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We study the estimation and prediction of Gaussian processes
with space-time covariance models belonging to the dynamical gen-
eralized Wendland (DGW) family, under fixed-domain asymptotics.
Such a class is nonseparable, has dynamical compact supports, and
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time Matérn class.
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1. Introduction

1.1 Context

This study is concerned with fixed-domain asymptotics for the estima-

tion and kriging prediction of Gaussian random fields defined over product

spaces D ×T , where D is a subset of Rd (d is a positive integer) and T is a

compact interval of the real line. The most notable application refers to D

as the spatial domain and to T as time. Although we focus on the space-

time case, our results can be analogously applied to the anisotropic spatial

case, where the rate of decay in the correlation in one coordinate is different

from that of the remaining d coordinates. Here, we assume that the process

is observed at n (possibly unevenly spaced) locations and repeatedly over

m time points.

There might be other choices for the space-time asymptotics: for in-

stance, for the temporal part, one might consider an increasing asymptotic

framework, while keeping a fixed-domain approach for the spatial part. We

are not aware of any contribution of this type, and such a setting looks chal-

lenging. Alternatively, one might consider both space and time under an

increasing domain fashion. In this case, the results of Mardia and Marshall

(1984) on maximum likelihood (ML) estimation apply, and the space-time

asymptotics becomes a straightforward extension of the results obtained in
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the spatial case.

Instead, there is a lack of general results for the case of fixed-domain

asymptotics. Some results have been given for specific classes of covari-

ance functions. For instance, Zhang (2004), Wang and Loh (2011), and

Kaufman and Shaby (2013) studied the asymptotic properties of the ML

estimation of the microergodic parameter of the Matérn covariance model.

Additionally, Stein (1999) and Kaufman and Shaby (2013) have studied

the asymptotic effect of the misspecified kriging prediction on the predic-

tion variance, under the Matérn covariance model. Recently, Bevilacqua

et al. (2019) considered a fixed-domain asymptotic framework for Gaus-

sian random fields defined over a compact set of Rd under the generalized

Wendland (GW) class of compactly supported correlation functions (Zas-

tavnyi and Trigub, 2002). Bevilacqua and Faouzi (2019) explored a similar

problem using the generalized Cauchy class, which allows for decoupling of

fractal dimensions with the Hurst effect.

The literature on space-time fixed-domain asymptotics is sparse, with

the notable exception of Ip and Li (2017), who perform an asymptotic

analysis based on a class of space-time covariance functions, proposed by

Fuentes et al. (2008), having both spatial and temporal margins belonging

to the Matérn family (Stein, 1999). We refer to this family as the dynamical
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Matérn (DM) family of space-time covariance functions. The recent paper

by Porcu et al. (2020) gives a thorough review of space-time covariance

functions.

1.2 Our Contribution

This study considers a class of nonseparable space-time covariance functions

proposed by Porcu et al. (2020). The members of this class are dynamically

compactly supported, meaning that for any fixed temporal lag, the spatial

margin is dynamically compactly supported; that is, there is a decreasing

and continuous function, h, such that for every fixed temporal lag, to, the

spatial margin of the space-time covariance function is compactly supported

over a ball with radius h(to) embedded in Rd. Specifically, the spatial

margin belongs to the GW class. For the remainder of the paper, we refer

to this class as the dynamical GW (DGW) class.

We study the problem of ML estimation of the DGW class defined

over the product space D × T , under fixed-domain asymptotics. Further,

we study the problem of kriging prediction under the same asymptotic

framework. The results on fixed-domain asymptotics largely rely on the

equivalence of Gaussian measures (Skorokhod and Yadrenko, 1973). Thus,

we derive conditions for the equivalence of such measures under either two

DGW families with different parameters, or under a DGW and a DM family.
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These conditions are provided in Section B of the online Supplementary

Material (OS). We explore the implications of these results in terms of the

consistency and the asymptotic distribution of the ML estimator for the

microergodic parameter. Finally, we assess the consequences of previous

results in terms of the efficiency of the misspecified best linear unbiased

predictors.

The remainder of the paper proceeeds as follows. Section 2 contains

the necessary mathematical notation and a description of the covariance

functions used in this paper. Background material on the equivalence of

Gaussian measures is deferred to A in the OS. Section 3 provides preliminary

results related to the space-time Fourier transforms of both the DM and

the DGW models. We also find conditions for the equivalence of Gaussian

measures under both models (see B in the OS). These results are the basis

for Section 4, which studies the problem of consistency and asymptotic nor-

mality for the ML estimators of the parameters indexing the DGW family.

The problem of misspecified kriging predictions under the DGW is then

explored in Section 5. Section 6 concluldes the paper. Technical proofs are

deferred to Section C in the OS.
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2. Background Material

2.1 Preliminaries and Notation

We denote by Z = {Z(s, t), (s, t) ∈ D × T } a zero mean Gaussian random

field with index set on D × T , with stationary covariance function C ∶ Rd ×

R→ R that is spatially isotropic and temporally symmetric. That is, there

exists a continuous function K ∶ [0,∞)2 → R such that K(0,0) = 1 and

C(h, u) = σ2K(∥h∥, ∣u∣), for (h, u) ∈ Rd ×R, where σ2 denotes the variance

parameter. Here, ∥ ⋅ ∥ denotes the Euclidean norm. We denote by Φd,T the

set of such functions. For the remainder of the paper, we use r for ∥h∥ and

t for ∣u∣. Additionally, we denote with Φd the family of spatially isotropic

covariance functions defined on Rd. The classes Φd and Φd,T are nested,

with the inclusion relations

Φ1 ⊃ Φ2 ⊃ . . . ⊃ Φ∞ and Φ1,T ⊃ Φ2,T ⊃ . . . ⊃ Φ∞,T

being strict, where Φ∞ ∶= ⋂d≥1 Φd and Φ∞,T ∶= ⋂d≥1 Φd,T . There is a rich

mathematical theory for both classes Φd and Φd,T . For a recent account on

the class Φd, refer to Daley and Porcu (2013). Porcu et al. (2006) provide

extensive material for the class Φd,T .

In particular, the results in Porcu et al. (2006) (see also Gneiting and

Guttorp, 2010) show that a continuous function φ with φ(0,0) = 1 belongs
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to the class Φd,T if and only if there exists a probability measure F , defined

on the positive quadrant of R2 such that

K(r, t) = ∫
∞

0
∫

∞

0
Ωd(rξ1) cos(tξ2)F (d(ξ1, ξ2)), t ≥ 0, r ≥ 0,

where Ωd(t) = t−(d−2)/2J(d−2)/2(t) and Jν is the Bessel function of the first

kind of order ν > 0 (Abramowitz and Stegun, 1970). Classical Fourier

inversion arguments show that if K is absolutely integrable, then K ∈ Φd,T

if and only if the function f ∶ [0,∞)2 → R, defined by

f(z, τ) = 1

(2π)(d+1)/2 ∫
∞

0
∫

∞

0
Ωd(zξ1) cos(τξ2)φ(ξ1, ξ2)ξd−11 dξ1dξ2 (2.1)

is nonnegative and integrable. The function f is called the isotropic spectral

density throughout.

2.2 The Matérn and Generalized Wendland Classes of Covari-
ance Functions

The Matérn class (Matérn, 1986; Handcock and Stein, 1993) of continuous

functions KM(r;α, ν), r ≥ 0, α, ν > 0, is defined as

KM(r;α, ν) = 21−ν

Γ(ν) ( r
α
)
ν

Kν (
r

α
) , (2.2)

where Kν is a modified Bessel function of the second kind of order ν

(Abramowitz and Stegun, 1970). The function KM(⋅;α, ν) belongs to the

class Φ∞.
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We now introduce the GW class KGW(⋅;β,µ, κ) ∶ [0,∞) → R, defined as

(Gneiting, 2002; Zastavnyi, 2002)

KGW(r;β,µ, κ) ∶=
⎧⎪⎪⎨⎪⎪⎩

1
B(2κ,µ+1) ∫

1

r/β u(u2 − (r/β)2)κ−1(1 − u)µ du, 0 ≤ r < β,
0, r ≥ β,

(2.3)

where κ > 0, β > 0 is the compact support parameter, and B denotes the

beta function. For κ = 0, the GW class is defined as (Askey, 1973):

KGW(r;β,µ,0) ∶=
⎧⎪⎪⎨⎪⎪⎩

(1 − r/β)µ , 0 ≤ r < β,
0, r ≥ β.

(2.4)

Closed-form solutions of the integral in (2.3) can be obtained when

κ = k, a nonnegative integer. In this case, (2.3) can be factorized as

KGW(r;β,µ, k) =KGW(r;β,µ + k,0)Pk(r), r ≥ 0,

where Pk is a polynomial of order k.

The GW class belongs to the class Φd, for a fixed d ∈ N, provided

µ ≥ (d + 1)/2 + κ.

Both KM and KGW are flexible models, because they allow us to pa-

rameterize the mean square and sample path differentiability of a Gaussian

random field in a continuous fashion with these covariance functions. In

particular, for theM case, given a positive integer k, the sample paths are

k-times differentiable, in any direction, if and only if ν > k. Similarly, for
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Figure 1: Left: KGW(t; 10,6, k) for k = 0,1,2,3, Right: KM(t; 1, ν) for
ν = 0.5,1.5,2.5,3.5

the GW case, the sample paths are k-times differentiable, in any direction,

if and only if κ > k − 0.5. Figure 1 depicts KGW(t; 10,6, k) for k = 0,1,2,3

and KM(t; 1, ν) for ν = 0.5,1.5,2.5,3.5.

2.3 The DM and DGW Families of Space-Time Covariance Func-
tions

TheDM family of space-time covariance functions was introduced by Fuentes

et al. (2008): the motivation for the proposal was to provide a class of

space-time covariance functions that have spatial or temporal margins of

the Matérn type. That is, either the spatial margin C(⋅,0) or the temporal

margin C(0, ⋅) belong to the class KM(∥ ⋅ ∥;α, ν), as defined in (2.2). The

DM family is the building block for the work of Ip and Li (2017), which

has largely inspired our work. To introduce the DM family, we follow a
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different path tp that of Fuentes et al. (2008): let θ = (ν, ζ, υ, ε, σ)⊺, with ⊺

denoting the transpose of a vector. We assume ν, υ, ζ, σ are positive, and

ε ∈ [0,1]. We define the parameter `, which depends on θ, as

`(θ) = σ
2ζ2ν−dυ2ν−1Γ(ν)

Γ(ν − d+1
2 )

1{ε=0} +
σ2ζ2ν−dυ2ν−1Γ(ν)2
Γ(ν − d

2)Γ(ν − 1
2)

1{ε=1} + x1{ε∈(0,1)}, (2.5)

with 1A being the indicator function of any Borel set of the real line. Here,

Γ denotes the gamma function (Gradshteyn and Ryzhik, 2007), and x is a

positive constant that is kept fixed, and is disregarded for the rest of our

exposition.

We define the DM class of covariance functions, KDM(⋅, ⋅;θ) ∶ [0,∞2) →

R, through the identity

KDM(r, t;θ) = ∫
R

eiutgθ(r, u)du, (r, t) ∈ [0,∞), (2.6)

where i is the imaginary unit. Here, the function gθ is defined as

gθ(r, u) =
`(θ)πd/2

2ν−d/2−1Γ(ν) ( r

a(u))
ν−d/2

(υ2 + εu2)−ν Kν−d/2 (a(u)r) ,

with a(u) =
√
ζ2(υ2 + u2)/υ2 + εu2, u ∈ R. In Equation (2.6), the parameter

ζ−1 (spatial range) explains the rate of decay of the spatial correlation, υ−1

(temporal range) explains the rate of decay of the temporal correlation, and

` is a scale parameter proportional to the variance σ2 (sill parameter) of

the associated random field. The parameter ε allows us to switch from sep-

arability (when ε = 0) to different levels of nonseparability. The arguments
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in Fuentes et al. (2008) show that KDM(⋅, ⋅;θ) is a member of the class

Φ∞,T . In addition, Fuentes et al. (2008) show that some special cases admit

partial Fourier transforms that admit closed forms of the Matérn type.

We now follow Porcu et al. (2020) to introduce the DGW class of space-

time covariance functions. Let µ,β, σ > 0, δ ∈ (0,2], γ > 0, and κ ≥ 0. Let

χ = (µ,κ, β, σ2, δ, λ, γ)⊺.

The range of the parameter λ is specified below. Let us consider the

function

hδ,γ(t) = (1 + ( t
γ
)
δ

)
−1

, t ≥ 0. (2.7)

We define the DGW class of covariance functions, denoted KDGW(⋅, ⋅;χ)

(Porcu et al., 2020), as follows:

KDGW(r, t;χ) = σ2 [hδ,γ(t)]λKGW(r;βhδ,γ(t), µ, κ), r, t ≥ 0. (2.8)

According to Theorem 1 in Porcu et al. (2020) (see also Table 1 therein),

KDGW(⋅, ⋅;χ) belongs to the class Φd,T , for some integer d, provided

µ ≥ (d + 3)/2 + κ + α, and λ > max((d + 3)/2,2κ + 3). (2.9)

The constant α is positive and bigger than a lower bound κ1(δ) that is

specified in Table 1 of Porcu et al. (2020). Here, α is fixed and does not

enter into the parameter χ. For the remainder of the paper, we suppose

that α is always bigger than the lower bound κ1(δ). When interpreting
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the parameters, we note that β is the spatial compact support when t = 0;

that is, KDGW(⋅,0;χ) =KGW(⋅;β,µ, κ), with KGW as in (2.3), is compactly

supported over a ball with radius β embedded in Rd. The parameter κ deter-

mines the differentiability at the origin for the spatial margin KDGW(⋅,0;χ).

The parameter γ > 0 is the temporal scale, and the parameter δ indexes the

fractal dimension for the temporal sample paths. Finally, the function hδ,γ

is the temporal radius, because for every to > 0, the margin KDGW(⋅, to;χ)

is compactly supported over a ball with radius βhδ,γ(to) embedded in Rd.

For the remainder of the paper, we use fDM(⋅, ⋅;θ) and fDGW(⋅, ⋅;χ) for the

Fourier transforms of KDM(⋅, ⋅;θ) and KDGW(⋅, ⋅;χ), respectively, that are

uniquely determined according to Equation (2.1).

3. Preliminary Results

3.1 Fourier Transforms and Tails for the DGW and DM Classes

For d a positive integer and κ ≥ 0, we define η ∶= (d+1)/2+κ. The next result

describes the behavior of the isotropic spectral density associated with the

DGW covariance function, fDGW(⋅, ⋅;χ), defined in (2.8), and determined

according to (2.1). Some further notation is needed. For given functions

g1(x) and g2(x), we write g1(x) ≍ g2(x) to mean that there exist constants

c and C such that 0 < c < C < ∞ and c∣g2(x)∣ ≤ ∣g1(x)∣ ≤ C ∣g2(x)∣, for all x.
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Note that f ∼ g means that the function f is asymptotically equal to

the function g. We consider the function 1F2, defined as

1F2(a; b, c; z) =
∞
∑
k=0

(a)kzk
(b)k(c)kk!

, z ∈ R,

which is a special case of the generalized hypergeometric functions qFp

(Abramowitz and Stegun, 1970), with (q)k = Γ(q + k)/Γ(q), for k ∈ N∪ {0},

being the Pochhammer symbol. Finally, for a complex number z, we use

I(z) to denote its imaginary part. We are ready to provide our first result.

Theorem 1. Let DGW be the class of functions KDGW(⋅, ⋅;χ) defined in

Equation (2.8), and let fDGW(⋅, ⋅;χ) be the spectral density associated with

KDGW(⋅, ⋅;χ) and determined according to Equation (2.1). Let ς ∶= (µ,κ, η, d)⊺.

Let

%λ,η =
2δ(d + λ − 2η)Γ( δ+12 )Γ( δ+22 ) sin(πδ2 )

γδπ
3
2

,

%λ,η+1 =
2δ(d + λ − 2η − 2)Γ( δ+12 )Γ( δ+22 ) sin(πδ2 )

γδπ
3
2

,

cς3 =
Γ(µ + 2η)

Γ(µ) , cς4 =
Γ(µ + 2η)
Γ(η)2η−1 , cς5 =

π

2
(µ + η)

and

Lς = 2−κ−d+1Γ(κ)π− d2 Γ(µ + 1)Γ(2κ + d)
B(2κ, η)Γ(κ + d

2)Γ(µ + 2η)
.

Then, for κ ≥ 0, σ2, β > 0, δ ∈ (0,2), λ > 2κ + 3, and µ ≥ η + 1 + α, we have
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1. fDGW(z, τ ;χ) = −σ2βdγ3/2τ 1/2
√

2π−3/2Lς×

×I
⎛
⎝∫

∞

0

K1/2(γtτ)1F2(η; η + µ
2 , η +

µ
2 + 1

2 ;− (zβ(1+e
iπδ/2tδ)−1)2

4 )
(1 + eiπδ/2tδ)d+λ t1/2dt

⎞
⎠

;

2. For τ, z →∞,

fDGW(z, τ ;χ) = σ2β−(1+2κ)Lςcς3z
−2η×

( [%λ,ητ−(1+δ) −O (τ−(1+2δ))] + [%λ,η+1τ−(1+δ) −O (τ−(1+2δ))]O(z−2))+

+ [%λ,0τ−(1+δ) −O (τ−(1+2δ))]O(z−(µ+η));
(3.1)

3. For z →∞, τ →∞, fDGW(z, τ ;χ) ≍ z−2ητ−1−δ.

The proof of this result is deferred to Section C in the OS.

To describe the asymptotic behavior of the spectral density associated

with the DM class, a result from Ip and Li (2017) is needed.

Theorem 2. Let fDM(⋅, ⋅;θ) be the spectral density function associated with

the DM class in Equation (2.6), and being uniquely determined according

to (2.1). Then, for υ > 0 and ε ∈ [0,1], we have

1. fDM(z, τ ;θ) = `(θ)(ζ2υ2 + υ2z2 + ζ2τ 2 + ε2z2τ 2)−ν;

2. As z, τ →∞ and ε ∈ (0,1],

1

fDM(z, τ ;θ) ∼ `−1(θ)(εzτ)2ν(1 + νζ2υ2

ε2z2τ 2
+ νυ2

ε2τ 2
+ νζ2

ε2z2
+O(τ−4z−4));
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3. As z, τ →∞ and ε = 0,

1

fDM(z, τ ;θ) ∼ `−1(θ)(υ2z2+ζ2τ 2)ν
⎛
⎝

1+ν ζ2υ2

ζ2τ 2 + υ2z2+O ((ζ2τ 2 + υ2z2)−2)
⎞
⎠
.

The following section describes technical results that provide the crux

for the proofs of our main results.

4. ML for DGW Classes

Following the arguments in Zhang (2004), an immediate consequence of

Theorem 2 in the OS is that for fixed κ, δ, µ, and λ, the parameters σ2, β, and

γ cannot be estimated consistently. Instead, we show here that the microer-

godic parameter σ2/(γδβ2κ+1) is consistently estimable. We then assess the

asymptotic distribution of the ML estimator. Let D×T be a bounded subset

of Rd×R, and let Znm = (Z(s1, t1), . . . , Z(sn, tm))⊺ be a finite realization of

a zero mean stationary Gaussian random field Z(s, t), (s, t) ∈D×T , with a

given parametric covariance function σ2K(r, t;τ ), with σ2 > 0, τ a parame-

ter vector, and K a member of the class Φd,T , with K(0,0;τ ) = 1. Here, we

consider the DGW covariance model, that is, KDGW(r, t;χ) = σ2K(r, t;τ ),

whereK(r, t;τ ) = [hδ,γ(t)]λKGW(r;βhδ,γ(t), µ, κ), with hδ,γ(t) = (1 + (t/γ)δ)−1

and τ = (µ,κ, β, δ, λ, γ)⊺. At the same time, in the current exposition, τ

does not contain the parameters that are fixed, but only those that are to

be estimated using the ML. Specifically κ, δ, λ, and µ are assumed known
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and fixed; that is, we assume τ = (β, γ)⊺, the spatial and temporal scale

parameters. Then, the Gaussian log-likelihood function is defined as

Lnm(σ2, β, γ) = −1

2
(nm log(2πσ2) + log (∣Rnm(β, γ)∣) + 1

σ2
Z⊺
nmRnm(β, γ)−1Znm) ,

(4.1)

where Rnm(β, γ) = [K(∥si − sj∥, ∣tl − tk∣;β, γ)]n;mi,j=1;,l,k=1 is the correlation

matrix. Let σ̂2
nm be the ML estimator of the variance parameter obtained

by maximizing Lnm(σ2, β, γ) with respect to σ2, and given by

σ̂2
nm(β, γ) = 1

nm
Z⊺
nmRnm(β, γ)−1Znm. (4.2)

We now establish the strong consistency and the asymptotic distribu-

tion of the random variable σ̂2
nm(β, γ)/(γδβ2κ+1), that is, the ML estimator

of the microergodic parameter.

Theorem 3. Let Z(s, t), (s, t) ∈ D × T ⊂ Rd × R, for d = 1,2, be a zero

mean Gaussian random field with covariance model KDGW(⋅, ⋅;χ), and let

τ = (µ,κ, β0, δ, λ, γ0)⊺, with λ > 2κ + 3 and µ > η + 1 +α. For κ, δ, λ, and µ

fixed and known and arbitrary β and γ, we have as n,m→∞,

1. σ̂2
nm(β,γ)
γδβ2κ+1

a.s.Ð→ σ2
0

γδ0β
2κ+1
0

, and

2.
√
n ×m ( σ̂

2
nm(β,γ)
γδβ2κ+1 − σ2

0

γδ0β
2κ+1
0

) DÐ→ N (0,2 ( σ2
0

γδ0β
2κ+1
0

)
2

).

The proof is deferred to Section C in the OS. The second point of The-

orem 3 provides the asymptotic distribution of the microergodic parameter
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for arbitrary dependence parameters β and γ. Nevertheless, in practical ap-

plications, both parameters must be estimated. In principle, the asymptotic

distribution of the random variable σ̂2
nm(β̂,̂γ)
γ̂δβ̂2κ+1

, with τ̂ = (β̂, γ̂)⊺, can be ob-

tained following the arguments in Kaufman and Shaby (2013) or Bevilacqua

et al. (2019). However, to establish the strong consistency and asymptotic

distribution of the sequence of random variables σ̂2
nm(β̂,γ̂)
γ̂δβ̂2κ+1

, we need to prove

the monotone behavior of σ̂
2
nm(β,γ)
γδβ2κ+1 when viewed as a function of (β, γ) ∈ I×J ,

with I ×J a product of bounded intervals. Unfortunately, we have not been

able to inspect such a monotonicity property.

In the following, to assess the quality of the approximation of Theorem

3 (Point 2), we consider a simulation study that takes into account the case

when γ and β are arbitrary. We we also explore the case when both are

estimated using the ML.

Specifically, we consider 500 simulations, using a Cholesky decomposi-

tion, of a Gaussian random field with a DGW space-time covariance function

observed in [0,1]2 × [0,1]. In particular, we consider x2 location sites uni-

formly distributed in [0,1]2 with x = 6,8,10,12,14 and 0,0.1, . . . ,0.9,1 tem-

poral instants; that is, we consider n = 36,64,100,144,196, and m = 11. The

increasing total number of space-time observations in the three-dimensional

unit cube is n ×m = 396,704,1100,1584,2156, respectively.
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For each simulation, we consider κ = 0,1, δ = 1.75, λ = 5, and µ = 5.5+κ

as known and fixed, and we set σ2
0 = 1, β0 = 1, and γ0 = 3. We estimate the

microergodic parameter as

σ̂2
i (xi, yi)
x2κ+1i yδi

= Z
⊺
iRnm(xi, yi)−1Zi

nmx2κ+1i yδi
,

where xi = β0 and yi = γ0 for the case with arbitrary dependence parameters

(here, we set them equal to the true dependence parameters), and xi = β̂i

and yi = γ̂i for the case of parameters estimated using the ML. Here, Zi is

the data vector of simulation i.

For the first case, the ML estimation is obtained using (4.2), and for the

second case, the ML estimation is obtained using the maximization, with

respect to β and γ, of the log profile likelihood Lnm(σ̂2
nm(β, γ), β, γ).

Using the asymptotic distributions stated in Theorem 3, Table 1 com-

pares the sample quantiles of order 0.05,0.25,0.5,0.75 and 0.95 and the

mean and variance of

√
n ×m

2
( σ̂

2
i (xi, yi)β2κ+1

0 γδ0
σ2
0x

2κ+1
i yδi

− 1)

when xi = β0 and yi = γ0 with the associated theoretical values of the

standard Gaussian distribution. In the same table, we also explore the case

xi = β̂i and yi = γ̂i.

As expected, the best approximation is achieved overall when using the
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true dependence parameters (i.e., xi = β0, yi = γ0), and in the case of xi = β̂i

and yi = γ̂i, the asymptotic distribution seems a satisfactory approximation

of the sample distribution, visually improving with increasing n. Note that

the variance increases when the smoothness parameter κ increases. This

pattern in well known in the purely spatial case when estimating the mi-

croergodic parameter of the GW or Matérn covariance models. In addition,

when xi = β0 and yi = γ0, the sample quantiles do not depend on κ, as

expected. We repeat this numerical experiment by considering arbitrary

dependence parameters sufficiently ”far” from the true values , finding that

the convergence can be very slow, as observed in Kaufman and Shaby (2013)

and Bevilacqua et al. (2019).

5. Prediction using the DGW model

We now consider kriging prediction, under fixed domain asymptotics, of a

Gaussian random field at an unknown space-time location (s0, t0) ∈ D × T ,

using the DGW model KDGW(r, t;χ). Recall that the parameter vectors χ

and τ are defined in Sections 2.3 and 4, respectively. Specifically, we focus

on two properties:

(A) asymptotic efficient prediction, and

(B) asymptotically correct estimation of the prediction variance.
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Table 1: For κ = 0,1 and δ = 1.75, sample quantiles, mean, and variance of√
n×m
2 ( σ̂

2
i (xi,yi)β

2κ+1
0 γδ0

σ2
0x

2κ+1
i yδi

− 1), i = 1, . . . ,500, for xi = β̂i, β0 and yi = γ̂i, γ0,. when

β0 = 1 and γ0 = 3 with n×m = 396,704,1100,1584,2156, compared with the
associated theoretical values of the standard Gaussian distribution.

κ = 0 (x, y) n ×m 5% 25% 50% 75% 95% Mean Var
396 -1.962 -0.904 0.060 0.836 2.142 0.029 1.534

(β̂,γ̂) 704 -1.889 -0.759 0.010 0.836 2.031 0.030 1.386
1100 -1.728 -0.741 0.068 0.852 1.868 0.070 1.278
1584 -1.642 -0.738 0.008 0.704 1.717 0.017 1.141
2156 -1.643 -0.720 -0.009 0.639 1.669 -0.094 1.119
396 -1.535 -0.705 -0.014 0.720 1.788 0.022 1.061

(β0, γ0) 704 -1.662 -0.733 0.032 0.704 1.758 0.001 1.060
1100 -1.675 -0.700 0.032 0.709 1.682 0.021 1.052
1584 -1.634 -0.646 0.014 0.717 1.601 0.005 1.017
2156 -1.645 -0.648 -0.094 0.659 1.660 -0.079 1.012

κ = 1 (x, y) n ×m 5% 25% 50% 75% 95% Mean Var
396 -2.179 -0.971 -0.110 0.733 2.462 -0.036 1.839

(β̂,γ̂) 704 -2.039 -0.806 0.041 0.877 1.938 0.015 1.510
1100 -1.939 -0.782 0.104 0.800 1.850 0.002 1.382
1584 -1.683 -0.735 -0.030 0.653 1.977 -0.002 1.270
2156 -1.693 -0.720 -0.009 0.679 1.723 -0.096 1.194
396 -1.535 -0.705 -0.014 0.720 1.788 0.022 1.061

(β0, γ0) 704 -1.662 -0.733 0.032 0.704 1.758 0.001 1.060
1100 -1.675 -0.700 0.032 0.709 1.682 0.021 1.052
1584 -1.634 -0.646 0.014 0.717 1.601 0.005 1.017
2156 -1.645 -0.648 -0.094 0.659 1.660 -0.079 1.012

N(0,1) -1.645 -0.674 0 0.674 1.645 0 1
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Stein (1988) shows that both asymptotic properties hold when the Gaussian

measures are equivalent (see Section A in the OS). Let P (KDGW(χi)), for

i = 0,1, be two probability zero mean Gaussian measures with covariance

belonging to the DGW class of space-time covariance functions, where χi =

(σ2
i ,τ

⊺
i )⊺ and τ i = (µ,κ, βi, δ, λ, γi)⊺, for i = 0,1 is the associated set of

parameters.

Under P (KDGW(χ0)), and using Theorem 2 in the OS, properties (A)

and (B) hold, provided

σ2
0

γδ0β
2κ+1
0

= σ2
1

γδ1β
2κ+1
1

,

and µ > η + 1 + α, δ > (d + 1)/2, and d = 1,2. Similarly, let P (KDM(θ))

and P (KDGW(χ)) be two zero mean Gaussian measures under the DM and

DGW models, respectively. Under P (KDM(θ)), properties (A) and (B)

hold when µ > η + 1+α, Point 2 of Theorem 3 in the OS holds, and d = 1,2.

Actually, Stein (1993) gives a substantially weaker condition for asymp-

totic efficiency prediction based on the asymptotic behavior of the ratio of

the spectral densities. Let

Ẑnm(τ ) = cnm(τ )⊺Rnm(τ )−1Znm (5.1)

be the best linear unbiased predictor at an unknown location (s0, t0) ∈

D × T , under the misspecified model P (KDGW(r, t;χ)), where cnm(τ ) =
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[φ(s0 − si, t0 − tj;τ )]n,mi=1,j=1 and Rnm(τ ) = [φ(si − sj, ti − tj;τ )]n,mi=1,j=1 is the

correlation matrix.

If the correct model is P (KDGW(r, t;χ0)), then the mean squared error of

the kriging predictor is given by:

Varχ0
[Ẑnm(τ ) −Z(s0, t0)] (5.2)

= σ2
0(1 − 2cnm(τ )⊺Rnm(τ )−1cnm(τ 0) + cnm(τ )⊺Rnm(τ )−1Rnm(τ 0)Rnm(τ )−1cnm(τ 0)).

If β0 = β and γ0 = γ, that is, the true and misspecified models coincide,

this expression simplifies to

Varχ0
[Ẑnm(τ 0) −Z(s0, t0)] = σ2

0(1 − cnm(τ 0)⊺Rnm(τ 0)−1cnm(τ 0)). (5.3)

Similarly, Varθ [Ẑnm(τ ) − Z(s0, t0)] and Varθ [Ẑnm(θ) − Z(s0, t0)] can

be defined under P (KDM(θ)). Here, Ẑnm(θ) is the best linear unbiased

predictor using the DM model, and recall that θ = (ν, ζ, υ, ε, σ)⊺ is the

set of correlation parameters. The following results are an application of

Theorems 1 and 2 of Stein (1993).

Theorem 4. Let P (KDGW(χi)), for i = 0,1, and P (KDM(θ0)) be three

Gaussian probability measures on D × T ⊂ Rd × R, and let µ > η + 1 + α.

Then, for all (s0, t0) ∈ D × T :
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1. Under P (KDGW(χ0)), as n→∞,

Varχ0
[Ẑnm(τ 1) −Z(s0, t0)]

Varχ0
[Ẑnm(τ 0) −Z(s0, t0)]

Ð→1, (5.4)

for any fixed β1 > 0 and γ1 > 0.

2. Under P (KDM(θ0)), if ν = η as n→∞,

Varθ0[Ẑnm(τ 1) −Z(s0, t0)]
Varθ0[Ẑnm(θ) −Z(s0, t0)]

Ð→1, (5.5)

for any fixed β1 > 0, γ1 > 0, and θ = (ν, ζ, υ, ε).

3. Under P (KDGW(χ0)), if
σ2
0β
−(2κ+1)
0

γδ0
= σ2

1β
−(2κ+1)
1

γδ1
, then

Varχ1
[Ẑnm(τ 1) −Z(s0, t0)]

Varχ0
[Ẑnm(τ 1) −Z(s0, t0)]

Ð→1. (5.6)

4. Under P (KDM(θ0)), for ε ∈ (0,1], if σ2
1%λ,ηc

ς
3β

−2η = `(θ0)ε−2ν, ν = η

and 1 + 2κ = δ, then as n→∞,

Varχ1
[Ẑnm(τ 1) −Z(s0, t0)]

Varθ0[Ẑnm(τ 1) −Z(s0, t0)]
Ð→1. (5.7)

As an illustration of the results in Theorem 4, we perform a small nu-

merical experiment, focusing in particular on Points 1 and 3. Let us define

the ratios (5.4) and (5.6) as U1(β1, γ1) and U2, respectively. We randomly

select nj = 36,64,100,144,196, (j = 1, . . .500) location sites without replace-

ment from a fine regular grid on the unit square, and we keep these location
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sites fixed across the 11 temporal instants 0,0.1, . . . ,1. We then compute

the ratios U1j(β1, γ1) and U2j, for j = 1, . . . ,500, using the closed-form ex-

pressions in Equation (5.2) and (5.3), to predict the space-time location site

s0 = (0.53,0.53) and t0 = 0.6. Specifically, for κ = 0,1, we set µ = 5.5 + κ,

δ = 1.75, and λ = 5, as in the numerical experiment in Section 4. The pa-

rameters of the correct model χ0 = (σ2
0,τ

⊺
0)⊺ with τ ⊺0 = (µ,κ, β0, δ, λ, γ0)⊺

are fixed as σ2
0 = 1, β0 = 1, and γ0 = 3, and the parameters of the misspeci-

fied model χ1 = (σ2
1,τ

⊺
1)⊺ with τ ⊺1 = (µ,κ, β1, δ, λ, γ1)⊺ are fixed as σ2

1 = 1.25,

and γ1 = 3.05; the spatial parameter is obtained using the equivalence con-

dition, that is, β1 = β0((σ2
0/σ2

1)(γ0/γ1)δ)−(1+2κ) (see also A in OS). This gives

β1 = 1.21436 for κ = 0, and β1 = 1.066881 for κ = 1.

Table 2 reports the overall mean Ū1 = ∑500
j=1U1j(β1, γ1)/500 and Ū2 =

∑500
j=1U2j/500 when increasing the number of spatiotemporal sites n ×m =

396,704,1100,1584,2196. It can be appreciated that the convergence to

one of Ū1 is much faster than that of Ū2. These results are consistent with

those of the purely spatial case in Bevilacqua et al. (2019). In addition,

there are no significant differences between the cases κ = 0,1.
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Table 2: Ū1 = ∑500
j=1U1j(β1, γ1)/500 , Ū2 = ∑500

j=1U2j/500 when increasing the
number of space-time locations for κ = 0,1.

m × n κ=0 κ=1
Ū1 Ū2 Ū1 Ū2

396 1.00249 1.05611 1.00104 1.05730
704 1.00104 1.04349 1.00035 1.04338
1100 1.00048 1.03826 1.00013 1.03781
1584 1.00022 1.03513 1.00005 1.03500
2156 1.00012 1.03354 1.00002 1.03337

6. Conclusion

There is a clear lack of general results on the asymptotic properties of the

ML estimator under fixed-domain asymptotics, particularly in the space-

time setting. This is reflected in the literature, where the results are sparse

and are estabilished for ad hoc families of covariance functions. Similarly, we

have established results that hold for the DGW family under fixed-domain

asymptotics.

Future research could examine a more realistic setting for the temporal

component. A promising solution might be to embed time in the circle, so

that the associated Gaussian random field becomes periodic.

Supplementary Material

The online Supplementary Material contains mathematical proofs and some

graphical representations.
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