigated factorial designs under the BP in the context of cDNA microarray

experiments. More recently, Mukerjee and Tang (2012) proposed a mini-

mum K-aberration criterion to sequentially minimize the bias in the esti-

mation of main e↵ects caused by non-negligible interactions, in the order

of importance given by the e↵ect hierarchical principle (Wu and Hamada

(2011), pp.172–3). The construction of minimum K-aberration designs is

further considered in Li, Miller, and Tang (2014), Miller and Tang (2016),

and Mukerjee and Tang (2016).

Because the factorial e↵ects under the OP and BP are both treatment



contrasts, there must exist a linear relationship between them. What cannot

be foreseen is the special way one set of e↵ects depends on the other. This

special pattern in the linear relationship has some important implications

in the construction of baseline designs. We aim to derive this relationship

and explore its applications to design construction under the BP in terms

of estimability, optimality, and robustness.

The rest of this paper is organized as follows. In Section 2, we first pro-

vide formal definitions of factorial e↵ects under the OP and the BP. Then,

we derive the linear relationship between the two types of parameterization

and examine its implications. Section 3 shows how to use the results in

Section 2 to find designs under the BP. Here we show that certain orthog-

onal arrays continue to be optimal under the BP. General Rechtscha↵ner

designs are introduced, and are shown to enjoy a robust property under the

BP. Section 4 concludes the paper. All proofs are given in the appendix.

2. The relationship between the OP and the BP

Consider a factorial experiment involvingm two-level factors F1, F2, . . . , Fm,

each at levels zero and one. Let ⌧g denote the mean response at the treat-

ment combination g = (g1, g2, . . . , gm), with gi = 0 or 1 (i = 1, 2, . . . ,m),

and let G be the collection of all 2m treatment combinations. Because the



treatment combination (1, 1, 0, . . . , 0) corresponds to the subset {1, 2} of

S = {1, 2, . . . ,m}, we use ⌧12 and ⌧(1,1,0,...,0) interchangeably, depending on

which one is more convenient within the context. Under the OP, for a sub-

set v = {i1, i2, · · · , ik} of S, the k-factor interaction Fi1Fi2 · · ·Fik (the main

e↵ect if k = 1) is given by

�v =
1

2m

X

g2G

⌧g(�1)
Pk

h=1 gih . (2.1)

We let �� = 2�m
P

G ⌧g, which is the grand mean. Under the BP, the

main e↵ect of Fi is given by ✓i = ⌧i � ⌧�, and the two-factor interaction

FiFj is given by ✓ij = ⌧ij � ⌧i � ⌧j + ⌧�. More generally, for a subset w =

{i1, i2, · · · , ik} of S, the k-factor interaction Fi1Fi2 · · ·Fik under the BP is

given by

✓w =
X

u✓w

⌧u(�1)|w|�|u|, (2.2)

where | · | stands for the cardinality of a set.

Both �v and ✓w measure the impact on ⌧g caused by level changing

of the involved factor(s). However, the former considers an overall ef-

fect, whereas the latter focuses on the situation in which all non-involved

factors are set at level zero, the baseline level. For example, consider

v = w = {1} in (2.1) and (2.2). Let G⇤ = {(g2, g3, . . . , gm) : gi = 0, 1}.

The main e↵ects of F1 under the OP and the BP can be written as �1 =
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(1/2m)
P

g⇤2G⇤

�
⌧(0,g⇤) � ⌧(1,g⇤)

�
and ✓1 = ⌧(1,0,...,0) � ⌧(0,0,...,0), respectively.

Up to a constant, �1 averages out the e↵ects of F1 conditional on every

g⇤ 2 G⇤, while ✓1 computes only the e↵ect of F1 when all other factors are

set at their baseline levels.

The BP arises naturally when each factor has a null state or a baseline

level. For example, in a toxicological study, each factor is a toxin, and

each treatment combination is a mix of several toxins. The absence and

presence of a particular toxin can be represented by levels zero and one,

respectively. In an agricultural experiment, two kinds of fertilizers may be

applicable, serving as the two levels of a factor. Then level zero can stand

for the currently used fertilizer, and level one for the new fertilizer.

By combining (2.1) and (2.2), we obtain a linear relationship between

the OP and BP, as stated in the following theorem.

Theorem 1. We have that

(i) �v =
P

w◆v aw✓w, with aw = (�1)|v|2�|w|,

(ii) ✓w =
P

v◆w cv�v, with cv = (�2)|w|.

In Theorem 1, the ✓w’s in the expression of �v are those with w containing

v. A similar phenomenon occurs in the expression of ✓w in terms of �v.

It is this special pattern in the linear relationship between ✓w and �v that
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makes it useful in the construction of baseline designs, which we examine in

Section 3. Proposition 2 in Mukerjee and Tang (2012), which states that

an orthogonal array is universally optimal for estimating the main e↵ects

under the BP, is established based on the simple fact that ✓i = �2�i, for

i = 1, 2, . . . ,m, if �v = 0 for all |v| � 2. A more important implication is

that the absence of interactions under the OP yields the same result under

the BP, and vice versa. We now consider a situation that is more general

than the absence of interactions. For a collection C of subsets of S, we say

it is echelon if for any s collected by C, all subsets of s are also collected.

Then, Theorem 1 implies the following result.

Corollary 1. Let C be echelon. Then, �v = 0 for all v /2 C, if and only if

✓w = 0 for all w /2 C. As a special case, the absence of factorial e↵ects of

order k or higher is invariant to the choice of the parameterization.

If a collection of factorial e↵ects, say {�v : v 2 C} or {✓w : w 2 C}, are

believed to be active, the corresponding models under the OP and BP are,

respectively,

⌧g =
X

v2C

�v

Y

k2v

(1� 2gk) (g 2 G); (2.3)

⌧g =
X

w2C

✓w
Y

k2w

gk (g 2 G). (2.4)
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We say that models (2.3) and (2.4) are, respectively, the OP and the BP

models associated with C, and are called echelon if C is echelon. Corollary

1 states that these two models are equivalent if C is echelon. The main-

e↵ect-only model and the models that contain all of the main e↵ects, plus

some/all of the two-factor interactions, are most often used in practice, all

of which are echelon models. We end this section with two toy examples

that illustrate Theorem 1 and Corollary 1.

Example 1. Consider a three-factor system A, with mean responses given

by

System A: (⌧000, ⌧001, ⌧010, ⌧011, ⌧100, ⌧101, ⌧110, ⌧111) = (1, 1, 1, 1, 2, 2, 5, 5).

By equation (2.2), there are only two active factorial e↵ects under the BP:

✓1 = 1 and ✓12 = 3. However, by equation (2.1), there are three active

factorial e↵ects under the OP: �1 = �1.25, �2 = �0.75, and �12 = 0.75.

The OP model that contains only �1 and �12 fails to characterize the mean

response structure, because C = {�, {1}, {1, 2}} is not an echelon collection.

Applying part (i) of Theorem 1, �12 = 0.25✓12 + 0.125✓123 = 0.75. One can

compute �v similarly for other v.

Example 2. A second system has the following mean responses:

System B: (⌧000, ⌧001, ⌧010, ⌧011, ⌧100, ⌧101, ⌧110, ⌧111) = (1, 1,�1,�1, 2, 2, 3, 3).
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Under the BP, (✓1, ✓2, ✓12) = (1,�2, 3), and all other ✓w are zero. Because

the model is associated with an echelon collection C = {�, {1}, {2}, {1, 2}},

by Corollary 1, the OP model that contains only �1, �2, and �12 is true

as well. Using equation (2.1) to verify this, we find that (�1, �2, �12) =

(�1.25, 0.25, 0.75), and all other �v are zero.

3. Finding baseline designs

3.1 Preliminary results

SupposeN experimental runs are allowed in a designD, and let (gi1, gi2, · · · , gim)

denote the ith run (i = 1, 2, . . . , N). Under design D, the OP and BP mod-

els associated with C are, respectively,

E(Yi) =
X

v2C

�v

Y

j2v

(1� 2gij) (i = 1, 2, . . . , N); (3.5)

E(Yi) =
X

w2C

✓w
Y

j2w

gij, (i = 1, 2, . . . , N), (3.6)

where Yi is the response of the ith run. Let XC and WC be the model

matrices of (3.5) and (3.6), respectively. A design is said to be able to esti-

mate model (3.5) (respectively, model (3.6)) if X 0
CXC (respectively, W 0

CWC)

is invertible.
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Theorem 2. If a design is able to estimate an echelon OP model, it is able

to estimate its counterpart BP model, and vice versa.

Theorem 2 allows the estimability of certain BP models to be established

with little e↵ort. One example is that the full kth-order model, the model

that contains all factorial e↵ects of order k or lower, can be estimated

under an orthogonal array of strength 2k. Another interesting application

of Theorem 2 is given in the next example.

Example 3. Cheng (1995) showed that an N -run orthogonal array, if N

is not a multiple of eight, can estimate the full second-order model when

projected onto any four factors. This projection property, by Theorem 2,

holds regardless of the parameterization.

For a design D and an OP model associated with C, we define its DC-

e�ciency as det(X 0
CXC), and its AC-e�ciency as trace(X 0

CXC)�1. We say a

design is DC-optimal (respectively, AC-optimal) if it maximizes det(X 0
CXC)

(respectively, minimizes trace(X 0
CXC)�1) among all competing designs. Sim-

ilarly, we can define the DC- and AC-optimality criteria under the BP by

replacing XC with WC.

Proposition 1. Let C be an echelon collection. If a design is DC-optimal

under the OP, it is DC-optimal under the BP, and vice versa.



3.2 Designs from orthogonal arrays10

Proposition 1 is an implication of a more general result given by Proposition

2, which can be derived directly from Theorem 1. Note that Propositions 1

and 2 are both special cases of Lemma 6 in Stallings and Morgan (2015),

though stated in a di↵erent context.

Proposition 2. If C is echelon, then det(X 0
CXC) is proportional to det(W 0

CWC).

The ratio does not depend on the design, but on C alone.

We conclude this subsection with a corollary. Its implication will be

discussed after Theorem 3 in the next subsection.

Corollary 2. Let C be an echelon collection. The DC-e�ciency of a design

remains unchanged under level switching of one or more factors, regardless

of the parameterization.

3.2 Designs from orthogonal arrays

Cheng (1980) showed that an orthogonal array is universally optimal under

the main-e↵ect-only model. As another example, a design given by an

orthogonal array of strength 2k is A- andD-optimal under the full kth-order

model. These results are all obtained all under the OP. In this subsection,

we generalize a result of Moriguti (1954) to baseline designs. We also

comment on generating baseline designs with robust properties.
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Consider the OP model associated with C, and let �̂v be the least squares

estimator of �v. We assume, as usual, that all observations are uncorrelated

and have a common variance. Moriguti (1954) proved that a design in

which the model matrix XC has mutually orthogonal columns minimizes

Var(�̂v) for each v 2 C among all competing designs. The next theorem

states that a similar result holds for the BP if C is echelon.

Theorem 3. Under an OP model associated with C, a design D minimizes

Var(�̂v) for each v 2 C among all competing designs if XC is orthogonal.

Furthermore, if C is echelon, then under the counterpart BP model, D also

minimizes Var(✓̂w) among all competing designs for every w in C that is

not contained by another u in C.

For convenience, we call ✓w a cap e↵ect if w is not contained by another

u in C. Then, Theorem 3 establishes the optimality for every cap e↵ect

under the stated conditions. Cap e↵ects should be tested first for their

significance when seeking a simpler model in the analysis stage. We consider

some useful cases. If the main-e↵ects model is considered with the inclusion

of an intercept, then all the main e↵ects are cap e↵ects. Therefore, Theorem

3 generalizes a result of Mukerjee and Tang (2012), who established the

optimality for every main e↵ect. For a model consisting of all main e↵ects

and all two-factor interactions, the two-factor interactions are cap e↵ects.



3.2 Designs from orthogonal arrays12

In a model of all main e↵ects plus some two-factor interactions, these two-

factor interactions are cap e↵ects, as are the main e↵ects not involved in

these two-factor interactions.

Because switching the two levels does not a↵ect the orthogonality ofXC,

Theorem 3 also suggests a simple strategy for generating an e�cient baseline

design that is robust to non-negligible e↵ects. While a full investigation of

this problem is beyond the scope of this study, we give an example to

illustrate the idea.

Example 4. Consider the model associated with C = {�, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}}

and an eight-run design D, displayed in transposed form below:

2

6664

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 1 0 1 0 0 1

3

7775
.

Design D is a resolution-IV regular design. Because the design has an

orthogonal model matrix XC, it has the optimal properties given in The-

orem 3. Let D⇤ be the design obtained from D by level switching the

fourth factor. Then, D⇤ has the same optimality properties as D. To fur-

ther distinguish one design from the other, we compute the bias caused by

non-negligible e↵ects. Assume ✓24 is the only non-negligible e↵ect. Fol-

lowing the idea of the minimum K-aberration, the design with smaller
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value of k(W 0
CWC)�1W 0

CW24k is preferred, where WC is the model matrix

under the BP, W24 is the Hadarmard product of the second and fourth fac-

tors in the design matrix, and k·k denotes the Euclidean norm. Because

k(W 0
CWC)�1W 0

CW24k is equal to 2 for D and 0.816 for D⇤ , D⇤ is preferred.

3.3 Rechtscha↵ner designs

Consider the full second-order model associated with the collection C2 =

{s ✓ S : |s|  2}. Based on the aforementioned one-to-one correspondence

between a subset and a treatment combination, C2 corresponds to a de-

sign consisting of (1 +m+m(m� 1)/2) di↵erent treatment combinations,

which is known as the Rechtscha↵ner design, denoted by DC2 . Using the

same correspondence, we define DC similarly for any C, and still call it a

Rechtscha↵ner design. Design DC2 was first presented by Rechtscha↵ner

(1967), who suggested its use under the full second-order model. The es-

timability of DC2 under the OP was later proved by several authors, with

generalizations to echelon models for mixed-level and/or higher-order situ-

ations. We state a result for the two-level situation, which is a special case

of Theorem 15.25 in Cheng (2014).

Proposition 3. For an echelon collection C, the OP model associated with

C is estimable under the Rechtscha↵ner design DC.
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Under the BP, the Rechtscha↵ner design DC has a stronger property.

Theorem 4. For any collection C, the BP model associated with C is es-

timable under the Rechtscha↵ner design DC.

Compared with Proposition 3, Theorem 4 does not assume that C is

echelon. A special case of Rechtscha↵ner designs is DC1 with C1 = {s ✓

S : |s|  1}. This design, commonly known as a one-factor-at-a-time

design, was discussed in Mukerjee and Tang (2012) for its following robust

property: non-negligible interactions never cause bias in the estimation

of the main e↵ects under the BP. This property, in fact, holds for any

Rechtscha↵ner design DC with an echelon C.

Theorem 5. Let C be an echelon collection. Then, the Rechtscha↵ner

design DC allows an unbiased estimation of the BP model associated with

C, even if the e↵ects outside the model are non-negligible.

Example 5. Consider the model associated with C = {�, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}}

and the Rechtscha↵ner design DC, displayed in transposed form below:

2

6664

0 1 0 0 0 1 1

0 0 1 0 0 1 0

0 0 0 1 0 0 1

0 0 0 0 1 0 0

3

7775
.

If ✓24 is a non-negligible e↵ect, the bias it causes can be found using
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(W 0
CWC)�1W 0

CW24✓24. It is clear that W24 is an all-zero vector; hence, ✓24

does not cause bias in ✓̂w, for all w 2 C. The same argument can be made

for all other e↵ects outside the model.

Though the Rechtscha↵ner design DC enjoys a nice property of robust-

ness, it is not very e�cient. We now consider a class ofN -run Rechtscha↵ner

designs based on DC, where C = {s0 = �, s1, s2, . . . , sp}, by allowing each

run in DC to appear multiple times. Let fj be the number of times the treat-

ment combination corresponding to sj appears in DC, for j = 0, 1, . . . , p,

where N =
Pp

j=0 fj. The next result gives an optimal allocation.

Proposition 4. Let C be an echelon collection. An N-run Rechtscha↵ner

design based on DC is AC-optimal under the BP if fj = Nq
1/2
j /

Pp
j=0 q

1/2
j ,

for j = 0, 1, . . . , p, where qj is the number of subsets in C that contain sj.

4. Conclusion

We have derived a linear relationship between the OP and the BP. From

its special pattern, we conclude that an echelon model has the same form

under the two types of parameterization. We further discuss its implica-

tions for the estimability, optimality, and robustness of baseline designs. In

particular, we show that certain orthogonal arrays continue to be optimal

under the BP. We introduce general Rechtscha↵ner designs, showing they
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enjoy a robust property that is only available under the BP.

There are two possible future research directions. The first is illustrated

by Example 5, in which we find the level permutations that minimize the

bias caused by non-negligible e↵ects. Under the main-e↵ect-only model, this

has been investigated by Mukerjee and Tang (2012) and Li, Miller, and

Tang (2014). However, it would be useful to obtain results for more general

echelon models. The second is to consider a compromise between robust

and optimal designs, which can be done by adding runs to a Rechtscha↵ner

design. The compromise designs are expected to enjoy in-between perfor-

mance in terms of both e�ciency and robustness, as demonstrated for the

main-e↵ect model of Karunanayaka and Tang (2017).
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A. Appendix: Proofs

A.1 Proof of Theorem 1

Let ⌧ be a column vector with componenets ⌧�, ⌧1, ⌧2, ⌧12, . . . , ⌧12···m in Yates

order. Vectors ✓ and � are similarly defined. Let Hm be the m-fold Kro-
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necker product of H and Lm the m-fold Kronecker product of L, where

H =

2

664
1/2 1/2

1/2 �1/2

3

775 and L =

2

664
1 0

1 1

3

775 .

We then have � = Hm⌧ and ⌧ = Lm✓. Therefore � = HmLm✓ and

✓ = (HmLm)�1�. Theorem 1 follows by noting that HmLm is the m-fold

Kronecker product of HL and (HmLm)�1 is the m-fold Kronecker product

of (HL)�1 and the special forms of HL and (HL)�1 as given by

HL =

2

664
1 1/2

0 �1/2

3

775 and (HL)�1 =

2

664
1 1

0 �2

3

775 .

A.2 Proof of Theorem 2

This result follows immediately from Proposition 2.

A.3 Proof of Corollary 2

For a design D, let D⇡ be the design obtained from D by level switching

one or more factors. We use W and W⇡ to denote the model matrices

under D and D⇡ for the BP, respectively. Matrices X and X⇡ are defined

similarly for the OP. By Proposition 2, the ratio (det(X 0X)/det(W 0W )) =

(det(X 0
⇡X⇡)/det(W 0

⇡W⇡)) is a constant which only depends on the model.

Since det(X 0X) = det(X 0
⇡X⇡), we conclude that det(W 0W ) = det(W 0

⇡W⇡).
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A.4 Proof of Theorem 3

Due to a result by Moriguti (1954), Var(�̂v) attains its minimal value for

each v 2 C if XC is orthogonal. If C is echelon, by Theorem 1 and Corollary

1, we have that ✓w =
P

v◆w,v2C cv�v. If w is not contained by another u in

C, then ✓w = cw�w. Thus, Var(✓̂w) = c2wVar(�̂w) is minimized.

A.5 Proof of Theorem 4

Consider the matrix Wm = Lm in the proof of Theorem 1, which is the

model matrix of the full model. Let W ⇤
m be the N ⇥ N submatrix of Wm,

obtained by deleting all rows and columns except for the j1-, j2-,..., jN -th

rows and columns. It is su�cient to show that W ⇤
m is non-singular. Note

that j1 = 1 since a Rechtscha↵ner design always contains g = (0, . . . , 0)

and the model always contains the intercept. The non-singularity of W ⇤
m is

easily seen since Wm is a lower triangular matrix with all diagonals being

one, which the case is because Wm = Wm�1 ⌦ W1 and W1 has the same

pattern.

A.6 Proof of Theorem 5

Let C = {s0 = �, s1, s2, . . . , sp}. Without loss of generality, let the i-th

run gi = (gi1, . . . , gim) correspond to si, i = 0, 1, . . . , p. The fitted model



A.7 Proof of Proposition 419

can be written as E(Y ) = WC✓C, where E(Y ) = (⌧s0 , ⌧s1 , . . . , ⌧sp)
0 and

✓C = (✓�, ✓s1 , . . . , ✓sp)
0. Since there may exist some non-negligible e↵ects ✓w

with w /2 C, we let the true model be E(Y ) = WC✓C +
P

w/2C Ww✓w, where

Ww is a (p+ 1)⇥ 1 column vector with the i-th entry equal to
Q

j2w gij.

Let ✓̂C be the least square estimator from the fitted model. Then,

E(✓̂C) = (W 0
CWC)�1W 0

CE(Y ) = ✓C +
P

w/2C(W
0
CWC)�1W 0

CWw✓w. Thus, if we

can show that for each w /2 C, Ww is an all-zeros column vector, then the

proof is completed. This is evident because
Q

j2w gij is one if si contains w

as a subset, and zero otherwise. However, due to the fact that C is echelon,

no si can contain w as a subset.

A.7 Proof of Proposition 4

Let model (3.6) under the Rechtscha↵ner design DC (i.e., fj = 1 for j =

0, 1, . . . , p.) be E(Y ) = WC✓C, where E(Y ) = (⌧s0 , ⌧s1 , . . . , ⌧sp)
0 and ✓C =

(✓�, ✓s1 , . . . , ✓sp)
0. Consider an N -run Rechtscha↵ner design and let E be

the (p+ 1)⇥ (p+ 1) identity matrix. The model matrix can be written as

AWC, where A is an N ⇥ (p+1) matrix. The first f0 rows of A are the first

row of E, the following f1 rows are the second row of E, and so on. The

AC-e�ciency is

tr ((AWC)
0(AWC))

�1 = tr
�
W�1

C (A0A)�1(W 0
C)

�1
�
= tr

�
(A0A)�1(W 0

C)
�1(WC)

�1
�
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It is evident that (A0A)�1 = diag(f�1
0 , f�1

1 , . . . , f�1
p ), so the AC-e�ciency

is
Pp

j=0 qjf
�1
j , where qj is the (j, j)-th element of (W 0

C)
�1(WC)�1, for j =

0, 1, . . . , p. By Cauchy-Schwarz inequality, subject to
Pp

j=0 fj = N ,
Pp

j=0 qjf
�1
j

is minimized if fj = N
⇣
qj

0.5/
Pp

j=0 qj
0.5
⌘
, so the proof can be completed

by showing qj is the number of subsets in C that contain sj.

By definition (2.2), for any w 2 C, ✓w =
P

u✓w ⌧u(�1)|w|�|u|, which is

equal to
P

u2C,u✓w ⌧u(�1)|w|�|u| since C is echelon. It is then implied that

✓C = W�1
C E(Y ) gives the definition back, and thus the j-th column of W�1

C

is

�
(�1)|s0|�|sj |I(s0 ◆ sj), (�1)|s1|�|sj |I(s1 ◆ sj), . . . , (�1)|sp|�|sj |I(sp ◆ sj)

�0
,

where I(si ◆ sj) = 1 if si contains sj as a subsets, and 0 otherwise. Now

we can find that the (j, j)th element of (W 0
C)

�1(WC)�1, which is the squared

length of the jth column vector of W�1
C , is

Pp
i=0{(�1)|si|�|sj |I(si ◆ sj)}2 =

Pp
i=0 I(si ◆ sj) (j = 0, . . . , p).

————————-
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