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Abstract: Motivated by applications, we propose a class of dynamic single-index

varying-coefficient models to explore the varying interaction effects on the re-

sponse variable among a set of covariates. That is, the interaction effects are

allowed to change with some factors of interest, such as time, spatial location, or

other covariates. A spline-based approach is developed to estimate the index and

varying-coefficient functions. The convergence rates and asymptotic normalities

of the resulting estimators are established. It is also shown that the resulting

estimators exhibit the oracle property. A penalized method is presented to se-

lect related covariates, and the consistency of the penalized estimator is proved.

A test statistic is provided to check whether the interaction effect also varies

with the factors of interest, and the asymptotic normality of the test statistic
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1. INTRODUCTION2

is established. Simulation studies and two real-data analyses illustrate the good

performance of the proposed model and the corresponding statistical inference

methods for finite samples.

Key words and phrases: Interaction effect, Single-index varying-coefficient re-

gression model, Spline approximation, Variable selection.

1. Introduction

Single-index varying-coefficient regression models (SICMs), proposed by

Xia and Li (1999), have attracted much attention over the past few decades

and have proven to be effective in practical applications; see Fan, Yao, and

Cai (2003), Ma and Song (2015), Liu, Cui, and Li (2016), and the references

therein. SICMs can capture the nonlinear relationship between a response

and related covariates, and can achieve dimensional reduction by taking a

linear combination of covariates as an index. A classical SICM is defined

by

Y =
d∑

l=1

gl(Z
Tβ)Xl + ε, (1.1)

where Y is the response variable, (ZT ,XT )T is a vector of covariates con-

sisting of X = (X1, X2, . . . , Xd)
T , with X1 = 1 and Z ∈ Rp, β ∈ Rp is the

coefficient parameter vector, gl(·), for l = 1, . . . , d, are unknown smooth

functions that describe the nonlinear relationship between Y and the co-
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variates, ε is the error term with mean zero, and the superscript T denotes

the transpose of a vector or matrix. From (1.1), it is easy to see that the

effects of an interaction between X and Z in the SICM are static. However,

this may be not true in many applications, where the interaction effects of

some covariates may depend on factors of interest, such as time and spatial

location, or on other covariates. For example, in an analysis of air pollution

data in Guangzhou, China, we found that the interaction effects on the air

quality index of the next day between four air pollutants (nitrogen dioxide,

ozone, fine particles, and inhalable particles) and two environmental fac-

tors varied with wind direction; see Figures 3(a), 4(a), and 4(b). As another

example, in the WeChat public accounts data, the interaction relationship

between reading volume and the attributes of the posted articles varies

with the proportion of articles posted during 18:00–02:00, as can be seen

in Figures 3(b) and 5(a)–5(e). Thus, SICMs may be inappropriate in these

situations with varying interaction effects. To explore the possible vary-

ing interaction effect patterns, we develop a class of dynamic single-index

varying-coefficient models (DSICMs), defined by

Y =
d∑

l=1

gl(Z
Tβ(U))Xl + ε, (1.2)

where U is a scalar, which may be one of the entries of Z or X or some other

variable, β(u) = (βk(u), 1 ≤ k ≤ p)T is a p-dimensional varying-coefficient
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function with nonparametric covariate U , and ε is an independent and

identically distributed (i.i.d.) random error satisfying E(ε|Z,X, U) = 0

and Var(ε|Z,X, U) = σ2(Z,X, U).

Obviously, the model (1.2) includes many important models as special

cases. For example, when β(U) ≡ β, it reduces to the classical SICM (1.1),

and when d = 1 and Xl = 1, it reduces to the class of single-index varying-

coefficient models (SIVCs) studied by Luo, Zhu, and Zhu (2016) and Ma

(2016) or the generalized varying-coefficient models with unspecified link

functions studied by Chen, Hall, and Müller (2011), Kuruwita, Kulasekera,

and Gallagher (2011), Zhang, Li, and Xia (2015), and others. In fact, Chen,

Hall, and Müller (2011) were the first to study the generalized functional

linear model with an unspecified link function. They approximated the

link function by kernel smoothing, and established a polynomial conver-

gence rate for it. Kuruwita, Kulasekera, and Gallagher (2011) developed

a locally constant approximation to the varying-coefficient functions and

the link function. They established pointwise-asymptotic properties of the

estimated varying-coefficient functions. Zhang, Li, and Xia (2015) provided

an iterative procedure to approximate the varying-coefficient functions and

the unspecified link function by using a two-dimensional kernel. Luo, Zhu,

and Zhu (2016) proposed an SIVC model and derived asymptotic prop-
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erties of varying-coefficient functions and index functions by the optimal

integration of information across all grid points. Ma (2016) considered a

functional single-index model and established uniform convergence rates of

coefficient functions and index functions, based on B-spline basis expan-

sions. The convergence rates in their work were slower than the classical

uniform nonparametric rates.

We propose a B-spline-based method to estimate the unknown functions

in a DSICM with the model identification criterion from Ma (2016). The

basic idea is to approximate the smooth index functions gl(·) using a linear

assumption, and give initial estimates of the varying-coefficient functions

βk(·). We then fit two varying-coefficient models (VCMs) (Hastie and Tib-

shirani, 1993) to obtain the final spline estimators of the index functions

and varying-coefficient functions, respectively. We show that the result-

ing estimators are consistent, and that each estimator attains the optimal

convergence rate of a univariate nonparametric function. We derive the

asymptotic normality of the estimators, and present asymptotic simultane-

ous confidence bands (SCBs) for each univariate function. Variable selection

is an important aspect of nonparametric models. As in the case of the tra-

ditional single-index model (1.1), our primary concern is to select relevant

predictors Z that modify the relationship between Y and X, that is, to pick
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out nonzero functions βk(·) in the model (1.2) and improve the estimation

accuracy. Many methods and inferences for nonparametric model selec-

tion have been developed; see, for example, Wang, Li, and Huang (2008)

and Hu, Huang, and You (2019). We propose an identification method

based on a smoothly clipped absolute deviations (SCAD) penalty function

for varying-coefficient functions, and estimate the varying-coefficient func-

tions and the index functions simultaneously. We show that our estimation

procedure is consistent; that is, the true model is correctly selected with

probability tending to one. Another important contribution of this study

is that we develop a test statistic to check whether the varying-coefficient

function vector β(·) varies with the factors of interest, and we derive the

asymptotic distribution of the proposed test statistic.

The rest of this paper is organized as follows. The three-step esti-

mation procedure is described in Section 2. The asymptotic theory of the

proposed estimators is presented in Section 3. Section 4 describes the model

identification method and the hypothesis testing procedure for the varying-

coefficient components. Sections 5 and 6 present simulation studies and

two real-data analyses, respectively, to demonstrate the finite-sample per-

formance of the DSICM. Some conclusions are discussed in Section 7. A

description of the notation and all technical proofs are relegated to the
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2. SPLINE ESTIMATION METHOD7

Supplementary Material.

2. Spline Estimation Method

2.1 Model identifiability

A single-index model is not identifiable in the absence of constraints on

its structure. For the semiparametric single-index model (1.1), Xia et al.

(2002) and Fan, Yao, and Cai (2003) developed a standard model identifi-

cation method by assuming that the parameter vector has a positive first

component and a norm equal to one. For the nonparametric single-index

model (1.2), Kuruwita, Kulasekera, and Gallagher (2011) and Luo, Zhu,

and Zhu (2016) employed a pointwise identification condition by simply

borrowing the idea from model (1.1). Zhang, Li, and Xia (2015) pointed

out that the restriction to pointwise identifiability imposed some limita-

tions. As such, they proposed a weaker model identification condition,

based on a binary function that separated the direction and the norm of

each varying-coefficient function. Here, similarly to Ma (2016), we adopt a

model identification condition based on a spline approximation, as follows.

Proposition 1. Assume that ∥β(u)∥L2 = 1 and that β1(u) is nonconstant

and monotone nondecreasing over u ∈ SU . Then, model (1.2) is identifiable.
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2. SPLINE ESTIMATION METHOD8

2.2 Estimation

Suppose {(Yi,X
T
i ,Z

T
i , Ui), 1 ≤ i ≤ n} are i.i.d. realizations of (Y,XT ,ZT ,

U). Let B1(w) = (Bm,1(w), 1 ≤ m ≤ Jn,1)
T and B2(u) = (Bs,2(u), 1 ≤

s ≤ Jn,2)
T be B-spline bases of orders q1 and q2, respectively. The number

of basis functions is defined as Jn,t = Kt + qt, where Kt is the number of

interior knots for a knot sequence ζ1 = · · · = 0 = ζqt < ζqt+1 < · · · <

ζqt+Kt < 1 = ζqt+Kt+1 = · · · = ζ2qt+Kt , and Kt increases with the sample

size n, for t = 1, 2. Here, we adopt a spline-based method to estimate the

varying-coefficient functions and index functions in three steps:

Step 0: Obtain an initial spline approximation β̂
(0)
k (·) ≈ B2(u)

T δ̂
(0)
k by fit-

ting a linear structure to the index functions, where δ̂
(0)
k = (δ̂

(0)
sk , 1 ≤

s ≤ Jn,2)
T are the estimated spline coefficients.

Step 1: Denote Φi,sk = Bs,2(Ui)Zik and Φi = (ΦT
i,1, . . . ,Φ

T
i,p)

T , with Φi,k =

(Φi,1k, . . . ,Φi,Jn,2k)
T . At iteration s, given δ̂(s−1) = (δ̂

(s−1),T
1 , . . . , δ̂

(s−1),T
p )T ,

we obtain for model (1.2) the following approximated VCM: Yi ≈∑d
l=1 gl(Φ

T
i δ̂

(s−1))Xil+εi. Suppose that λ̂(s)(δ̂(s−1)) = (λ̂
(s)
m,l, 1 ≤ m ≤

Jn,1, 1 ≤ l ≤ d)T is obtained by minimizing
∑n

i=1

[
Yi −

∑d
l=1

∑Jn,1

m=1

Bm,1(Φ
T
i δ̂

(s−1))λm,lXil

]2
. Denote Wi = ZT

i β(Ui) and Ŵ
(s)
i = ZT

i β̂
(s)(Ui)

= ΦT
i δ̂

(s). Let Di(Wi) = {Di,ml(Wi),1 ≤ l ≤ d,1 ≤ m ≤ Jn,1}T ,

Statistica Sinica: Preprint 
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2. SPLINE ESTIMATION METHOD9

with Di,ml(Wi) = Bm,1(Wi)Xi,l. Similarly, we define Di(Ŵ
(s)
i ) by

replacing Wi with Ŵ
(s)
i . Let W = (W1, . . . ,Wn)

T and D(Ŵ (s)) =

[(D1(Ŵ
(s)
1 ), . . . ,Dn(Ŵ

(s)
n ))T ]n×Jn,1d. Thus,

λ̂(s)(δ̂(s−1)) = [D(Ŵ (s−1))TD(Ŵ (s−1))]−1D(Ŵ (s−1))TY. (2.1)

The spline estimator of the index function is then given by ĝ
(s)
l (w, δ̂(s−1))

=
∑Jn,1

m=1 Bm,1(w)λ̂
(s)
m,l(δ̂

(s−1)), l = 1, . . . , d.

Step 2: At iteration s, when the index components are known, the model (1.2)

is specified as a VCM. Suppose that δ̂(s) minimizes

L(δ) =
1

2

n∑
i=1

[
Yi −

d∑
l=1

B1(Φ
T
i δ)

T λ̂
(s)
l (δ̂(s−1))Xil

]2

, (2.2)

subject to δ11 ≤ · · · ≤ δJn,21. Then, β̂
(s)
k (u) =

∑Jn,2

s=1 Bs,2(u)δ̂
(s)
sk for

k = 1, . . . , p, and we further identify it according to Proposition 1.

The constraint condition δ11 ≤ · · · ≤ δJn,2,1 is only used to ensure

that β1(u) is nondecreasing. We use the “constrOptim” function in R

to deal with the constrained optimization problem (2.2); the gradient

function is given in the Supplementary Material.

Step 3: Repeat Steps 1 and 2 until convergence. We then obtain β̂k(·) and

ĝl(·).
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3. Asymptotic Properties of the Estimation Method

In this section, we obtain asymptotic results for the three-step spline es-

timators of the varying-coefficient components and the index components.

Like Li and Lv (2020) and Ma and Song (2015), we focus on the space M as

the following collection of dynamic single-index varying-coefficient functions

with finite L2 norm: M =
{
f : f(x, z, u) =

∑d
l=1 fl

(
zTβ(u)

)
xl, Ef 2(x, z, u)

< ∞} , with z = (z1, . . . , zp)
T , x = (x1, . . . , xd)

T , and u ∈ [0, 1]. For

1 ≤ k ≤ p, 1 ≤ s ≤ Jn,2, we assume that f 0
sk satisfies

P(Φsk) =
d∑

l=1

f 0
l,sk(z

Tβ0(u))xl = argmin
f∈M

E{Φsk − f(zTβ0(u),x)}2, (3.1)

which implies a projection of the variable Φ onto the space M. Let P(Φ) =

{P(Φ1)
T , . . . ,P(Φp)

T}T , with P(Φk) = {P(Φ1k), . . . ,P(ΦJn,2k)}T , for k =

1, . . . , p. Denote Φ̃ = Φ− P(Φ).

3.1 Assumptions

We make the following assumptions:

(C1) The density function fW (·) of the random variable W = ZTβ(U) is

bounded away from zero on SW , and fW (·) ∈ C0,1(SW , c) for β(u) in

the neighborhood of β0(u), with SW = {ZTβ(U),Z ∈ SZ , U ∈ SU},

where SZ and SU are compact support sets of Z and U , respectively.

Statistica Sinica: Preprint 
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3. ASYMPTOTIC PROPERTIES OF THE ESTIMATION METHOD11

Without loss of generality, we assume that SU = [0, 1] and SW = [a, b],

and that X is bounded.

(C2) βk(·) ∈ C(r)[0, 1], for 1 ≤ k ≤ p, and gl(·) ∈ C(r)[a, b], for 1 ≤ l ≤ d

and some integer r ≥ 2, and the spline order satisfies q ≥ r.

(C3) The conditional variance function σ2(x, z, u) is measurable and bounded

away from some constant 0 < Cσ < ∞.

(C4) There exist constants 0 < cQ ≤ CQ < ∞ such that cQ ≤ Q(z, u) =

E(XXT |Z = z, U = u) ≤ CQ, for all z ∈ SZ and u ∈ [0, 1].

(C5) For 1 ≤ k ≤ p, 1 ≤ s ≤ Jn,2, f 0
sk(·) ∈ C(2)[a, b].

(C6) Ξ1 = E{Di(Wi)Di(Wi)
T}, and the eigenvalues of Ξ1 are bounded

away from zero and infinity.

(C7) Ξ2 = E{[
∑d

l=1 ġl(Wi)XilΦ̃i]
⊗2}, and the eigenvalues of Ξ2 are bounded

away from zero and infinity.

Remark 1. Condition (C1) is the same as in Tang and Cheng (2008), Ma

and Song (2015), and Zhao, Lian, and Liang (2017). The boundedness of

X is assumed mainly for convenience in the proof, and can be replaced by

a weaker assumption; see Zhao, Lian, and Liang (2017). Conditions (C2)–

(C4) are common conditions for nonparametric models; see Ma and Song
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(2015), Ma (2016), and Liu, Cui, and Li (2016). Condition (C5) is a smooth-

ness condition on the function f 0
sk defined in (3.1). Conditions (C6) and

(C7) are necessary to derive the asymptotic theorem.

3.2 Asymptotic results

According to de Boor (2001), for βk(·) and gl(·) satisfying Condition (C2),

there exist spline functions g0l (w) =
∑Jn,1

m=1 Bm,1(w)λ
0
m,l = B1(w)

Tλ0
l with

λ0
l ∈ RJn,1 and β0

k(u) =
∑Jn,2

s=1 Bs,2(u)δ
0
s,k = B2(u)

Tδ0
k with δ0

k ∈ RJn,2 , such

that

sup
w∈SW

|g0l (w)− gl(w)| = O(J−r
n,1), sup

u∈SU

|β0
k(u)− βk(u)| = O(J−r

n,2). (3.2)

Denote δ0 = (δ0T
1 , . . . , δ0T

p )T . The following proposition gives the uniform

convergence rates of the spline estimators ĝl(w; δ) and ˆ̇gl(w; δ) near δ0.

Proposition 2. Under Conditions (C1) and (C2), when J3
n,1n

−1 log n =

o(1), Jn,1J
−r
n,2 = o(1), and an = o(J−1

n,1), for l = 1, . . . , d, we have (i)

sup∥δ−δ0∥∞≤an supw∈SW
|ĝl(w, δ)−gl(w)| = Op(an+J−r

n,1+J−r
n,2+(log n)1/2J

1/2
n,1

n−1/2); (ii) sup∥δ−δ0∥∞≤an supw∈SW
|ˆ̇gl(w, δ)−ġl(w)| = Op(Jn,1an+Jn,1J

−r
n,2+

J1−r
n,1 + (log n)1/2J

3/2
n,1 n

−1/2).

Remark 2. Let δ̂ be the minimizer of L(δ) given in (2.2) satisfying ∥δ̂ −

δ0∥ ≤ an with probability tending to one. This implies that we are assuming
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that there exists a local minimizer in the neighborhood of δ0 in probability.

Similar restrictions are made in Xia and Li (1999) and Ma (2016).

Let B1(w) = Id ⊗ B1(w)
T and B2(u) = Ip ⊗ B2(u)

T , where Id and Ip

are the d× d and p× p identity matrices, respectively. Let el be the d× 1

vector with the lth element being one and all other elements being zero and

let bk be the p × 1 vector with the kth element being one and all other

elements being zero. Define d1n = 1 − [2 log(K1 + 1)]−1{log[−0.5 log(1 −

α)] + 0.5{log[log(K1 + 1)] + log(4π)}}, and let d2n be the same as d1n,

except that K1 is replaced by K2. Let Qn1(α) = [2 log(K1 + 1)]1/2d1n and

Qn2(α) = [2 log(K2 + 1)]1/2d2n.

The following theorems give the asymptotic results and construct asymp-

totic SCBs for the varying-coefficient component β̂k(·) and the index com-

ponent ĝl(·).

Theorem 1. Under Conditions (C1)–(C7), if n1/(2r+2) ≪ Jn,1 ≪ n1/4 and

n1/(2r+2) ≪ Jn,2 ≪ n1/4, then we have (i) ∥β̂(u) − β(u)∥L2 = Op(J
−r
n,2 +

J
1/2
n,2 n

−1/2); (ii) supu∈SU
|β̂(u)−β(u)| = Op(J

−r
n,2+(log n)1/2J

1/2
n,2 n

−1/2); (iii)

if nJ
−(2r+1)
n,2 = o(1), then Ω−1

2 (u)[β̂(u) − β(u)]
d−→ N(0, 1), where Ω2(u) =

n−1B2(u)Ξ
−1
2 E

{
σ2(Ui,Zi,Xi)

[∑d
l=1 ġl(Wi)XilΦ̃i

]⊗2
}
Ξ−1
2 B2(u)

T . Further-

more, for k = 1, . . . , p, we have σ−1
2,k(u)[β̂k(u) − βk(u)]

d−→ N(0, 1), where

σ2
2,k(u) = bT

kΩ2(u)bk.
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3. ASYMPTOTIC PROPERTIES OF THE ESTIMATION METHOD14

Remark 3. Let Jn,2 ≍ n1/(2r+1). Then the spline estimates of the varying-

coefficient components attain the optimal L2-norm nonparametric rate

Op(n
−r/(2r+1)) and the optimal uniform nonparametric rate Op((log n)

1/2

n−r/(2r+1)).

Theorem 2. Under Conditions (C1)–(C7), if n1/(2r+2) ≪ Jn,1 ≪ n1/4 and

n1/(2r+2) ≪ Jn,2 ≪ Jn,1, then, for l = 1, . . . , d, we have (i) supw∈SW
|ĝl(w; δ̂)−

gl(w)| = Op(J
−r
n,1 + J−r

n,2 + (log n)1/2J
1/2
n,1 n

−1/2 + (log n)1/2J
1/2
n,2 n

−1/2); (ii) if

Jn,2 ≪ Jn,1 and nJ
−(2r+1)
n,2 = o(1), then σ−1

1,l (w)[ĝl(w; δ̂)− gl(w)]
d−→ N(0, 1),

where σ2
1,l(w) = n−1eTl B1(w)Ξ

−1
1 [E(σ2(Ui,Zi,Xi)Di(Wi)

⊗2)] Ξ−1
1 BT

1 (w)el.

Remark 4. Let Jn,1 ≍ Jn,2 ≍ n1/(2r+1). Then, the spline estimates of the in-

dex components attain the optimal uniform nonparametric rate Op((log n)
1/2

n−r/(2r+1)). The conditions Jn,2 ≪ Jn,1 and nJ
−(2r+1)
n,2 = o(1) are only im-

posed to make the bias asymptotically negligible. It can be seen that the

asymptotic variance of β̂k(·) obtained from Theorem 1 is the same as would

be obtained if all the index functions gl(·), for l = 1, . . . , d, were known.

Analogously, the asymptotic variance of ĝl(·) obtained from Theorem 2

is the same as would be obtained if all the βk(·), for k = 1, . . . , p, were

known. Hence, the proposed spline estimator has the oracle property. If

σ2(Z,X, U) = σ2, then the asymptotic variance matrices reduce to σ2
1,l(w) =

n−1σ2eTl B1(w)Ξ
−1
1 BT

1 (w)el and σ2
2,k(u) = n−1σ2bT

kB2(u)Ξ
−1
2 BT

2 (u)bk.
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Theorem 3. Under Conditions (C1)–(C7), if n1/(2r+2) ≪ Jn,1 ≪ n1/4,

n1/(2r+2) ≪ Jn,2 ≪ n1/4, and nJ
−(2r+1)
n,2 = o(1), then, for any α ∈ (0, 1),

we have lim
n→∞

P
[
supu∈Sn,2

|σ−1
2,k(u){β̂k(u)− βk(u)}| ≤ Qn2(α)

]
= 1−α, where

Sn,2 is a subset of SU that becomes denser as n → ∞. Therefore, an asymp-

totic 100(1− α)% SCB for βk(u) over u ∈ Sn,2 is β̂k(u)± σ2,k(u)Qn2(α).

Theorem 4. Under Conditions (C1)–(C7), if n1/(2r+2) ≪ Jn,1 ≪ n1/4,

n1/(2r+2) ≪ Jn,2 ≪ n1/4, Jn,2 ≪ Jn,1, and nJ
−(2r+1)
n,2 = o(1), then, for any

α ∈ (0, 1), we have lim
n→∞

P
[
supw∈Sn,1

|σ−1
1,l (w){ĝl(w; δ̂)− gl(w)}| ≤ Qn1(α)

]
=

1 − α, where Sn,1 is a subset of SW that becomes denser as n → ∞.

Therefore, an asymptotic 100(1 − α)% SCB for ĝl(w; δ̂) over w ∈ Sn,1

is ĝl(w; δ̂)± σ1,l(w)Qn1(α).

Remark 5. Compared with the asymptotic 100(1 − α)% pointwise con-

fidence bands (PCBs), ĝl(u) ± σ1,l(u)zα and β̂k(u) ± σ2,k(u)zα, the widths

of the SCBs are inflated by rates [2 log(K1 + 1)]1/2d1n/zα and [2 log(K2 +

1)]1/2d2n/zα, respectively, where zα is the α-quantile of the standard nor-

mal distribution. To establish the asymptotic confidence bands of ĝl(·) and

β̂k(·), the key issue is to obtain accurate variance estimates σ̂1,l and σ̂2,k.

On the suggestion of Yang (2008) and Ma et al. (2015), we adopt a wild

bootstrap procedure to approximate the asymptotic variances, because the

plug-in method may lead to inaccurate results for finite samples.
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4. Model Selection

4.1 Model identification

In this subsection, we present a model identification procedure, based on

a penalized method, for selecting significant variables Zk with nonzero

varying-coefficient functions βk(·). Without loss of generality, we assume

that βk(u), for k = 1, . . . , p1, are nonzero varying-coefficient functions, and

βk(u) = 0 for k = p1 + 1, . . . , p in the true model.

Denote H = (hij)Jn,2×Jn,2 with entries hij =
∫
U
Bi,2(u)Bj,2(u) du. Let

π = (πT
1 , . . . ,π

T
p )

T , with πk = (π1k, . . . , πJn,2k)
T , for 1 ≤ k ≤ p. For

βk(u) = B2(u)
Tπk, let ∥βk(u)∥2L2

= πT
k Hπk = ∥πk∥2H. We adopt the penal-

ized approach for varying-coefficient functions presented in Wang, Li, and

Huang (2008). Define the objective function with penalization as

Q(π) =
1

2

n∑
i=1

[
Yi −

d∑
l=1

ĝl(Φ
T
i π)Xil

]2

+ n

p∑
k=2

pαn(∥πk∥H)

= L(π) + n

p∑
k=2

pαn(∥πk∥H), (4.1)

where the functions ĝl(·) are known, pαn is the SCAD penalty function

proposed by Fan and Li (2001), and αn is the tuning parameter. We find

the minimizer of (4.1) as follows:

Step 1: Initialize π = π(1).
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4. MODEL SELECTION17

Step 2: Given π(m), update π(m+1) by minimizing (4.1).

Step 3: Iterate Step 2 until ∥π(m+1)
k − π

(m)
k ∥H < ϵ1.

In the implementation of the algorithm, the initial value π(1) is given

by the unpenalized estimators. To update π(m+1) in Step 2, we apply an

iterative process similar to Step 2 in Section 2, but with an additional

penalty term. If the mth iterative estimator π(m) is close to zero, that is,

∥π(m)∥H is smaller than a positive threshold value ϵ2, then we set β̂k(u) = 0.

We set ϵ1 = ϵ2 = 0.01 in the simulation.

The penalized estimator of π is denoted by π̂ = {π̂sk, 1 ≤ s ≤ Jn,2, 1 ≤

k ≤ p}T = argminπ Q(π), and the penalized spline estimators are given by

β̂P
k (u) = B2(u)

T π̂k, for k = 1, . . . , p. We then have the following results.

Theorem 5. Under Conditions (C1)–(C7), if αn → 0, J−r
n,2/αn → 0, and

J
1/2
n,2 n

−1/2/αn → 0 as n → ∞, then we have (i) β̂P
k (u) = 0, for k =

p1 + 1, . . . , p, with probability tending to one; (ii) ∥β̂P
k (u) − βk(u)∥L2 =

Op(J
1/2
n,2 n

−1/2 + J−r
n,2), for k = 1, . . . , p1.

4.2 Hypothesis testing

The model (1.2) is quite general, because it does not depend on any specific

parametric structure. However, it is worth considering whether it can be
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4. MODEL SELECTION18

reduced to a simpler form. In this subsection, we propose an L2-distance

statistic to complete the testing problem.

We are interested in testing whether the model (1.2) can degenerate to

the single-index model given in (1.1), that is,

H0 : β(u) = β, a.s. on [0, 1].

The null hypothesis can be rewritten as H0 :
∫ 1

0
∥β(u) − β∥2 du = 0. Let

β̂(u) be the spline estimators of model (1.2), and let β̂ be the parametric

estimator of model (1.1). We define the L2-distance test statistic as

T =
n

Jn,2

∫ 1

0

∥β̂(u)− β̂∥2 du. (4.2)

The following theorem presents the asymptotic behavior of the test statistic

under the null hypothesis.

Theorem 6. Under Conditions (C1)–(C7), if n1/(2r+1) ≪ Jn,1 ≪ n1/4

and n1/(2r+1) ≪ Jn,2 ≪ n1/4, then, under H0, T − B
d−→ N(0, V ), where

B = (n/Jn,2)
∫ 1

0
Ω2(u) du and V = (8n2/J2

n,2)
∫ 1

0

∫ 1

0
Ω2(u)Ω2(u

′) du du′.

To demonstrate the power of the test, we define a sequence of local

alternatives that converge to the null hypothesis with increasing sample

size. We consider H1 : βn(u) = β + cn∆(u), where cn → 0 as n → 0, and

∆(u) is a continuous function. We show the asymptotic distribution of the

test statistic under H1 in the following theorem.
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Theorem 7. Under Conditions (C1)–(C7), if n1/(2r+1) ≪ Jn,1 ≪ n1/4

and n1/(2r+1) ≪ Jn,2 ≪ n1/4, and we let c2n = Jn,2/n, then, under H1,

T −B
d−→ N(∆̃, V ), where ∆̃ =

∫ 1

0
∆2(u) du.

Although a plug-in procedure can be used to evaluate the asymptotic

distribution of the test statistic, we adopt a wild bootstrap method to

improve the performance of the test. The steps can be found in the Sup-

plementary Material.

5. Numerical Studies

In this section, we conduct simulation studies to illustrate the good per-

formance of the proposed model and the corresponding statistical inference

methods for finite samples.

5.1 Selecting the smoothing parameter

We use spline order q1 = q2 = 3 throughout the numerical simulation stud-

ies. For each univariate function, the positions of the interior knots are

chosen as equally spaced sample quantiles. The smoothing parameters K1

and K2 are selected by minimizing the following Bayesian information crite-

rion (BIC): BIC(K1, K2) = log

{
n−1

∑n
i=1

[
Yi −

∑d
l=1 ĝl(Z

T
i β̂(Ui))Xil

]2}
+

df log(n)/n, where df = p(q +K1) + d(q +K2). That is, the optimal num-
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ber of interior knots is given by (K̂1, K̂2) = argminK1,K2∈KT
BIC(K1, K2),

where KT is the potential number of interior knots.

For the model identification procedure, we set a = 3.7 in the SCAD

function, as in Fan and Li (2001). The tuning parameter αn is chosen

by minimizing BIC(αn) = log

{
n−1

∑n
i=1

[
Yi −

∑d
l=1 ĝl(Z

T
i β̂

P (Ui))Xil

]2}
+

(p−p1)(q+K1) log(n)/n. The optimal choice is obtained as α̂n = argminBIC(αn).

5.2 Numerical examples

Example 1. We consider the following model:

Yi = g1(Z
T
i β(Ui))Xi1 + g2(Z

T
i β(Ui))Xi2 + εi, i = 1, . . . , n. (5.1)

We independently generate covariates X1 and X2 from a bivariate nor-

mal distribution with mean zero, variance one, and covariance 0.3. Let

(Z∗
i1, Z

∗
i2, Z

∗
i3)

T follow a multivariate normal distribution with mean zero,

variance one, and covariance 0.2, and then scale it as Zik = Φ(Z∗
ik) − 0.5,

where Φ(·) is the cumulative distribution function of the standard normal

distribution. In addition, Ui is generated from the uniform distribution

U(0, 1). The varying coefficients β(u) = (β1(u), β2(u), β3(u))
T are given

by β1(u) = 1 + u2, β2(u) = (1 − u)2, and β3(u) = −1 + 4(u − 0.5)2,

and they are then identified as β(u)/∥β(u)∥L2 . Set the index functions

as g1(w) = 10 exp(5w)/{1 + exp(5w)} − E[10 exp(5W )/{1 + exp(5W )}],
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g2(w) = 5 sin(πw) − E[5 sin(πW )]. The error term εi follows an indepen-

dent normal distribution N(0, σ2(Xi,Zi,

Ui)) with σ2(Xi,Zi, Ui) = 0.2Var{E(Yi | Xi,Zi, Ui)}.

To evaluate the performance of the proposed spline estimators, we use

the root mean squared error (RMSE) criterion. For any function f(u), the

RMSE is given as RMSE(f) =
{
n−1

∑n
i=1[f̂(ui)− f(ui)]

2
}1/2

. Table 1 lists

the means and standard deviations (in parentheses) of the RMSEs of the

estimators for each component function with sample size n = 300, 500, or

700, based on 500 Monte Carlo replications. It is obvious that the mean and

standard deviation of the RMSEs of all estimators decrease as the sample

size increases.

Figures 1(a)–1(e) show the estimated functions (dashed), 95% SCBs

(dash-dotted), and PCBs (dotted) for each estimator with sample size

n = 300. The estimated functions are close to the true curves (solid),

and they all fall into the PCBs and SCBs. We also compare the 95% PCBs

based on the asymptotic results and the wild bootstrap method described

in Section 4.2. It can be seen from Figure 1 in the Supplementary Material

that for all component functions, these two types of confidence bands are

close to each other, which means that the wild bootstrap method performs

well.
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Table 1: Means and standard deviations (in parentheses) of the RMSEs of the estimators

for each component function.

n β1 β2 β3 g1 g2

300 0.0682(0.0313) 0.0711(0.0270) 0.0717(0.0258) 0.4450(0.1076) 0.4923(0.1132)

500 0.0523(0.0222) 0.0509(0.0186) 0.0508(0.0181) 0.3210(0.0698) 0.3546(0.0761)

700 0.0430(0.0167) 0.0397(0.0134) 0.0402(0.0143) 0.2619(0.0546) 0.2872(0.0557)

Example 2. To evaluate the power of the test presented in Section 4.2, we

test whether the varying-coefficient components β(u) in the model (5.1) are

constant. A sequence of alternative models is specified as H1 : β(u, θ) =

c + θβ(u), where c = (ck, 1 ≤ k ≤ 3)T , with ck =
∫ 1

0
βk(u) du and θ =

{0, 0.1, 0.2, 0.3, 0.5, 0.8}. Let the index components g(·) and covariates Z

and X be the same as in Example 1. Let U be equidistant sequences from

zero to one. The error term follows the same distribution as in Example 1.

When θ = 0, it reduces to the null-hypothesis model.

For different sample sizes and θ, we carry out the test procedure 300

times with sample sizes n = 300, 500, and 700. For each replication, we

draw B = 500 bootstrap samples. The significance level α is 0.05. We give

the simulated powers in Figure 1(f). We can conclude that under the null

hypothesis, the estimated powers are close to 0.05, which is consistent with

the theoretical result. Furthermore, the estimated powers increase to one

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0467



5. NUMERICAL STUDIES23

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

U

β 1
(u

)

(a)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

U

β 2
(u

)

(b)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

U

β 3
(u

)

(c)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
10

−
5

0
5

10

index

g 1
(w

)

(d)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
5

0
5

index

g 2
(w

)

(e)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

po
w

er

n=300
n=500
n=700

(f)

Figure 1: (a)–(c) Curves of varying-coefficient functions βk(·), for k = 1, 2, 3. (d) and

(e) Curves of index functions gl(·), for l = 1, 2. The true functions are shown by solid

curves, the spline estimators by dashed curves, the 95% PCBs by dotted curves, and the

95% SCBs by dash-dotted curves. (f) Simulated powers for different sample sizes.

as θ increases, indicating that the proposed test statistic works well.

5.3 Comparison with the random forest approach

Prediction is an important concern in statistical modeling. To investigate

the prediction performance of the proposed model and estimation, we com-

pare the coverage probability and width of the prediction confidence inter-
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vals with three random forest approaches discussed in Zhang et al. (2020),

which are out-of-the-bag prediction intervals (OOB), quantile regression

forests (QRF), and split conformal prediction intervals (SC). We generate

the data according to the settings in Example 1, and rewrite model (5.1)

as Y = g(X̃) + ϵ, where the predictor X̃ = (X̃1, . . . , X̃p̃)
T = (XT ,ZT , U)T

with p̃ = 6.

We set the nominal level at (1 − α̃), with α̃ = 0.1. Let the train-

ing sample sizes n = 200, 300, 500, and 700 and the test sample sizes

n0 = 20. Based on 200 replications, Figures 2(a) and 2(b) present the

estimated coverage probability and width, respectively, of the prediction

confidence interval for OOB, QRF, SC, and the proposed model (DSICM).

The points of different shapes in box plots represent the mean value of the

coverage probability or width of the prediction confidence interval under

different sample sizes. As shown in Figure 2(a), the coverage probabilities

of OOB, SC, and DSICM are close to the nominal level of 0.9, while the

QRF estimators are over covered. Figure 2(b) shows that the width of the

prediction confidence interval of DSICM is shorter than those based on the

other methods.
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Figure 2: (a) and (b) show the estimated coverage probability and width, respectively,

of the prediction confidence interval for OOB, QRF, SC, and DSICM in box plots. The

points of different shapes in box plots represent the mean value of the coverage probability

or width of the prediction confidence interval under different sample sizes.

6. Real-Data Analysis

In this section, we illustrate the proposed model and statistical inference

methods by analyzing two real-data applications.

6.1 Air pollution data for Guangzhou, China

This data set consists of 2174 observations between January 1, 2014, and

December 31, 2019, after the exclusion of several missing samples. The

data are available on the website: https://www.aqistudy.cn. The aim of

this example is to study the potential relationship between the air quality

index (AQI) and predictors of the previous day.
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Let Y be the logarithm of the AQI for the next day. The predictors in-

clude the daily average levels of pollutants commonly used in the literature,

namely, ozone Z1 (µg/m3), nitrogen dioxide Z2 (µg/m3), fine particles Z3

(µg/m3), and inhalable particles Z4 (µg/m3), and two environmental fac-

tors, namely, temperature X2 and humidity X3. Owing to the particular

location and landform of Guangzhou, its climate is mainly influenced by

the East Asian monsoon, and so the interaction effect of air pollutants and

environmental factors may vary with wind direction.

To begin, we split the data into three groups according to the angles

of wind direction. The angles of the first group are 1◦–120◦, those of the

second group are 120◦–240◦, and those of the third group are 240◦–360◦.

We then fit each group using the SIVC model

Y = g1(Z
Tβ) + g2(Z

Tβ)X2 + g3(Z
Tβ)X3 + ε, (6.1)

where gl(·), l = 1, 2, 3, are unknown smooth functions, Z = (Z1, Z2, Z3, Z4)
T ,

and β = (β1, β2, β3, β4)
T is the coefficient vector. The covariates Z are nor-

malized. Figure 3(a) shows the estimated coefficient vectors (β̂1, β̂2, β̂3, β̂4)
T

for three groups: Group 1 (solid lines), Group 2 (long dashed lines), and

Group 3 (dashed lines). Note that the parameters β are different in the

three groups, and so the interaction pattern may be affected by the wind

direction. To further explore the dynamic interaction between the response
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and the covariates, we let U = Direction/360, and consider the following

model:

Y = g1(Z
Tβ(U)) + g2(Z

Tβ(U))X2 + g3(Z
Tβ(U))X3 + ε, (6.2)

where β(·) = (βk(·), 1 ≤ k ≤ 4)T .
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Figure 3: The lines connect the estimated coefficient vectors of different groups for two

sets of real data: (a) Group 1 (solid lines), Group 2 (long dashed lines), and Group 3

(dashed lines); (b) work-hour (solid lines) and off-hour (dashed lines).

By conducting the variable selection described in Section 4.1, we find

that the covariates Z1 and Z2 are significant. The optimal parameters

are chosen as (q1, q2, K1, K2) = (3, 3, 2, 2) using the BIC. We perform the

hypothesis test developed in Section 4.2 with 500 wild bootstrap resamples,

and find that the test p-value is 0.036. Thus, we reject H0 [the model (6.1)]

at the 0.05 significance level.
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Figure 4: (a) and (b) Estimators (solid curves) of varying-coefficient functions and 95%

SCBs (dashed curves) for βk(·), k = 1, 2, respectively. (c)–(e) Spline estimates (solid

curves) and 95% SCBs (dashed curves) for index functions gl(·), l = 1, 2, 3. (f) QQ plot

of residuals.

Figures 4(a) and 4(b) show the resulting spline estimators (solid curves)

and the corresponding 95% SCBs (dashed curves) based on 500 wild boot-

strap samples for βk(u), k = 1, 2. From Figure 4(a), it can be seen that the

interaction effect of ozone increases with increasing wind direction, and that

their combination has a positive effect on the response. Figure 4(b) reveals

that the interaction relationship between nitrogen dioxide and wind direc-
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tion has a slowly decreasing trend as the wind direction increases, and that

their interaction has a positive nonlinear impact on the response. The spline

estimators of the index functions gl(·), for l = 1, 2, 3, and the corresponding

95% SCBs are depicted in Figures 4(c)–4(e). Figure 4(c) reveals that there

is a truly nonlinear relationship between the median value log(AQI) and the

predictors. Figures 4(d) and 4(e) show that the modifications due to the

temperature and humidity of the previous day are altered by the admixture

of other variables. In addition, the QQ plot of the residuals in Figure 4(f)

shows that the model (6.2) is a reasonable option for this data set.

6.2 WeChat public accounts data

WeChat has become an extremely popular mobile application in recent

years. The public account is one of the most important and most popular

functions of WeChat, providing users with information and services. On the

other hand, WeChat public accounts have a mature profit model, which is

related to the amount of reading. The reading volume of a public account

reflects its number of active fans and directly affects the income of the

official accounts. The purpose of this study is to analyze the association

between reading volume and related covariates.

The data set is obtained from a public account analysis website (http:
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//top.askci.com), and contains information of 624 public accounts in

March 2017. The response Y is the logarithm of reading volume. The

covariates in the index Z = (Z1, Z2, Z3, Z4, Z5, Z6, Z7)
T include the type of

public account (Z1 = 1 for enterprises and Z1 = 0 for individuals), the

average number of daily posts (Z2), the ratio of original posts (Z3), the

proportion of posts with video (Z4), the average title length of the last 10

articles (Z5), the title punctuation index of the last 10 articles (Z6), and

the length of the account name (Z7). Covariates of interest also include the

positive emotion score of titles in the last 10 articles (X2). Here, we take

X1 = 1 as the intercept term and let X = (X1, X2)
T .

This data set records the proportion of articles posted during six periods

(from 18:00, every four hours is a period). We found that the time of posting

articles is concentrated in two periods, 18:00–22:00 and 22:00–02:00. Note

that the interaction effects between X and the index Z may vary with

the time of posting articles. Let U be the proportion of articles posted

during 18:00–02:00. We first divide the data into two groups according to

U , namely work-hour (U < 0.5) and off-hour (U ≥ 0.5). For each group,

we run a regression analysis using the SIVC model

Y = g1(Z
Tβ) + g2(Z

Tβ)X2 + ε, (6.3)

where g(·) is an unknown smooth function and β = (β1, β2, β3, β4, β5, β6, β7)
T
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is a loading parameter vector. All predictors are centered and standard-

ized. The lines in Figure 3(b) connect the variant estimated coefficient

vectors (β̂1, β̂2, β̂3, β̂4, β̂5, β̂6, β̂7), with solid lines corresponding to the work-

hour group and dashed lines to the off-hour group. It is clear that the

proportion of articles posted during 18:00–02:00 does indeed change the

interaction patterns, which inspires us to further consider the model Y =

g1(Z
Tβ(U)) + g2(Z

Tβ(U))X2 + ε.

First, we select significant variables Z1, Z2, Z3, Z4, and Z5 in the index

using a variable-selection procedure, and choose the optimal parameters

(q1, q2, K1, K2) = (3, 3, 2, 2) according to the BIC. Next, we conduct the

hypothesis test from Section 4.2 with 500 wild bootstrap resamples, and the

test p-value is 0.008. We reject H0 [the model (6.3)] at the 0.05 significance

level.

Figure 5 shows the resulting spline estimators (solid curves) and the cor-

responding 95% SCBs (dashed curves) based on 500 wild bootstrap samples

for βk(u), for k = 1, . . . , 5. Figures 5(a)–5(e) show that the indices of Z1,

Z2, Z3, Z4, and Z5 change with U , especially the index of Z2. The spline

estimators of the index functions gl(·), for l = 1, 2, and the corresponding

95% SCBs are depicted in Figures 5(f) and 5(g), respectively. Figure 5(f)

shows that there is a truly nonlinear relationship between the median value
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Figure 5: (a)–(e) Estimators (solid curves) of varying-coefficient functions and 95% SCBs

(dashed curves) for βk(·), k = 1, . . . , 5. (f) and (g) Spline estimates (solid curves) and

95% SCBs (dashed curves) for index functions gl(·), l = 1, 2. (h) QQ plot of residuals.

of the reading volume and the predictors. Figure 5(g) shows that the mod-

ification due to the positive emotion score of titles in the last 10 articles is
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altered by the admixture of other variables, and that this influence changes

from positive to negative with a decreasing trend. In addition, the QQ plot

of the residuals in Figure 5(h) shows that the model (6.2) is a reasonable

option for this data set.

7. Conclusion

The dynamic single-index coefficient model proposed in this paper can be

regarded as an extension of many existing nonparametric and semiparamet-

ric models. We have developed a spline-based method to approximate the

unknown functions and establish the asymptotic properties of the resulting

estimators. We have also proposed a model identification procedure to se-

lect significant covariates, and have developed a hypothesis test to check

whether the proposed model can be reduced to a simpler form.

There are at least two directions in which this work could be extended.

First, motivated by Ma and Song (2015), we could extend the proposed

model to the form Y =
∑d

l=1 gl(Z
Tβl(U))Xl+ ε, where the coefficient func-

tions βl(·) vary across Xl. Second, we could consider a semiparametric

model Y =
∑d

l=1 gl(Z
Tβ(U) + GTγ)Xl + ε, where the covariate G ∈ Rq

and γ = (γ1, . . . , γq)
T is unknown.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0467



ESTIMATION AND INFERENCE FOR DSICM 34

Supplementary Material

The online Supplementary Material includes the notation used in this pa-

per, the implementation of the gradient function, the wild bootstrap proce-

dure for hypothesis testing, technical proofs of the theorems, an additional

numerical example, and two additional analyses of real data.

Acknowledgments

The authors would like to thank the editor, associate editor, and two referees

for their helpful comments and suggestions. You’s research was supported

in part by the National Natural Science Foundation of China (11971291).

Zhou’s work was supported by the State Key Program of the National

Natural Science Foundation of China (71931004 and 92046005).

References

Chen, D., Hall, P. and Müller, H. G. (2011). Single and multiple index functional regression

models with nonparametric link. Ann. Stat. 39, 1720-1747.

de Boor, C. (2001). A Practical Guide to Splines. Springer, New York.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle

properties. J. Amer. Statist. Assoc. 96, 1348-1360.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0467



REFERENCES35

Fan, J., Yao, Q. and Cai, Z. (2003). Adaptive varying-coefficient linear models. J. Roy. Statist.

Soc. Ser. B 65, 57-80.

Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. J. Roy. Statist. Soc. Ser. B 55,

757-796.

Hu, L., Huang, T. and You, J. (2019). Estimation and identification of a varying-coefficient

additive model for locally stationary processes. J. Amer. Statist. Assoc. 114, 1191-1204.

Kuruwita, C., Kulasekera, K. and Gallagher, C. (2011). Generalized varying coefficient models

with unknown link function. Biometrika 98, 701-710.

Luo, X., Zhu, L. and Zhu, H. (2016). Single-index varying coefficient model for functional

responses. Biometrics 72, 1275-1284.

Li, J. and Lv, J. (2020). High-dimensional varying index coefficient quantile regression model.

Statist. Sinica, accepted.

Liu, X., Cui, Y. and Li, R. (2016). Partial linear varying multi-index coefficient model for

integrative gene–environment interactions. Statist. Sinica 26, 1037-1060.

Ma, S., Carroll, R. J., Liang, H. and Xu, S. (2016). Estimation and inference in generalized ad-

ditive coefficient models for nonlinear interactions with high-dimensional covariates. Ann.

Stat. 43, 2102-2131.

Ma, S. and Song, P. (2015). Varying index coefficient models. J. Amer. Statist. Assoc. 110,

341-356.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0467



REFERENCES36

Ma, S. (2016). Estimation and inference in functional single-index models. Ann. Inst. Statist.

Math. 68, 181-208.

Tang, Q. and Cheng, L. (2008). M-estimation and B-spline approximation for varying coefficient

models with longitudinal data. J. Nonparam. Statist. 20, 611-625.

Wang, L., Li, H. and Huang, J. (2008). Variable selection in nonparametric varying coefficient

models for analysis of repeated measurements. J. Amer. Statist. Assoc. 103, 1556-1569.

Xia, Y. and Li, W. (1999). On single-index coefficient regression models. J. Amer. Statist.

Assoc. 94, 1275-1285.

Xia, Y., Tong, H., Li, W. and Zhu, L. (2002). An adaptive estimation of dimension reduction

space. J. Roy. Statist. Soc. Ser. B 64, 363-410.

Yang, L. (2008). Confidence band for additive regression model. J. Data Sci. 6, 207-217.

Zhang, W., Li, D. and Xia, Y. (2015). Estimation in generalised varying-coefficient models with

unspecified link functions. J. Econometrics 187, 238-255.

Zhang, H., Zimmerman, J., Nettleton, D. and Nordman, D. J. (2020). Random forest prediction

intervals. Amer. Statist. 74, 392-406.

Zhao, W., Lian, H. and Liang, H. (2017). Quantile regression for the single-index coefficient

model. Bernoulli 23, 1997-2027.

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan,

China

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0467



REFERENCES37

E-mails: guanxin1112@163.com

School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai,

China

liuhua_sufe@163.com

School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai,

China, and Shanghai Lixin University of Accounting and Finance, Shanghai, China

johnyou07@163.com

Key Laboratory of Advanced Theory and Application in Statistics and Data Science, MOE, and

Academy of Statistics and Interdisciplinary Sciences, East China Normal University, Shanghai,

China

E-mail: yzhou@amss.ac.cn

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0467


	Introduction
	Spline Estimation Method
	Model identifiability
	Estimation

	Asymptotic Properties of the Estimation Method
	Assumptions
	Asymptotic results

	Model Selection
	Model identification
	Hypothesis testing

	Numerical Studies
	Selecting the smoothing parameter
	Numerical examples
	Comparison with the random forest approach

	Real-Data Analysis
	Air pollution data for Guangzhou, China 
	WeChat public accounts data

	Conclusion



