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Abstract: Integrating the summary statistics from a genome-wide association

study and expression quantitative trait loci data provides a powerful way of iden-

tifying genes with expression levels that are potentially associated with complex

diseases. We introduce a parameter called T -score that quantifies the genetic

overlap between a gene and the disease phenotype based on the summary statis-

tics, based on the mean values of two Gaussian sequences. Specifically, given two

independent samples xn ∼ N(θ,Σ1) and yn ∼ N(µ,Σ2), the T -score is defined

as
∑n

i=1 |θiµi|, a nonsmooth functional, that characterizes the number of shared

signals between two absolute normal mean vectors |θ| and |µ|. Using approxima-

tion theory, estimators are constructed and shown to be minimax rate-optimal

and adaptive over various parameter spaces. Simulation studies demonstrate
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the superiority of the proposed estimators over existing methods. Lastly, the

method is applied to an integrative analysis of heart failure genomics data sets

and we identify several genes and biological pathways that are potentially causal

to human heart failure.

Key words and phrases: Approximation theory; eqtl; gwas; minimax lower

bound; non-smooth functional.

1. Introduction

1.1 Integrating summary data from genome-wide association stud-

ies and expression quantitative trait loci studies

Integrative genomics aims to integrate various biological data sets for the

systematic discovery of a genetic basis that underlies and modifies a human

disease (Giallourakis et al., 2005). To realize its full potential in genomic re-

search, methods are needed that exhibit both computational efficiency and

a theoretical guarantee for such integrative analyses. This study proposes

a method that combines data sets from genome-wide association studies

(gwass) and expression quantitative trait loci (eqtl) studies in order to

identify genetically regulated disease genes. Furthermore, we provide an in-

tegrative view of the underlying biological mechanism of complex diseases,

such as heart failure. gwas results have revealed that the majority of single
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nucleotide polymorphisms (snps) associated with a disease lie in noncoding

regions of the genome (Hindorff et al., 2009). These snps likely regulate

the expression of a set of downstream genes that may have effects on dis-

eases (Nicolae et al., 2010). On the other hand, eqtl studies measure the

association between both cis- and trans- snps and the expression levels of

genes, which characterizes how genetic variants regulate transcriptions. A

key next step in human genetic research is to explore whether these interme-

diate cellular level eqtl signals are located in the same loci (“colocalize”)

as gwas signals and potentially mediate the genetic effects on disease, as

well as finding disease genes with eqtl that overlap significantly with the

set of loci associated with the disease (He et al., 2013).

This study focuses on an integrative analysis of the summary statistics

of gwas and eqtl studies performed on possibly different sets of subjects.

Owing to the privacy and confidentiality concerns of gwas/eqtl partici-

pants, raw genotype data are often not available. Instead, most published

papers provide summary statistics that include single snp analysis results,

such as the estimated effect size, its p-value, and the minor allele frequency.

Based on these summary statistics, we propose a method that identifies

potential disease genes by measuring their genetic overlaps with the dis-

ease. In particular, we propose a gene-specific measure, the T -score, that
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characterizes the total number of simultaneous snp signals that share the

same loci in both gwas and eqtl studies of relevant normal tissues. Such

a measure enables us to prioritize genes with expression levels that may

underlie and modify human disease (Zhao et al., 2017).

Treating snp-specific gwas and eqtl summary z-score statistics (as

obtained for linear or logistic regression coefficients) as two independent

sequences of Gaussian random variables, we define the T -score as the sum

of the product of the absolute values of two normal means over a given set of

n snps. Specifically, for any individual gene g, we denote xgn as the vector of

z-scores from an eqtl study, and yn as the vector of z-scores from a gwas.

We assume xgn ∼ N(θg,Σ1) and yn ∼ N(µ,Σ2), for some θg, µ ∈ Rn, and

covariance matrices Σ1,Σ2 ∈ Rn×n with unit diagonals. The T -score for

gene g is then defined as

T -score(g) =
n∑
i=1

|θgi µi|, (1.1)

where the summation is over a given set of n snps. The T -score quantifies

the number of simultaneous signals contained in two Gaussian mean vec-

tors, regardless of the directions of the signals. Intuitively, a large T -score

would possibly result from a large number of contributing components i

with means θgi and µi that are simultaneously large in absolute values. The

supports (nonzero coordinates) of the mean vectors θ (hereafter, we omit its
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dependence on g for simplicity) and µ are assumed to have sparse overlaps,

because it has been observed that, for a relatively large set of snps, only

a small subset are associated with both a disease and gene expression (He

et al., 2013). After proper normalizations that account for study sample

sizes, the number of snps, and effect sizes (see Section 2.5), we estimate

the T -scores for all of the genes using summary statistsics. This enables

us to identify and prioritize genetically regulated candidate disease genes.

Furthermore, the T -scores can be used in a gene set enrichment analysis

to identify disease-associated gene sets and pathways, or to quantify the

genetic sharing between different complex traits using the gwas summary

statistics (Bulik-Sullivan et al., 2015).

1.2 Justification of the absolute inner product

The T -score
∑n

i=1 |θiµi| measures the overall signal overlap, regardless of

the directions of the individual signal components. Although there are other

quantities, such as
∑n

i=1 θ
2
i µ

2
i , that achieve a similar purpose, the T -score is

closely related to the genetic correlation or genetic relatedness widely used

in the genetic literature (Bulik-Sullivan et al., 2015).

Suppose y and w are two traits, and for a given snp with genotype

score x, the marginal regression functions yi = αx+xiβx+ εi and wi = ηx+

Statistica Sinica: Preprint 
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xiγx + δi hold for some coefficients (αx, βx) and (ηx, γx), respectively, where

εi ∼i.i.d. N(0, σ2
x1) and δi ∼i.i.d. N(0, σ2

x2), for i = 1, 2, ..., N observations.

For gwas and eqtl data, one can treat y as a phenotype of interest and

w as the expression level of a gene. In the above models, xiβx and xiγx are

the sample-specific marginal genetic effects due to the snp x, and one can

calculate their sample covariance as

Covx =
1

N

N∑
i=1

(xiβx − x̄βx)(xiγx − x̄γx) = βxγx ·
1

N

N∑
i=1

(xi − x̄)2, (1.2)

where x̄ = N−1
∑N

i=1 xi. On the other hand, suppose for simplicity that

the noise variances σ2
x1 and σ2

x2 are known. Then the z-scores based on the

least square estimators β̂x and γ̂x satisfy

Zx1 =
β̂x

σx1/
√∑N

i=1(xi − x̄)2
∼ N

 βx

σx1/
√∑N

i=1(xi − x̄)2
, 1


and

Zx2 =
γ̂x

σx2/
√∑N

i=1(xi − x̄)2
∼ N

 γx

σx2/
√∑N

i=1(xi − x̄)2
, 1

 .

The product of the mean values of the above z-scores satisfies

EZx1EZx2 =
βxγx

σx1σx2/
∑N

i=1(xi − x̄)2
=

Covx
σx1σx2

. (1.3)

Therefore, in terms of the Gausssian sequence model considered in this

paper, the T -score is a parameter measuring the sum of absolute normalized
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sample covariances between the marginal genetic effects across a set of n

snps; that is, for a set S of snps, the corresponding T -score satisfies

T -score =
∑
x∈S

|EZx1EZx2| =
∑
x∈S

|Covx|/(σx1σx2), (1.4)

which measures the overall simultaneous genetic effect of the snps in S.

1.3 Related works

Statistically, an estimation of the T -score involves estimating a nonsmooth

functional, the absolute value function, of Gaussian random variables. Un-

like estimating smooth functionals such as linear or quadratic functionals

(Ibragimov and Khas’minskii, 1985; Donoho and Nussbaum, 1990; Fan,

1991; Efromovich and Low, 1994; Cai and Low, 2005, 2006), where some

natural unbiased estimators are available, much less is known about esti-

mating nonsmooth functionals. Using approximation theory, Cai and Low

(2011) established the minimax risk and constructed a minimax optimal

procedure for estimating a nonsmooth functional. More recently, this idea

has been adapted to statistical information theory to estimate nonsmooth

functionals, such as the Rényi entropy, support size, and L1-norm (Jiao

et al., 2015, 2016; Wu and Yang, 2016, 2019; Acharya et al., 2016). In par-

ticular, Collier et al. (2020) obtained sharp minimax rates for estimating the

Lγ-norm for γ ≤ 1 under a single sparse Gaussian sequence model, where
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the optimal rates are achieved by estimators that depend on knowledge of

the underlying sparsity. Nonetheless, how to estimate the absolute inner

product of two Gaussian mean vectors (T -score) with a sparse overlap as

adaptively as possible remains unknown.

In the statistical genetics and genomics literature, several approaches

have been proposed for integrating gwas and eqtl data sets. Under the

colocalization framework, methods such as those of Nica et al. (2010) and

Giambartolomei et al. (2014) were developed to detect colocalized snps.

However, these methods do not directly identify the potential causal genes.

Under the transcriptome-wide association study (TWAS) framework, Zhu

et al. (2016) proposed a summary data-based Mendelian randomization

method for causal gene identification, by posing several structural causal-

ity assumptions. Gamazon et al. (2015) developed a gene-based associa-

tion method called PrediXcan that directly tests the molecular mechanisms

through which a genetic variation affects a phenotype. Nevertheless, there

is still a need for a quantitative measure of the genetic sharing between the

genes and the disease that can be estimated from gwas/eqtl summary

statistics.

As a related, but different quantity, the genetic covariance ρ, proposed

by Bulik-Sullivan et al. (2015), as a measure of the genetic sharing between

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0445



OPTIMAL ESTIMATION OF SIMULTANEOUS SIGNALS 9

two traits, can be expressed using our notation as ρ =
∑n

i=1 θiµi. In ad-

dition to the difference due to the absolute value function, in the original

definition of genetic covariance ρ, the mean vectors θ and µ represent the

conditional effect sizes (i.e., conditional on all other snps in the genome). In

contrast, the mean vectors in our T -score correspond to the marginal effect

sizes, making them directly applicable to the standard gwas/eqtl sum-

mary statistics. In addition, unlike the linkage disequilibrium (LD) score

regression approach considered in Bulik-Sullivan et al. (2015), our proposed

method takes advantage of the fact that the support overlap between θ and

µ is expected to be very sparse.

1.4 Main contributions

We propose an estimator of the T -score, based on the idea of thresholding

and truncating the best polynomial approximation estimator. To the best

of our knowledge, this is the first result related to the estimation of the ab-

solute inner product of two Gaussian mean vectors. Under the framework

of statistical decision theory, the minimax lower bounds are obtained, and

we show that our proposed estimators are minimax rate-optimal over var-

ious parameter spaces. In addition, our results indicate that the proposed

estimators are locally adaptive to the unknown sparsity level and the sig-
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nal strength (Section 2). Our simulation study shows the strong empirical

performance and robustness of the proposed estimators in various settings,

and provides guidelines for using our proposed estimators in practice (Sec-

tion 3). An analysis of gwas and eqtl data sets of heart failure using the

proposed method identifies several important genes that are functionally

relevant to the etiology of human heart failure (Section 4).

2. Minimax Optimal Estimation of T -score

2.1 Minimax lower bounds

We start by establishing the minimax lower bounds for estimating the T -

score over various parameter spaces. Throughout, we denote T (θ, µ) =∑n
i=1 |θiµi|. For a vector a = (a1, ..., an)> ∈ Rn, we define ‖a‖∞ = max1≤j≤n |ai|.

For sequences {an} and {bn}, we write an . bn or bn & an if there exists

an absolute constant C such that an ≤ Cbn, for all n, and write an � bn if

an . bn and an & bn.

For both practical and theoretical interest, we focus on the class of

mean vector pairs (θ, µ) with only a small fraction of support overlaps.

Specifically, for any s < n, we define the parameter space for (θ, µ) as

D(s) = {(θ, µ) ∈ Rn × Rn : |supp(θ) ∩ supp(µ)| ≤ s}. Intuitively, in addi-

tion to the sparsity s, the difficulty of estimating T (θ, µ) should also rely

Statistica Sinica: Preprint 
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on the magnitudes of the mean vectors θ and µ and the covariance matrices

Σ1 and Σ2. To this end, we define the parameter space for (θ, µ,Σ1,Σ2) as

D∞(s, Ln) =
{

(θ, µ,Σ1,Σ2) : (θ, µ) ∈ D(s),max(‖θ‖∞, ‖µ‖∞) ≤ Ln,Σ1 =

Σ2 = In
}

, where both s and Ln can growth with n. In particular, to con-

struct estimators that are as adaptive as possible, and to avoid unnecessary

complexities of extra logarithmic terms, we calibrate the sparsity s � nβ, for

some 0 < β < 1. Throughout, we consider the normalized loss function as

the squared distance scaled by n−2, and define the estimation risk for some

estimator T̂ as R(T̂ ) = 1
n2E(T̂ − T (θ, µ))2. To simplify our statement, we

define the rate function ψ(s, n) = min
{

log
(
1 + n

s2

)
, L2

n

}
+ min{log s,L2

n}
log2 s

. The

following theorem establishes the minimax lower bound over D∞(s, Ln).

Theorem 1. Let xn ∼ N(θ,Σ1) and yn ∼ N(µ,Σ2) be multivariate Gaus-

sian random vectors, where (θ, µ,Σ1,Σ2) ∈ D∞(s, Ln). Then,

inf
T̂

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂ ) &
L2
ns

2ψ(s, n)

n2
, (2.1)

where T̂ is any estimator based on (xn,yn).

From the above theorem and the definition of the rate function ψ(s, n),

when β ∈ (0, 1/2), (2.1) becomes

inf
T̂

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂ ) &
L2
ns

2

n2
min{log n, L2

n}, (2.2)

Statistica Sinica: Preprint 
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when β ∈ (1/2, 1), we have

inf
T̂

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂ ) &
L2
ns

2

n2 log2 n
min{log n, L2

n}, (2.3)

and when β = 1/2, we have inf T̂ sup(θ,µ,Σ1,Σ2)∈D∞(s,Ln)R(T̂ ) & L2
ns

2

n2 .

2.2 Optimal estimators of the T -score using a polynomial ap-

proximation

In general, the proposed estimators are based on the idea of an opti-

mal estimation of the absolute value of normal means, as studied by Cai

and Low (2011). They applied the best polynomial approximation of the

absolute value function to obtain the optimal estimator and the mini-

max lower bound. Specifically, they defined the 2K-degree polynomial

GK(x) = 2
π
T0(x) + 4

π

∑K
k=1(−1)k+1 T2k(x)

4k2−1 ≡
∑K

k=0 g2kx
2k, where Tk(x) =∑[k/2]

j=0 (−1)j k
k−j

(
k−j
j

)
2k−2j−1xk−2j are Chebyshev polynomials. Then, for any

X ∼ N(θ, 1), if Hk are Hermite polynomials with respect to the standard

normal density φ such that dk

dyk
φ(y) = (−1)kHk(y)φ(y), the estimator based

on S̃K(X) ≡
∑K

k=0 g2kM
−2k+1
n H2k(X) for some properly chosen K and Mn

has some optimality properties for estimating |θ|. This important result

motivates our construction of the optimal estimators of the T -score.

We begin by considering the setting where xn = (x1, ..., xn)> ∼ N(θ, In)

and yn = (y1, ..., yn)> ∼ N(µ, In). To estimate T (θ, µ), we first split each

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0445
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sample into two copies, one for testing, and the other for the estimation.

Specifically, for xi ∼ N(θi, 1), we generate xi1 and xi2 from xi by letting

zi ∼ N(0, 1) and setting x′i1 = xi + zi and x′i2 = xi − zi. Let xil = x′il/
√

2,

for l = 1, 2. Then, xil ∼ N(θ′i, 1), for l = 1, 2 and i = 1, ..., n, with θ′i =

θi/
√

2. Similarly, we construct yil ∼ N(µ′i, 1), for l = 1, 2 and i = 1, ..., n,

with µ′i = µi/
√

2. Because T (θ, µ) = 2T (θ′, µ′), estimating T (θ, µ) using

{xi, yi}ni=1 is equivalent to estimating T (θ′, µ′) using {xil, yil}ni=1, l = 1, 2.

In light of the estimator S̃K(X), we consider a slightly adjusted statis-

tic SK(X) =
∑K

k=1 g2kM
−2k+1
n H2k(X), and define its truncated version

δK(X) = min{SK(X), n2}, with Mn = 8
√

log n and K ≥ 1 to be speci-

fied later. The above truncation is important in reducing the variance of

δK(X). By the sample splitting procedure, we construct an estimator of

|θ′i| as

V̂i,K(xi) = δK(xi1)I(|xi2| ≤ 2
√

2 log n) + |xi1|I(|xi2| > 2
√

2 log n),

and a similar estimator of |µ′i| as V̂i,K(yi). To further exploit the sparse

structure, we also consider their thresholded version,

V̂ S
i,K(xi) = δK(xi1)I(

√
2 log n < |xi2| ≤ 2

√
2 log n)+|xi1|I(|xi2| > 2

√
2 log n),

as an estimator of |θ′i| and, similarly, V̂ S
i,K(yi) for |µ′|. Intuitively, both

V̂i,K(xi) and V̂ S
i,K(xi) are hybrid estimators: V̂i,K(xi) is a composition of an

Statistica Sinica: Preprint 
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estimator based on a polynomial approximation designed for small to mod-

erate observations (less than 2
√

2 log n in absolute value) and the simple ab-

solute value estimator applied to large observations (larger than 2
√

2 log n

in absolute value). In contrast, V̂ S
i,K(xi) has an additional thresholding pro-

cedure for small observations (less than
√

2 log n in absolute value). Con-

sequently, we propose two estimators of T (θ, µ), namely,

T̂K = 2
n∑
i=1

V̂i,K(xi)V̂i,K(yi), (2.4)

as the hybrid nonthresholding estimator, and

T̂ SK = 2
n∑
i=1

V̂ S
i,K(xi)V̂

S
i,K(yi) (2.5)

as the hybrid thresholding estimator. Both estimators rely on K, a tuning

parameter to be specified later.

2.3 Theoretical properties and minimax optimality

The following theorem provides the risk upper bounds of T̂K and T̂ SK over

D∞(s, Ln).

Theorem 2. Let xn ∼ N(θ,Σ1) and yn ∼ N(µ,Σ2) be multivariate Gaus-

sian random vectors with (θ, µ,Σ1,Σ2) ∈ D∞(s, Ln) and s � nβ. Then,

1. for any β ∈ (0, 1) and K being any finite positive integer, we have

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂ SK) .
(L2

n + log n)s2 log n

n2
; (2.6)

Statistica Sinica: Preprint 
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if, in addition, Ln ≤ (
√

2− 1)
√

log n, then

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂ SK) .
s2L4

n

n2
+

log2 n

n5/2
+
L2
n log n

n2
; (2.7)

2. for any β ∈ (1/2, 1) and K = r log n, for some 0 < r < 2β−1
12

, we have

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂K) .
(L2

n + 1/ log n)s2

n2 log n
. (2.8)

Over the sparse region β ∈ (0, 1/2), the risk upper bounds (2.6) and

(2.7) along with the minimax lower bound (2.2) implies that T̂ SK , with K

being any finite positive integer, is minimax rate-optimal over D∞(s, Ln)

when Ln & 1, where the minimax rate is

inf
T̂

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂ ) � L2
ns

2

n2
min{log n, L2

n}. (2.9)

When Ln . 1, the problem is less interesting, because in this case, the

trivial estimator zero attains the minimax rate L4
ns

2/n2. Over the dense

region β ∈ (1/2, 1), the nonthresholding estimator T̂K , with K = r log n for

some small r, is minimax rate-optimal over D∞(s, Ln), for Ln &
√

log n,

where the minimax rate is

inf
T̂

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂ ) � L2
ns

2

n2 log n
. (2.10)

In both cases, the tuning parameter K plays an important role in con-

trolling the bias–variance trade-off. An important consequence of our re-

sults concerns the local adaptivity of T̂K and T̂ SK with respect to s and Ln.

Statistica Sinica: Preprint 
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Specifically, for any δ > 0, the estimator T̂K with K = r log n, for some

0 < r < δ/6, is simultaneously rate-optimal for any Ln &
√

log n and any

β ∈ (1/2+δ, 1), whereas the estimator T̂K , with K being any finite positive

integer, is simultaneously rate-optimal for any Ln & 1 and β ∈ (0, 1/2); see

Figure 1.

Figure 1: A graphical illustration of the regions where the proposed estimators are

minimax optimal and adaptive. Here, T̂S
K has K being any finite positive integer, and

T̂K has K = r log n, for some 0 < r < δ/6.

Unfortunately, even with appropriate choices of K, neither T̂ SK nor T̂K

is simultaneously optimal across all β ∈ (0, 1). However, because the differ-

ence between the optimal rates of convergence between (2.9) and (2.10) is

only a factor of log n, in practice, even when β ∈ (1/2, 1), the thresholding

estimator T̂ SK performs just as well as the nonthresholding estimator T̂K .

See Section 3 for detailed numerical studies.
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doi:10.5705/ss.202019.0445



OPTIMAL ESTIMATION OF SIMULTANEOUS SIGNALS 17

2.4 Sparse estimation using simple thresholding

According to our previous analysis, if the parameter space is very sparse,

that is, β ∈ (0, 1/2), the proposed estimator T̂ SK is minimax optimal if

we choose K as any constant positive integer. In other words, any con-

stant degree polynomial approximation suffices for the optimal estimation

of T (θ, µ), including the constant function. Thus in this case, the polyno-

mial approximation is essentially redundant for our purpose.

In light of the above observation, we consider the simple thresholding

estimator T̃ = 2
∑n

i=1 Ûi(xi)Ûi(yi), where Ûi(xi) = |xi1|I(|xi2| > 2
√

2 log n).

Our next theorem obtains the risk upper bound of T̃ over D∞(s, Ln), which

along with (2.2) from Theorem 1, shows that T̃ is also minimax optimal

and adaptive over any sparsity level β ∈ (0, 1/2) and Ln & 1.

Theorem 3. Let xn ∼ N(θ,Σ1) and yn ∼ N(µ,Σ2) be multivariate Gaus-

sian random vectors with (θ, µ,Σ1,Σ2) ∈ D∞(s, Ln). Then,

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̃ ) .
(L2

n + log n)s2 log n

n2
. (2.11)

If, in addition, Ln ≤
√

2 log n, then

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̃ ) .
s2L4

n

n2
+

log2 n

n3
+
L2
n log n

n2
. (2.12)

Because our simple thresholding estimator T̃ completely drops the poly-

nomial components in T̂ SK , its variance is significantly reduced. As a result,
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we find that as long as max(‖θ‖∞, ‖µ‖∞) ≤
√
n, the condition Σ1 = Σ2 =

In can be removed without changing the rate of convergence. To this end,

we define the enlarged parameter space

D∞0 (s, Ln) =

(θ, µ,Σ1,Σ2) :
(θ, µ) ∈ D(s),max(‖θ‖∞, ‖µ‖∞) ≤ Ln,

Σ1,Σ2 � 0,Σ1 and Σ2 have unit diagonals.

 .

In particular, because Σ1 and Σ2 have unit diagonals, the sample splitting

procedure (Section 2.1) still applies, which leads only to a 1/2-scaling of

the off-diagonal entries of the covariance matrices.

Theorem 4. Let xn ∼ N(θ,Σ1) and yn ∼ N(µ,Σ2), where (θ, µ,Σ1,Σ2) ∈

D∞0 (s, Ln) and Ln .
√
n. Then, we have

sup
(θ,µ,Σ1,Σ2)∈D∞

0 (s,Ln)

R(T̃ ) .
(L2

n + log n)s2 log n

n2
. (2.13)

By definition, we have D∞(s, Ln) ⊂ D∞0 (s, Ln). It then follows from

Theorems 1 and 4 that for any β ∈ (0, 1/2) and Ln .
√
n,

inf
T̂

sup
(θ,µ,Σ1,Σ2)∈D∞

0 (s,Ln)

R(T̂ ) � s2L2
n

n2
·min{log n, L2

n}, (2.14)

where the minimax optimal rate can be attained by T̃ when Ln ≥
√

log n,

and by the trivial estimator zero when Ln <
√

log n. This establishes

the minimax optimality and adaptivity of T̃ over D∞0 (nβ, Ln), for any

β ∈ (0, 1/2) and Ln &
√

log n. This result confirms an important ad-

vantage of T̃ over T̂ SK , namely, its guaranteed theoretical performance over
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arbitrary correlation structures, which complies with the fact that in many

applications the observations are not necessarily independent. For further

discussions on estimations with nonidentity covariances or unknown covari-

ances, see Section S5.2 of the Supplementary Material.

2.5 Normalization, LD and the use of the T -score

Dealing with ld among the snps (Reich et al., 2001; Daly et al., 2001;

Pritchard and Przeworski, 2001) is essential in any genetic studies. In

this study, we follow Bulik-Sullivan et al. (2015) and propose using the

normalized T -score

Normalized T -score(g) =

∑n
i=1 |θ

g
i µi|

‖θg‖2‖µ‖2

as a measure of the genetic overlap between gene g and the outcome disease.

In particular, the estimation of the `2 norms ‖θg‖2 and ‖µ‖2, or in our

context, the snp-heritability of the traits (Yang et al., 2010), can be easily

accomplished using summary statistics. As a result, every normalized T -

score lies between zero and one, which is scale invariant (e.g., invariance

to sample sizes and snp effect sizes) and comparable across many different

genes or studies. In addition, as argued by Bulik-Sullivan et al. (2015), the

normalized T -score is less sensitive to the choice of the n-snp sets.

Moreover, in Theorem 4, we show that the simple thresholding estima-
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tor T̃ does not require the independence of the z-scores, which theoretically

guarantees its applicability in the presence of an arbitrary ld structure

among the snps. However, our theoretical results concerning T̂K and T̂ SK

rely on such an independence assumption. In our simulation studies, we

found that the empirical performance (including optimality) of T̂K and T̂ SK

is not likely affected by the dependence due to the ld structure. As a result,

our proposed estimation method, although partially analyzed under the in-

dependence assumption, can be directly applied to the summary statistics,

without specifying the underlying ld or covariance structure.

The T -score can be used to identify disease genes and pathways using

gwas and eqtl data. For each gene, we estimate the T -score using our pro-

posed estimators and the vectors of z-scores from the gwas and eqtl stud-

ies. After obtaining the estimated T -scores for all genes and the correspond-

ing snp-heritability, we rank the genes by the order of their normalized T -

scores. As a result, genes with the highest ranks are considered important in

providing insights into the biological mechanisms of a disease. For a gene set

or pathway analysis, we obtain the normalized T -scores Tj, for 1 ≤ j ≤ J ,

for a given gene set S, and then calculate the Kolmogorov–Smirnov test

statistic, defined as supt | 1k
∑

j∈S I(Tj ≤ t) − 1
k′

∑
j∈Sc I(Tj ≤ t)|, where k

and k′ are the numbers of genes in S and Sc, respectively. For a given gene
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set, the significance of this test implies that the gene set S is enriched by

genes that share similar genetic variants to those for the disease of interest,

suggesting their relevance to the etiology of the disease. See Section 4 for

detailed applications.

3. Simulation Studies

This section demonstrates and compares the empirical performance of our

proposed estimators and some alternative estimators under various settings.

Simulation under multivariate Gaussian models. We generate a

pair of n-dimensional vectors, denoted as xn and yn, with n = 1.5×105, 3×

105 and 5 × 105, from the multivariate normal distributions N(θ,Σ) and

N(µ,Σ), respectively. We choose s ∈ {50, 100, 200, 400, 800}, which cover

the regions s ≤
√
n and s >

√
n, and generate (θ, µ) as follows: 1) the

supports of θ and µ are randomly sampled from the coordinates, with the

nonzero components generated from Unif(1,10); and 2) we partition the co-

ordinates of θ and µ into blocks of size 10 and randomly pick s/10 blocks

as the support, to which we assign symmetric triangle-shaped values, the

maximal value of which is generated from Unif(5,10). The above signal

structures are referred to as Sparse Pattern I and II, respectively. For the
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covariance matrix Σ, we consider a global covariance Σ = I and two block-

wise covariances Σ1 and Σ2 (see Section S6 of the Supplementary Material

for their explicit forms). We evaluate our proposed estimators T̂ SK , T̂K , and

T̃ , as well as (1) the hybrid thresholding estimator without sample splitting,

denoted as T̂ S∗K , and (2) the naive estimator T , which simply calculates the

absolute inner product of the observed vectors. For T̂ SK and T̂ S∗K , we fix

K = 8, whereas for T̂K , we set K = b 1
12

log nc. Each setting was repeated

100 times, and the performance was evaluated using the empirical version of

the rescaled mean square error rmse(T̂ ) = 1
s

√
E(T̂ − T )2. Table 1 reports

the empirical rmse of the five estimators under the settings with indepen-

dent observations. For brevity, the results under correlated observations are

given in Tables S6.1 and S6.2 of the Supplementary Material. In general,

T̂ SK , T̃ , and T̂ SK perform similarly, with T̂ SK performing slightly better, al-

though all are superior to the naive estimator T . Here, T̂ S∗K outperforms the

other estimators in all settings, possibly because of the reduced variability

as a result of not using sample splitting. Because the sample splitting is

needed only to facilitate our theoretical analysis, in applications, we suggest

using T̂ S∗K for better performance. Moreover, Tables S6.1 and S6.2 in the

Supplementary Material show that the proposed estimators are robust to

the underlying sparsity patterns and the covariance structures.
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Simulation under model-generated GWAS and eQTL data allow-

ing for population stratification. In order to justify our proposed

methods for an integrative analysis of gwas and eqtl data, we carried out

additional numerical experiments under more realistic settings. Here, the

gwas-based genotypes are simulated allowing for population stratification,

and the corresponding z-scores are calculated from a case-control study that

adjusts for population structure using principal component (PC) scores.

Specifically, for the gwas data, we adopted the simulation settings from As-

tle and Balding (2009), where 1000 cases and 1000 controls are drawn from

a population of 6000 individuals, partitioned into three equal-sized subpop-

ulations. Ancestral minor allele fractions are generated from Unif(0.05,0.5)

for all 10,000 unlinked snps. For each snp, subpopulation allele fractions

are generated from the beta-binomial model Beta
(
1−F
F
p, 1−F

F
(1 − p)

)
with

a population divergence parameter F = 0.1. We simulate the disease phe-

notype under a logistic regression model with 20 snp markers, each with

effect size 0.4. The population disease prevalence is 0.05. To obtain z-

scores, we fit a marginal logistic regression for each snp, accounting for the

first two PCs of the genotypes. For the eqtl data, 10,000 unlinked snps

are generated independently with minor allele fractions from Unif(0.05,0.5).

The gene expression levels of 2000 samples are simulated under a linear re-
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gression model with covariates being s snp markers that overlap with the

gwas snps. Each has an effect size of 0.5, and the errors are drawn inde-

pendently from the standard normal distribution. The eqtl z-scores are

obtained from a marginal linear regression. The above simulations were

repeated 500 times. The population mean of the z-scores corresponding to

the truly associated snp markers are approximated using the sample mean

of the z-scores. Table 2 shows the empirical rmses for the five estima-

tors with s ∈ {5, 10, 15, 20}. Again, our proposed estimators T̂K , T̂ SK , and

T̃ outperform the naive estimator T across all settings, and T̂ S∗K performs

even better. The numerical results agree with our simulations under the

multivariate Gaussian settings, suggesting the applicability of our proposed

methods for integrating gwas and eqtl data.

4. Integrative Data Analysis of Human Heart Failure

Finally, we apply our proposed estimation procedure to identify genes with

expressions that are possibly causally linked to heart failure by integrating

gwas and eqtl data. The gwas results were obtained from a heart failure

genetic association study at the University of Pennsylvania, a prospective

study of patients recruited from the University of Pennsylvania, Case West-

ern Reserve University, and the University of Wisconsin, where genotype
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data were collected from 4,523 controls and 2,206 cases using the Illumina

OmniExpress Plus array. The gwas summary statistics were calculated

controlling for age, gender, and the first two principal components of the

genotypes.

The heart failure eqtl data were obtained from the MAGNet eqtl

study (https://www.med.upenn.edu/magnet/index.shtml), where left ven-

tricular free-wall tissue were collected from 136 donor hearts without heart

failure. Genotype data were collected using Affymetrix genome-wide snp

array 6.0, and only markers in a Hardy–Weinberg equilibrium with minor

allele frequencies above 5% were considered. Gene expression data were

collected using Affymetrix GeneChip ST1.1 arrays, normalized using RMA

(Irizarry et al., 2003), and batch-corrected using ComBat (Johnson et al.,

2007). To obtain a common set of snps, the snps were imputed using

1000 Genomes Project data. Summary statistics for the MAGNet eqtl

data were obtained using the fast marginal regression algorithm of Sikorska

et al. (2013), controlling for age and gender.

4.1 Ranking of potential heart failure causal genes

After matching the snps of the eqtl and gwas data, we had a total of

347,019 snps and 19,081 genes with expression data available. Given the

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0445



OPTIMAL ESTIMATION OF SIMULTANEOUS SIGNALS 26

results of the simulation studies, throughout, we use T̂ S∗K with K = 8 to

estimate the T-scores. The analysis then follows from Section 2.5 so that

the genes are ordered by their normalized T-scores. To assess that the top

scored genes indeed represent true biological signals, we calculated the T -

scores for two “null data sets” created using permutations. For the first

data set, we randomly permuted the labels of the snps of the gwas z-

scores by sampling without replacement, before estimating the normalized

T -scores using the eqtl z-scores. For the second data set, we permuted

the labels of the snps of the gwas z-scores in a circular manner, similarly

to Cabrera et al. (2012). Specifically, for each chromosome, we randomly

chose one snp as the start of the chromosome, and moved the snps on the

fragment before this snp to the end. Such a cyclic permutation preserves

the local dependence of the z-scores. By permuting the data from one

phenotype, we break the original matching of the z-scores between the two

phenotypes. The permutation was performed 50 times, and we obtained

the null distribution of T -scores based on the permuted data. Figure 2

shows the ranked normalized T -scores based on the original data and box

plots of the ranked z-scores based on 50 permutations of the z-scores. We

find that all of the top-ranked genes have larger T -scores than those based

on permutations. In addition, about 30 top-ranked genes in the top plot
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and about 10 top-ranked genes in the bottom plot have true T -scores larger

than all T -scores from the permuted data sets. This confirms that the top-

ranked genes based on their estimated normalized T -scores are not due to

random noise, and indeed represent a sharing of genetic variants between

heart failure and gene expression levels.
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Figure 2: Estimated score (in short bars) for top 50 genes and the boxplots of the

top scores based on 50 permutations. Top: random permutation of the gwas scores;

bottom: cyclic permutations of the gwas scores.

Table 3 lists the top eight highest ranked genes, along with their biolog-

ical annotations. All of the genes are either directly or indirectly associated
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with human heart failure, including those related to fibrotic myocardial

degeneration, Wnt signalling activity, and heart-valve development. It is

interesting that our proposed methods can identify these relevant genes

using only the gene expression data measured on normal heart tissue.

4.2 Gene set enrichment analysis

To complete our analysis, we finish this section with a gene set enrichment

analysis (gsea) (Subramanian et al., 2005), using the normalized T -scores

to identify the biological processes associated with heart failure. In the fol-

lowing analysis, we removed genes with low expression and small variability

across the samples, which resulted in a total of 6,355 genes. The method de-

scribed in Section 2.5 was applied to the gene sets from Gene Ontology (go)

(Botstein et al. 2000), which contain at least 10 genes, and 5,023 biological

processes were tested. Figure S6.1 in the Supplementary Material presents

directed acyclic graphs of the go biological processes linked to the most

significant go terms from the simultaneous signal gsea analysis. Table 4

shows the top six go biological processes identified from the gsea anal-

ysis. Among them, regulation of skeletal muscle contraction, the linoleic

acid metabolic process, and calcium ion regulation are strongly implicated

in human heart failure. Murphy et al. (2011) showed that skeletal muscle
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reflexes are essential to the initiation and regulation of the cardiovascular

response to exercise, and an alteration of this reflex mechanism can happen

in disease states such as hypertension and heart failure. In Farvid et al.

(2014), a thorough meta-analysis supported a significant inverse association

between dietary linoleic acid intake, when replacing either carbohydrates

or saturated fat, and the risk of coronary heart disease. Moreover, the

importance of calcium-dependent signaling in heart failure was reported

in Marks (2003), who suggested that impaired calcium release causes de-

creased muscle contraction (systolic dysfunction), and defective calcium

removal hampers relaxation (diastolic dysfunction).

5. Discussion

This study considers the optimal estimation over sparse parameter spaces.

In Section 2, the minimax rates of convergence were established for the

parameter spaces D∞(nβ, Ln) with β ∈ (0, 1/2) ∪ (1/2, 1), leaving a gap at

β = 1/2. Our theoretical analysis suggests a lower bound (2.1) with the

rate function ψ(s, n) � 1, which cannot be attained by any of our proposed

estimators. Nevertheless, in Section S5.1 of the Supplementary Material,

we confirm that L2
ns

2/n2 is the minimax rate of convergence for β = 1/2

by proposing an estimator achieving such a rate.
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In some applications, we may need to consider nonsparse parameter

spaces. In this case, our theoretical analysis shows that the estimator T̂K

with K = r log n, for some small constant r > 0, can still be applied.

Specifically, from our proof of Theorem 1 and Theorem 2, it follows that

if we define the nonsparse parameter space as D∞U (Ln) =
{

(θ, µ,Σ1,Σ2) :

(θ, µ) ∈ Rn × Rn,max(‖θ‖∞, ‖µ‖∞) ≤ Ln,Σ1 = Σ2 = In
}

, with Ln &

√
log n, then for xn ∼ N(θ,Σ1) and yn ∼ N(µ,Σ2), the minimax rate

inf T̂ sup(θ,µ,Σ1,Σ2)∈D∞
U (Ln)R(T̂ ) � Ln

logn
can be attained by the above T̂K .

In light of our genetic applications, it is also natural and interesting

to consider parameter spaces where θ and µ are both sparse in themselves.

Specifically, assuming the triple sparsity of θ, µ, and {θiµi}ni=1, interesting

phase transitions might exist, where the minimax rates and the optimal

estimators could be different from those reported here. In addition to the

estimation problems, it is also of interest to conduct hypothesis testing

and to construct confidence intervals for the T -score. These problems are

technically challenging owing to the nonsmooth functional. We leave these

important problems for future research.

Supplementary Material

The online Supplementary Material includes the proofs of the main

theorems. Supplementary notes, figures, and tables are also included.
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Table 1: Empirical rmse under the covariance Σ = In. T̂S∗
K : the hybrid threshold-

ing estimator without sample splitting; T̂S
K : the hybrid thresholding estimator; T̃ : the

simple thresholding estimator; T̂K : the hybrid nonthresholding estimator; T : the naive

estimator that calculates the absolute inner product of observed vectors.

n
104

s T̂ S∗K T̂ SK T̃ T̂K T T̂ S∗K T̂ SK T̃ T̂K T

Sparse Pattern I Sparse Pattern II

50 10.54 20.85 27.47 25.14 1910.3 8.69 26.79 32.9 28.84 1909.2

100 11.41 21.00 27.92 25.63 954.3 8.08 26.33 32.64 28.75 954.3

15 200 10.30 21.19 30.83 28.01 476.9 8.42 25.83 32.33 28.54 476.9

400 10.01 20.57 29.24 26.78 238.0 8.64 25.88 31.67 27.84 238.0

800 10.58 22.36 29.99 27.05 118.8 9.20 25.48 31.16 27.61 118.7

50 9.50 20.51 30.13 27.7 3819.4 10.72 28.11 33.67 29.73 3819.8

100 11.07 25.85 33.66 29.98 1909.3 9.20 27.90 34.36 30.04 1908.6

30 200 10.60 22.19 30.3 27.09 954.4 9.71 25.89 31.88 28.27 954.1

400 10.54 22.22 30.08 26.85 476.9 10.73 27.79 32.3 28.61 476.7

800 10.86 23.52 30.62 27.24 238.2 8.62 26.67 34.2 30.11 238.0

50 12.27 27.30 32.18 28.67 6363.4 12.02 25.78 27.07 24.37 6365.3

100 11.25 24.86 30.69 27.29 3182.4 8.54 29.67 35.99 31.4 3182.5

50 200 11.02 22.48 29.39 25.88 1591.3 9.98 29.13 34.21 29.94 1591.3

400 11.40 23.42 29.86 26.45 795.4 12.51 25.28 28.06 25.09 795.2

800 10.85 22.85 29.40 26.11 397.2 10.23 27.05 32.69 28.84 397.2
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Table 2: Empirical rmse for simulated GWAS and eQTL data. T̂ S∗K : the

hybrid thresholding estimator without sample splitting; T̂ SK : the hybrid

thresholding estimator; T̃ : the simple thresholding estimator; T̂K : the hy-

brid nonthresholding estimator; T : the naive estimator that calculates the

absolute inner product of observed vectors.

s T̂ S∗K T̂ SK T̃ T̂K T

5 19.61 32.26 40.45 34.25 1318.1

10 17.42 35.27 39.87 36.80 638.9

15 13.92 31.78 36.50 34.50 425.6

20 12.77 29.18 32.72 30.52 317.7
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Table 3: Top eight genes associated with heart failure based on the esti-

mated normalized T -scores and their functional annotations.

Gene Name Annotations

TMEM37 voltage-gated ion channel activity (Chen et al., 2007)

ADCY7 adenylate cyclase activity; fibrotic myocardial

degeneration (Nojiri et al., 2006)

C1QC Wnt signaling activity; associated with heart

failure (Naito et al., 2012)

FAM98A associated with ventricular septal defect (Liu et al., 2018)

BMP2 associated with heart-valve development

(Rivera-Feliciano and Tabin, 2006)

SLCO2B1 organic anion transporter; associated with cardiac glycoside

(Mikkaichi et al., 2004)

C1QA Wnt signaling activity; associated with heart

failure (Naito et al., 2012)

FCGR2B intracellular signaling activity; associated with vascular

disease pathogenesis (Tanigaki et al., 2015)
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Table 4: Top six go biological processes associated with heart failure based

on the gene set enrichment analysis

go term p-value

Biological Process

regulation of skeletal muscle contraction by regulation of release

of sequestered calcium ion 7.9× 10−7

linoleic acid metabolic process 1.0× 10−6

regulation of skeletal muscle contraction by calcium ion signaling 3.4× 10−6

positive regulation of sequestering of calcium ion 3.4× 10−6

cellular response to caffeine 1.0× 10−5

cellular response to purine-containing compound 1.0× 10−5
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