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Abstract: We propose a new Conditional BEKK matrix-F (CBF) model for time-

varying realized covariance (RCOV) matrices. This CBF model is capable of

capturing a heavy-tailed RCOV, which is an important stylized fact, but is not

handled adequately by Wishart-based models. To further mimic the long-memory

feature of an RCOV, we introduce a special CBF model with a conditional het-

erogeneous autoregressive structure. Moreover, we provide a systematic study

of the probabilistic properties and statistical inferences of the CBF model, in-

cluding exploring its stationarity, establishing the asymptotics of its maximum

likelihood estimator, and giving new inner-product-based tests for model check-

ing. In order to handle a large-dimensional RCOV matrix, we construct two

reduced CBF models: the variance-target CBF model (for a moderate but fixed-

dimensional RCOV matrix), and the factor CBF model (for a high-dimensional

RCOV matrix). For both reduced models, the asymptotic theory of the esti-

mated parameters is derived. The importance of our methodology is illustrated
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by means of simulations and two real examples.

Key words and phrases: Factor model; Heavy-tailed innovation; Long memory;

Matrix-F distribution; Matrix time series model; Model checking; Realized co-

variance matrix; Variance target

1. Introduction

Modeling the multivariate volatility of many asset returns is crucial for

asset pricing, portfolio selection, and risk management. Since the seminal

work of Barndorff-Nielsen and Shephard (2002, 2004) and Andersen et al.

(2003), the realized covariance (RCOV) matrix, estimated from intraday

high-frequency return data, has been recognized as better than the daily

squared returns as an estimator for daily volatility. Consequently, attention

has increased on the modeling and forecasting of these RCOVs; see, for

example, McAleer and Medeiros (2008), Hansen et al. (2012), Noureldin et

al. (2012) and Bollerslev et al. (2016), among many others.

Existing models for RCOV matrices can be roughly categorized into two

types: transformation-based models and likelihood-based models. Models

in the first category capture the dynamics of the RCOV matrices in an

indirect way via transformation. Bauer and Vorkink (2011) used a factor

model for the vectorization of the log transformation of an RCOV matrix;

Chiriac and Voev (2011) applied a vector autoregressive fractionally inte-
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grated moving average process to model the Cholesky decomposition of an

RCOV matrix; and Callot et al. (2017) transformed the RCOV matrix into

a large vector using the vech operator, and then fitted this transformed

vector using a vector autoregressive model. In the first two models, the

dimension of the RCOV matrix has to be moderate (e.g., less than six) for

a feasible manipulation. In the third model, the dimension of the RCOV

matrix is allowed to be thirty in applications with the help of the LASSO

method.

Models in the second category deal with RCOV matrices directly by as-

suming that the innovation that drives the RCOV time series has a specific

matrix distribution in order to generate random positive-definite matrices

automatically, without imposing additional constraints. This important

feature results in positive-definite estimated RCOV matrices. Unlike scalar

or vector distributions, so far, few matrix distributions have been found

to have explicit forms. The primary choice for the innovation distribu-

tion is Wishart, leading to the Wishart autoregressive (WAR) model in

Gouriéroux et al. (2009), the conditional autoregressive Wishart (CAW)

model in Golosnoy et al. (2012), the mixture Wishart model in Jin and

Maheu (2013, 2016), and the generalized CAW model in Yu et al. (2017),

to name a few. The other choice for the innovation distribution is matrix-
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F, which was recently adopted by Opschoor et al. (2018). In general, the

matrix-F distribution is a generalization of the usual F distribution whereas

the Wishart distribution is a generalization of the χ2 distribution (see, e.g.,

Konno (1991) and Opschoor et al. (2018)). Therefore, the matrix-F distri-

bution could be more appropriate than the Wishart distribution in terms of

capturing the heavy-tailed innovation, which is an important stylized fact in

many applications (see, e.g., Bollerslev (1987), Fan et al. (2014), Zhu and Li

(2015), and Oh and Patton (2017)). These likelihood models have at least

three advantages over transformation-based models. First, likelihood-based

models preserve useful and important matrix structural information, which

makes them more interpretable than transformation-based models. Sec-

ond, the number of estimated parameters in transformation-based models

is O(n4), whereas that of likelihood-based models is O(n2), where n is the

dimension of the RCOV matrix. When n is large, likelihood-based models

can be more convenient and less daunting in terms of computation. Third,

likelihood-based models use the likelihood function of the RCOV matrices,

which means their statistical inference methods are easily provided.

This paper contributes to the literature in three ways. First, we propose

a new Conditional BEKK matrix-F (CBF) model with which to study time-

varying RCOV matrices. Our CBF model has matrix-F distributed inno-
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vations with two degrees of freedom parameters, ν1 and ν2. When ν2 →∞,

our CBF model reduces to the CAW model (Golosnoy et al., 2012), which

has Wishart distributed innovations. Hence, ν2 is designed to capture the

heavy-tailedness of the RCOV. Because an RCOV has been shown to have

a long-memory feature, we further introduce a special CBF model that has

a similar conditional heterogeneous autoregressive (HAR) structure, as in

Corsi (2009). This special model is referred to as the CBF-HAR model. Al-

though the CBF-HAR model is not formally a long-memory model, it gives

rise to persistence in the RCOV time series. Two real examples demon-

strate that our CBF model (especially the CBF-HAR model) can exhibit

significantly better forecasting performance than the corresponding CAW

model. Hence, a simple incorporation of ν2 to capture the heavy-tailed

RCOV is necessary from a practical viewpoint.

Second, we provide a systematic statistical inference procedure for the

CBF model. Specifically, we explore its stationarity conditions, establish

the strong consistency and asymptotic normality of its maximum likelihood

estimator (MLE), and investigate some new inner-product-based tests for

model diagnostic checking. Moreover, the performance of our methodol-

ogy is assessed using simulation studies. Compared with those of existing

BEKK-type multivariate time series models, our proofs of the inference
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procedure are much more involved, because the CBF model is tailored for

matrix time series. In particular, our inner-product-based tests seem to be

the first diagnostic checking tool for matrix time series models, and can be

extended easily to other models.

Third, we construct two reduced CBF models, the variance targeted

(VT) CBF (VT-CBF) model and the factor CBF (F-CBF) model, to han-

dle moderately large and high-dimensional RCOV matrices, respectively.

For both reduced models, we derive the asymptotic theory of the estimated

parameters. The dimension of the RCOV matrix is allowed to be a mod-

erate, but fixed number in the VT-CBF model, while it is allowed to grow

with the sample size T and the intraday sample size in the F-CBF model.

This makes the prediction of large-dimensional RCOV matrices feasible in

many cases. The importance of both reduced models is illustrated by means

of two real applications.

The remainder of the paper is organized as follows. Section 2 intro-

duces the CBF model and studies its probabilistic properties. Section 3

investigates the asymptotics of the MLE. Section 4 presents inner-product-

based tests to check the model adequacy. Two reduced CBF models and

their related asymptotic theories are provided in Section 5. Some simula-

tion studies are carried out in Section 6. Applications are given in Section
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7. Section 8 concludes this paper. The proofs of all theorems are relegated

to the Supplementary Material.

The following notation is used throughout the paper. In is the identity

matrix of order n, and ⊗ represents the Kronecker product. For an n × n

matrix A, tr(A) is its trace, A′ is its transpose, |A| is its determinant, ρ(A)

is its biggest eigenvalue, ‖A‖ =
√
tr(A′A) is its Euclidean (or Frobenius)

norm, ‖A‖spec =
√
ρ(A′A) is its spectral norm, vec(A) is a vector obtained

by stacking all the columns of A, vech(A) is a vector obtained by stacking

all columns of the lower triangular part of A, and A⊗2 = A⊗ A.

2. Model and Properties

2.1 Model Specification

Let Y ∗t be the integrated volatility matrix of n asset returns Xt at time

t = 1, ..., T . Since the seminal work of Barndorff-Nielsen and Shephard

(2002, 2004) and Andersen et al. (2003), the n× n positive-definite RCOV

matrix Yt, calculated from the high-frequency return data of Xt, has been

widely applied to estimate Y ∗t in the literature; see, for example, Barndorff-

Nielsen et al. (2011), Lunde et al. (2016), Aı̈t-Sahalia and Xiu (2017), Kim

et al. (2018), and the references therein. Moreover, Yt is often viewed as

a precise estimate for the conditional variances and covariances of these
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n low-frequency asset returns Xt; hence, how to predict Yt using some

dynamic models is important in practice. Motivated by this, we propose a

new dynamic model for Yt.

Let Gt = σ(Ys; s ≤ t) be a filtration up to time t. We assume that

Yt = Σ
1/2
t ∆tΣ

1/2
t , (2.1)

where {∆t}Tt=1 is a sequence of independent and identically distributed

(i.i.d.) n×n positive-definite random innovation matrices with E(∆t|Gt−1) =

In, each ∆t follows the matrix-F distribution F (ν, ν2−n−1
ν1

In), and the den-

sity of F (ν,Σ) is

f(x; ν,Σ) = Λ(ν)× |Σ|
−ν1/2 |x|(ν1−n−1)/2

|In + Σ−1x|(ν1+ν2)/2
, for x ∈ Rn×n, (2.2)

where ν = (ν1, ν2)′ with degrees of freedom ν1 > n+ 1 and ν2 > n+ 1, Σ is

an n× n positive-definite matrix, and

Λ(ν) =
Γn((ν1 + ν2)/2)

Γn(ν1/2)Γ(ν2/2)
with Γn(x) = πn(n−1)/4

n∏
i=1

Γ(x+ (1− i)/2).

Moreover, Σ
1/2
t ∈ Gt−1 is the square root of the n × n positive-definite

matrix Σt, which has a BEKK-type dynamic structure (see (Engle and

Kroner, 1995)):

Σt = Ω +
P∑
i=1

K∑
k=1

AkiYt−iA
′
ki +

Q∑
j=1

K∑
k=1

BkjΣt−jB
′
kj, (2.3)
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where Ω, Aki, and Bkj are all n × n real matrices, the integers P,Q, and

K are known as the orders of the model, and Ω and the initial states

Σ0,Σ−1, ...,Σ−Q+1 are all positive definite. Under model (2.1),

Yt|Gt−1 ∼ F

(
ν,
ν2 − n− 1

ν1

Σt

)
, (2.4)

with E(Yt|Gt−1) = Σt; that is, the conditional distribution of Yt is matrix-

F with a BEKK-type mean structure. As such, we call model (2.1) the

Conditional BEKK matrix-F (CBF) model.

The CBF model is related to the CAW model of Golosnoy et al. (2012),

in which ∆t follows the Wishart distribution. To see this clearly, we follow

Konno (1991) and Leung and Lo (1996), rewriting Yt in model (2.1) as

Yt =

(
ν2 − n− 1

ν1

)
Σ

1/2
t L

1/2
t R−1

t L
1/2
t Σ

1/2
t , (2.5)

where Lt ∼ Wishart(ν1, In) and Rt ∼ Wishart(ν2, In) are independent.

Because lim
ν2→∞

ν−1
2 Rt = In in probability, the identity (2.5) implies that

when ν2 → ∞, Yt|Gt−1 ∼ Wishart(ν1, ν
−1
1 Σt), which is exactly the CAW

model. Therefore, compared with the CAW model, the degrees of freedom

ν2 in the CBF model accommodate the heavy-tailed RCOV, meaning that

each Yt,ij from Yt satisfying (2.4) could have a heavier tail than that from Yt

satisfying Yt|Gt−1 ∼Wishart(ν1, ν
−1
1 Σt) (see, e.g., Opschoor et al. (2018) for

more discussion and examples). Clearly, the identity (2.5) also guarantees
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Yt to be symmetric and positive definite, and can be used to generate Yt by

using Wishart random variables.

In addition to the heavy-tailedness, long memory is another well-documented

feature of the RCOV, and has been taken into account by many RCOV mod-

els, including the HAR model of Corsi (2009) as a benchmark. Although

the HAR model does not formally belong to the class of long-memory mod-

els, it is able to reproduce the persistence of RCOVs observed in empirical

data. Inspired by the HAR model, we consider a special CBF model with

the following specification for Σt:

Σt = Ω + A(d)Yt−1,dA
′
(d) + A(w)Yt−1,wA

′
(w) + A(m)Yt−1,mA

′
(m), (2.6)

where Yt−1,d = Yt−1, Yt−1,w = (1/5)
∑5

i=1 Yt−i, and Yt−1,m = (1/22)
∑22

i=1 Yt−i

are the daily, weekly, and monthly averages, respectively, of the RCOV ma-

trices. In this case, we label model (2.1) as the CBF-HAR model, because

we put “HAR dynamics” on Σt. Clearly, the CBF-HAR model is simply a

constrained CBF model with P = 22, K = 3, and Q = 0. Figure 1 plots

the sample autocorrelation functions (ACFs) up to lag 100 for simulated

data from the CBF-HAR model with ν = (20, 10) and

Ω =


0.5 0.2 0.3

0.2 0.5 0.25

0.3 0.25 0.5

 , A(d) =


0.7 0 0

0 0.65 0

0 0 0.75

 ,
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A(w) =


0.6 0 0

0 0.6 0

0 0 0.55

 , A(m) =


0.4 0 0

0 0.45 0

0 0 0.4

 .

The figure shows that all entries of Yt exhibit the long-memory feature, as

expected.
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Figure 1: Sample ACFs for simulated data from a 3× 3 CBF-HAR model

Note that when K = 1, the sufficient identifiability conditions of model

(2.3) are that the main diagonal elements of Ω and the first diagonal element

of each A1i, B1j are positive; when K > 1, some sufficient identifiability

conditions of model (2.3) can be found in Engle and Kroner (1995). For
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doi:10.5705/ss.202019.0424



2.1 Model Specification12

simplicity, we assume subsequently that model (2.3) is identifiable.

Of course, the BEKK specification in model (2.3) is not the only way to

describe the dynamics of Σt. Multivariate ARCH-type models, such as the

VEC model of Bollerslev et al. (1988), component model of Engle and Lee

(1999), and dynamic conditional correlation model of Engle (2002), among

many others, can also be adopted to model Σt. Using these models together

with the matrix-F distribution to fit and predict the RCOV matrices could

be a promising direction for future study.

2.2 Stationarity

Stationarity is an important issue for most RCOV models, but so far

has been rarely studied. Denote M = max(P,Q). For i = 1, 2, · · · ,M , let

A∗i =
K∑
k=1

A⊗2
ik and B∗i =

K∑
k=1

B⊗2
ik ,

where Aik = 0 for i > P and Bik = 0 for i > Q. A sufficient condition

for the stationarity of the CBF model is given below, and works for other

general distributions of ∆t.

Theorem 2.1 Suppose that {∆t} in model (2.1) is a sequence of i.i.d. n×n

positive-definite random matrices with E‖∆t‖ <∞, and

(H1) the distribution of ∆1, denoted by Γ , is absolute continuous with re-

spect to the Lebesgue measure;

Statistica Sinica: Preprint 
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(H2) the point In is in the interior of the support of Γ ;

(H3) ρ
(∑M

i=1(A∗i +B∗i )
)
< 1.

Then, Yt in model (2.1) is strict stationary, with E‖Yt‖ < ∞. Moreover,

Yt is positive Harris recurrent and geometrically ergodic.

Remark 1 The results of Theorem 2.1 are similar to those in Boussama et

al. (2011), who study the stationarity of the BEKK model. Like Boussama

et al. (2011), the proof of Theorem 2.1 is based on the semi-polynomial

Markov chains technique. However, it is relatively involved owing to the

matrix nature of model (2.1).

As a special case, the results in Theorem 2.1 hold for the CAW model,

in which ∆t follows the Wishart distribution. Under conditions (H1) and

(H2), condition (H3) is necessary and sufficient for the strict stationarity

of Yt, with E‖Yt‖ < ∞. However, the necessary and sufficient condition

for the higher moments of Yt is still unclear at this stage. Let Kn2 be the

n2 × n2 permutation matrix, such that Kn2vec(A) = vec(A′) for any n× n

matrix A. If E‖Yt‖2 <∞, by similar arguments in Golosnoy et al. (2012),

we have the following:

(i) y := E (vec(Yt)) =
[
In2 −

∑M
i=1 (A∗i +B∗i )

]−1

vec(Ω);

(ii) vec [E (vec(Yt)vec(Yt)
′)] = (Π + In4)

(
In4 −

∑∞
i=1 Φ⊗2

i Π
)−1

vec(y)⊗vec(y),

Statistica Sinica: Preprint 
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where Π = [s1(ν)− 1] In4 + [s2(ν)In2 ⊗ (In2 +Kn2)] [In ⊗Kn2 ⊗ In], with

s1(ν) =
(ν2 − n− 1)[ν1(ν2 − n− 2) + 2]

ν1(ν2 − n)(ν2 − n− 3)
, s2(ν) =

(ν2 − n− 1)(ν1 + ν2 − n− 1)

ν1(ν2 − n)(ν2 − n− 3)
,

and Φ0 = In2 and Φi = −B∗i +
∑i

j=1

(
A∗j + B∗j

)
Φi−j, for i > 0. Result (ii)

clearly indicates that the parameters ν1 and ν2 affect the second moment of

Yt in a nonlinear way. Although a closed form of the third moment of Yt is

absent, similar effects from ν1 and ν2 are expected for the third moment of

Yt and, hence, the asymptotic distribution of the proposed estimator (see

Theorem 3.2 below).

3. Maximum Likelihood Estimation

Let θ = (γ′, ν ′)′ ∈ Θ be the unknown parameter of model (2.1) with the true

value θ0 = (γ′0, ν
′
0)′, where Θ = Θγ ×Θν is the parametric space with Θγ ⊂

Rτ1 and Θν ⊂ R2, γ = (w′, u′)′, w = vech(Ω), u = (vec(A11)′, ..., vec(AKP )′,

vec(B11)′, ..., vec(BKQ)′), and τ1 = 1
2
n+[(P+Q)K+ 1

2
]n2. Below, we assume

that Θγ and Θν are compact and θ0 is an interior point of Θ.

Given the observations {Yt}Tt=1 and the initial values {Yt}t≤0, the neg-

ative log-likelihood function based on (2.4) is

L(θ) =
1

T

T∑
t=1

lt(θ), (3.7)

Statistica Sinica: Preprint 
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where

lt(θ) =
ν1

2
log
∣∣∣ν2 − n− 1

ν1

Σt(γ)
∣∣∣− ν1 − n− 1

2
log |Yt|

+
ν1 + ν2

2
log
∣∣∣In +

ν1

ν2 − n− 1
Σ−1
t (γ)Yt

∣∣∣+ C(ν),

with C(ν) = − log Λ(ν) and Σt(γ) calculated recursively by

Σt(γ) = Ω +
P∑
i=1

K∑
k=1

AkiYt−iA
′
ki +

Q∑
j=1

K∑
k=1

BkjΣt−j(γ)B′kj. (3.8)

Clearly, Σt(γ0) = Σt.

Because the initial values {Yt}t≤0 are not observable, we modify L(θ)

as

L̂(θ) =
1

T

T∑
t=1

l̂t(θ), (3.9)

where l̂t(θ) is defined in the same way as lt(θ), with Σt(γ) replaced by Σ̂t(γ),

and Σ̂t(γ) is calculated in the same way as Σt(γ), based on a sequence of

given constant matrices h := {Y0, · · · , Y−M+1,Σ0, ...,Σ−M+1}. The mini-

mizer, θ̂ = (γ̂′, ν̂ ′)′, of L̂(θ) on Θ is called the MLE of θ0. That is,

θ̂ = (γ̂′, ν̂ ′)′ = arg min
θ∈Θ

L̂(θ). (3.10)

To study the asymptotic properties of θ̂, we need two assumptions.

Assumption 3.1 Yt is strictly stationary and ergodic.

Statistica Sinica: Preprint 
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Assumption 3.2 For γ ∈ Θγ, if γ 6= γ0, Σt(γ) 6= Σt(γ0) almost surely

(a.s.) for all t.

Assumption 3.1 is standard. Assumption 3.2, which is in line with Comte

and Lieberman (2003) and Hafner and Preminger (2009), is the identifi-

cation condition. The following two theorems give the consistency and

asymptotic normality of θ̂, respectively.

Theorem 3.1 Suppose that Assumptions 3.1–3.2 hold and E‖Yt‖ < ∞.

Then, θ̂
a.s.−−→ θ0 as T →∞.

Theorem 3.2 Suppose that Assumptions 3.1–3.2 hold, E‖Yt‖3 <∞, and

O = E

(
∂2lt(θ0)

∂θ∂θ′

)
is invertible. (3.11)

Then,
√
T (θ̂ − θ0)

d−→ N(0,O−1) as T →∞.

Based on the observations {Yt}Tt=1 and a sequence of given constant

matrices h, we can use the analytic expression of ∂2lt(θ)/(∂θ∂θ
′) (see Ap-

pendix S4 in the Supplementary Material) to estimate O using its sample

counterpart. As with the univariate ARCH-type models, the coefficients in

the main diagonal line of Ω are positive to ensure the positive definiteness

of Σt. Hence, the classical t or Wald test, which is constructed using the

estimate of O, cannot be used to detect whether their values are zeros; see

Li et al. (2018) for more discussion on this context.
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4. Model Diagnostic Checking

Diagnostic tests are crucial for model checking in multivariate time series

analysis; see, for example, Li and McLeod (1981), Ling and Li (1997), Tse

(2002), and many others. However, no tests exist for stationary matrix time

series. In this section, we propose some new inner-product-based tests to

check the adequacy of model (2.1).

Let Zt(γ) = vec
(
Σ
−1/2
t (γ)YtΣ

−1/2
t (γ) − In

)
be the vectorized residual

for a given γ, and let bt,j(γ) = Z′t(γ)Zt−j(γ) be the inner product of two

vectorized residuals at lag j. Then, we stack bt,j(γ) up to lag l to construct

Vl(γ), where

Vl(γ) =
1

T

T∑
t=l+1

(
bt,1 (γ) ,bt,2 (γ) , · · · ,bt,l (γ)

)′
,

and l ≥ 1 is a given integer. Our testing idea is motivated by the fact that

if model (2.1) is adequate, Zt(γ0) is a sequence of i.i.d. random vectors with

mean zero, and hence the value of Vl(γ̂) is expected to be close to zero. To

implement our test, we examine the asymptotic property of Vl(γ̂) in the

following theorem.

Theorem 4.1 Suppose that Assumptions 3.1–3.2 hold, E‖Yt‖4 < ∞, and

(3.11) holds. Then, if model (2.1) is correctly specified,
√
TVl(γ̂)

d−→ N(0,V)
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as T →∞, where V = (Il,R1)R2(Il,R1)′ with

R1 = E



Z′t−1 (γ0)
(
∂Zt(γ0)
∂θ′

)
Z′t−2 (γ0)

(
∂Zt(γ0)
∂θ′

)
...

Z′t−l (γ0)
(
∂Zt(γ0)
∂θ′

)


×O−1 and R2 =

 tr{E2[Z′t(γ0)Zt(γ0)]}Il 0

0 O

 .

Based on Theorem 4.1, we construct the inner-product-based test statis-

tic

Π(l) = T
[
V ′l(γ̂)V̂−1Vl(γ̂)

]
(4.12)

to detect the adequacy of model (2.1), where V̂ is the sample counterpart

of V. If Π(l) is larger than the upper-tailed critical value of χ2(l), the fitted

model (2.1) is not adequate at a given significance level. Otherwise, it is

deemed adequate.

Note that if we consider a test based on {Zt(γ̂)} directly, the resulting

limiting distribution is still chi-squared, but its degrees of freedom increase

fast with the dimension n. To avoid this dilemma, we use the inner product

of the residuals to construct our test Π(l), the limiting distribution of which

is independent of n. This new idea is different from the portmanteau test

in Ling and Li (1997), in which the test statistic is constructed based on

the auto-correlations of the transformed scale residuals. In our test, Π(l) is
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based on the auto-covariances of the original vectorized residuals. Clearly,

our idea can be extended easily to the framework in Ling and Li (1997).

Our inner-product-based test Π(l) takes the auto-covariances of all entries

of Zt(γ̂) into account, whereas the idea of a regression-based test in Tse

(2002) considers only one entry of Zt(γ̂) at a time. In view of this, we

prefer to use the proposed inner-product idea for testing purposes.

5. Reduced CBF Models

Because the number of parameters in the CBF model is O(n2), the esti-

mation of the CBF model may be computationally demanding when n is

large. This section introduces two reduced CBF models that are feasible in

fitting RCOV matrices with a large n.

5.1 The VT-CBF model

This subsection proposes a reduced CBF model by using the variance

target (VT) technique in Engle and Mezrich (1996). This technique re-

parameterizes the drift matrix Ω by using the theoretical mean of Yt, such

that the estimation of Ω is excluded in the implementation of the maximum

likelihood estimation. Other related studies on VT time series models in-

clude those of Francq et al. (2011) and Pedersen and Rahbek (2014).

To define our reduced model, we assume that Yt is strictly stationary
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with a finite mean S = E(Yt). By taking the expectation on both sides of

(2.3), we have

Ω = S −
P∑
i=1

K∑
k=1

AkiSA
′
ki −

Q∑
j=1

K∑
k=1

BkjSB
′
kj, (5.13)

because S = E(Yt) = E(Σt). With the help of (5.13), model (2.1) becomes

Yt = Σ
1/2
t ∆tΣ

1/2
t , (5.14)

where all notation is inherited from model (2.1), except that

Σt = S −
P∑
i=1

K∑
k=1

AkiSA
′
ki −

Q∑
j=1

K∑
k=1

BkjSB
′
kj

+
P∑
i=1

K∑
k=1

AkiYt−iA
′
ki +

Q∑
j=1

K∑
k=1

BkjΣt−jB
′
kj. (5.15)

We call model (5.14) the VT-CBF model. Clearly, this reduced model

shares the same probabilistic properties as the full CBF model. Although

the VT-CBF model has the same number of parameters as the full CBF

model, its two-step estimator, given below, is computationally easier than

the MLE for the full CBF model.

To present this two-step estimator, we let θv = (δ′, ν ′)′ ∈ Θv be the

unknown parameters of model (5.14), and let its true value be θv0 = (δ′0, ν
′
0)′,

where Θv = Θδ × Θν is the parametric space with Θδ = Θs × Θu ⊂ Rτ2 ,

τ2 = [(P + Q)K + 1]n2, and Θν ⊂ R2. Let δ = (s′, u′)′ with s = vec(S),
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Θs ∈ Rn2
, and Θu ∈ R[(P+Q)Kn2]. As before, we assume that Θδ and Θν are

compact, and that θv0 is an interior point of Θv.

In the first step, we estimate s by ŝv, where ŝv = vec
(
Yt
)

:= vec
(

1
T

∑T
t=1 Yt

)
.

In the second step, we estimate the remaining parameters ζ = (u′, ν ′)′ by the

constrained MLE based on the following modified log-likelihood function:

L̂v(θv) =
1

T

T∑
t=1

l̂vt(θv), (5.16)

where

l̂vt(θv) =
ν1

2
log
∣∣∣ν2 − n− 1

ν1

Σ̂vt(δ)
∣∣∣− ν1 − n− 1

2
log |Yt|

+
ν1 + ν2

2
log
∣∣∣In +

ν1

ν2 − n− 1
Σ̂−1
vt (δ)Yt

∣∣∣+ C(ν),

and Σ̂vt(δ) is calculated recursively by

Σ̂vt(δ) = S −
P∑
i=1

K∑
k=1

AkiSA
′
ki −

Q∑
j=1

K∑
k=1

BkjSB
′
kj

+
P∑
i=1

K∑
k=1

AkiYt−iA
′
ki +

Q∑
j=1

K∑
k=1

BkjΣ̂vt−j(δ)B
′
kj, (5.17)

based on a sequence of given constant matrices h. Clearly, L̂v(θv) is anal-

ogous to L̂(θ) in (3.9), and is a modification of the following log-likelihood

function:

Lv(θv) =
1

T

T∑
t=1

lvt(θv), (5.18)
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where lvt(θv) is defined in the same way as l̂vt(θv), with Σ̂vt(δ) replaced by

Σvt(δ), and Σvt(δ) is calculated recursively by

Σvt(δ) = S −
P∑
i=1

K∑
k=1

AkiSA
′
ki −

Q∑
j=1

K∑
k=1

BkjSB
′
kj

+
P∑
i=1

K∑
k=1

AkiYt−iA
′
ki +

Q∑
j=1

K∑
k=1

BkjΣvt−j(δ)B
′
kj, (5.19)

based on the observations {Yt}Tt=1 and the initial values {Yt}t≤0. The min-

imizer, ζ̂v = (û′v, ν̂
′
v)
′, of L̂v(ŝv, ζ) on Θu × Θν is the constrained MLE of

(u′0, ν
′
0)′. That is,

(û′v, ν̂
′
v)
′ = arg min

ζ∈Θu×Θν

L̂v(ŝv, ζ). (5.20)

Now, we call θ̂v = (ŝ′v, ζ̂
′
v)
′ the two-step estimator of θv in model (5.14).

Let Ψ(u) =
(
In2 −

∑M
i=1 A

∗
i −

∑M
i=1B

∗
i

)−1(
In2 −

∑M
i=1B

∗
i

)
and wt(θv) =

( Ψ(u)vec(Yt − Σvt(δ))

∂lvt(θv)/∂ζ

)
. The following two theorems give the consistency

and asymptotic normality of θ̂v, respectively.

Theorem 5.1 Suppose that Assumptions 3.1–3.2 hold and E‖Yt‖ < ∞.

Then, θ̂v
a.s.−−→ θv0 as T →∞.

Theorem 5.2 Suppose that Assumptions 3.1–3.2 hold, E‖Yt‖3 <∞, and

J1 = E
[∂2lvt(θv0)

∂ζ∂ζ ′

]
is invertible. (5.21)
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Then,
√
T (θ̂v − θv0)

d−→ N(0,Ov) as T →∞, where

Ov =

 In2 0

−J−1
1 J2 −J−1

1

E(wtw
′
t)

 In2 0

−J−1
1 J2 −J−1

1


′

,

with J2 = E
[
∂2lvt(θv0)
∂ζ∂s′

]
and wt = wt(θv0).

As before, we can use the sample counterparts of the analytic expres-

sions of ∂lvt(θv)/∂θv and ∂2lvt(θv)/∂θv∂θ
′
v to estimate Ov. Although the

VT-CBF model can be estimated using the aforementioned two-step esti-

mation procedure, it still has to handle a large number of estimated pa-

rameters, with order O(n2), caused by the parameter matrices Aki and Bkj.

To construct a more parsimonious VT-CBF model, we impose some re-

strictions on Aki and Bkj. McCurdy and Stengos (1992) and Engle and

Kroner (1995) have suggested using diagonal volatility models, which not

only avoid over-parameterization, but also reflect the fact that the vari-

ances and the covariances rely more on their own past than they do on the

history of other variances or covariances. Motivated by this, we assume

that all Aki and Bkj have a diagonal structure, leading to a diagonal VT-

CBF model. Clearly, the number of estimated parameters in the diagonal

VT-CBF model is O(n), which is feasible for a moderately large, but fixed

n.
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Next, similarly to Π(l) in (4.12), we construct inner-product-based test

statistics to check the adequacy of model (2.1) based on the two-step estima-

tor θ̂v. Let δ0 = (s′0, u
′
0)′, δ̂v = (ŝ′v, û

′
v)
′, Zvt(δ) = vec(Σ

−1/2
vt (δ)YtΣ

−1/2
vt (δ) −

In) be the residual vector for a given δ, bvt,j(δ) = Z′vt(δ)Zvt−j(δ) be the

inner product of the residuals at lag j, and

Vvl(δ) =
1

T

T∑
t=l+1

(
bvt,1 (δ) ,bvt,2 (δ) , · · · ,bvt,l (δ)

)′
.

The asymptotic property of Vvl(δ̂v) is given in the following theorem.

Theorem 5.3 Suppose that Assumptions 3.1–3.2 hold, E‖Yt‖4 < ∞, and

(5.21) holds. Then, if model (2.1) is correctly specified,
√
TVvl(δ̂v)

d−→

N(0,Vv) as T →∞, where Vv = (Il,R1v)R2v(Il,R1v)
′, with

R1v = E



Z′vt−1 (δ0) (∂Zvt (δ0) /∂θ′)

Z′vt−2 (δ0) (∂Zvt (δ0) /∂θ′)

...

Z′vt−l (δ0) (∂Zvt (δ0) /∂θ′)


×

 In2 0

−J−1
1 J2 −J−1

1



and

R2v =

 tr{E2[Zvt(δ0)′Zvt(δ0)]}Il 0

0 E(wtw
′
t)

 .

By the preceding theorem, we can adopt the test statistic

Πv(l) = T [V ′vl(δ̂v)V̂−1
v Vvl(δ̂v)] (5.22)
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to detect the adequacy of model (2.1), where V̂v is the sample counterpart

of Vv. If Πv(l) is larger than the upper-tailed critical value of χ2(l) at a

given significance level, the fitted model (2.1) is not adequate. Otherwise,

it is adequate.

5.2 The Factor CBF Model In modern data analysis, the dimension n

may grow with the sample size T in many cases, making the CBF (or VT-

CBF) models computationally infeasible. In addition, the dimension n may

be proportional to m (the average intra-day sample size across all assets and

all days), in which case, the methods used to calculate Yt for fixed n deliver

an inconsistent estimator of Y ∗t ; see, for example, Wang and Zou (2010)

and Tao et al. (2011) for surveys. To overcome this difficulty, we use the

thresholding average realized volatility matrix (TARVM) estimator of Tao

et al. (2011) to calculate Yt. The TARVM is based on the ARVM (Wang

and Zou, 2010), which is estimated by taking the average of the constructed

realized volatility matrices according to different predetermined sampling

frequencies. The TARVM further thresholds the elements in each estimated

RCOV matrix from the ARVM method, so that a certain sparsity structure

is retained and the resulting estimator is consistent for large n, which can

be growing with (or even larger than) T . For more recent works in this

direction, refer to Aı̈t-Sahalia and Xiu (2017) and Kim et al. (2018), and
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the references therein.

Because the dimension of Yt may be very large, it seems difficult to

study the dynamics of Yt without imposing a specific structure. Here, we

adopt the factor model proposed by Tao et al. (2011) by assuming that

Y ∗t = FY ∗ftF
′ + Y ∗0 , (5.23)

where Y ∗ft is an r×r positive-definite factor covariance matrix, with r being

a fixed integer (much smaller than n), Y ∗0 is an n × n positive-definite

constant matrix, and F is an n× r factor loading matrix normalized by the

constraint F ′F = Ir. In model (5.23), the dynamic structure of Y ∗t is driven

by that of a lower-dimensional latent process Y ∗ft, while Y ∗0 represents the

static part of Y ∗t .

In (5.23), only the column space of F can be identified, and F is not

identified even if F ′F = Ir is imposed. This is because Y ∗t is unchanged

when F and Y ∗ft are replaced by F† = FR and Y ∗ft,† = R−1Y ∗ftR
−1′ , respec-

tively, when R is any r × r matrix satisfying R′R = Ir.

Define

Y
∗

=
1

T

T∑
t=1

Y ∗t , S
∗

=
1

T

T∑
t=1

{
Y ∗t − Y

∗
}2

,

and

Y =
1

T

T∑
t=1

Yt, S =
1

T

T∑
t=1

{
Yt − Y

}2
.
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Then, we estimate Y ∗ft, Y
∗

0 , and F by

Ŷft = F̂ ′YtF̂ , Ŷ ∗0 = Y − F̂ F̂ ′Y F̂ F̂ ′, and F̂ = (f̂1, · · · , f̂r), (5.24)

respectively, where f̂1, · · · , f̂r are the eigenvectors of S corresponding to its

r largest eigenvalues. As suggested by Lam and Yao (2012) and Ahn and

Horenstein (2013), we may select r such that the r largest ratios of adjacent

eigenvalues are significantly larger.

In order to study the asymptotics of the proposed estimators, we intro-

duce the following technical assumptions.

Assumption 5.1 All row vectors of F ′ and Y ∗0 satisfy the sparsity condi-

tion below. For an n-dimensional vector (x1, · · · , xn), we say it is sparse if

it satisfies
n∑
i=1

|xi|δ∗ ≤ Uπ(n),

where δ∗ ∈ [0, 1), U is a positive constant, and π(n) is a deterministic

function of n that grows slowly in n, with typical examples π(n) = 1 or

log(n).

Assumption 5.2 The factor model (5.23) has r fixed factors, and the ma-

trices Y ∗0 and Y ∗ft satisfy ‖Y ∗0 ‖ < ∞ and max
1≤t≤T

‖Y ∗ft,jj‖ = Op(B(T )) for

j = 1, 2, · · · , r, where Y ∗ft,jj is the jth diagonal entry of Y ∗ft, and 1 ≤ B(T ) =

o(T ).
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Assumption 5.3 max
1≤t≤T

‖Y ∗t −Yt‖ = Op(A(n,m, T )) for some rate function

A(n,m, T ), such that A(n,m, T )B5(T ) = o(1).

Assumptions 5.1–5.3 are sufficient to prove the consistency of Ŷft. For

the TARVM, we can take A(n,m, T ) = π(n)[em(n2T )1/β]1−δ∗ log T and

B(T ) = log T with em = m−1/6, such that A(n,m, T )B5(T ) = o(1) for

large β; see Tao et al. (2011). Note that Assumptions 5.1–5.3 do not rule

out the case that n is larger than T , as long as n2T grows more slowly than

mβ/6. For other estimators, the rate A(n,m, T ) may be improved; see Tao

et al. (2013).

Theorem 5.4 Suppose that Assumptions 5.1–5.3 and the conditions in

Theorem 3.2 hold. Then, as n,m, and T go to infinity,

(i) F ′F̂ − Ir = Op(A(n,m, T )B(T )),

(ii) Ŷft − Yft = Op(A
1/2(n,m, T )B3/2(T )),

where Yft = Y ∗ft + F ′Y ∗0 F and F = (f1, · · · , fr), with f1, · · · , fr being the

eigenvectors of S̄∗ corresponding to its r largest eigenvalues.

The above theorem indicates that Ŷft is a more consistent estimator of

Yft than is Y ∗ft. Next, we assume that Yft satisfies the CBF model; that is,

Yft|Gt−1 ∼ F

(
ν,
ν2 − n− 1

ν1

Σft

)
, (5.25)
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with E(Yft|Gt−1) = Σft, where Σft is defined in the same way as Σt in (2.3),

with Yt replaced by Yft, and the remaining notation and setup inherited

from model (2.1). We call models (5.23) and (5.25) the factor CBF (F-CBF)

model. In particular, if Σft has the HAR dynamical structure in (2.6), the

resulting model is called the factor CBF-HAR (F-CBF-HAR) model. Based

on this model, we have Y ∗t = F (Yft − F ′Y ∗0 F )F ′ + Y ∗0 . Because Yt ≈ Y ∗t ,

this implies that we can study the large-dimensional matrix Yt by using an

r × r low-dimensional matrix Yft.

Because Yft is not observable, we should estimate model (5.25) based

on Ŷft. Hence, we consider a feasible MLE of θ0 in model (5.25) given by

θ̂1f = (γ̂′1f , ν̂
′
1f )
′ = arg min

θ∈Θ
L̂f (θ),

where L̂f (θ) is defined in the same way as L̂(θ) in (3.9), with Yt and Σ̂t(γ)

replaced by Ŷft and Σ̂ft(γ), respectively. The following theorem shows that

θ̂1f is consistent with the ideal MLE θ̂2f based on Yft, where

θ̂2f = (γ̂′2f , ν̂
′
2f )
′ = arg min

θ∈Θ
Lf (θ),

and Lf (θ) is defined in the same way as L(θ) in (3.7), with Yt and Σt(γ)

replaced by Yft and Σft(γ), respectively.

Theorem 5.5 Suppose that the conditions in Theorem 5.4 hold. Then, as

n,m, and T go to infinity, θ̂1f−θ̂2f = Op(B(T )/T )+Op(A
1/2(n,m, T )B5/2(T )).
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Because the dimension of Yft is r (much smaller than n), the calculation

of θ̂1f is computationally feasible. In order to further reduce the number of

parameters in model (5.25), we can also assume that Yft follows a VT-CBF

model. This leads to the F-VT-CBF model, which includes the F-VT-CBF-

HAR model as a special case. For this F-VT-CBF model, we consider its

feasible two-step estimator θ̂1fv = (ŝ′1fv, ζ̂
′
1fv)

′, where

ŝ1fv =
1

T

T∑
t=1

Ŷft, ζ̂1fv = (û′1fv, ν̂
′
1fv)

′ = arg min
ζ∈Θu×Θν

L̂fv(ŝ1fv, ζ),

and L̂fv(θv) is defined in the same way as L̂v(θv) in (5.16), with Yt and

Σ̂vt(δ) replaced by Ŷft and Σ̂fvt(δ), respectively. Similarly to Theorem 5.5,

θ̂1fv is consistent with the ideal two-step estimator θ̂2fv = (ŝ′2fv, ζ̂
′
2fv)

′ based

on Yft, where

ŝ2fv =
1

T

T∑
t=1

Yft, ζ̂2fv = (û′2fv, ν̂
′
2fv)

′ = arg min
ζ∈Θu×Θν

Lfv(ŝ2fv, ζ),

and Lfv(θv) is defined in the same way as L(θv) in (5.18), with Yt and Σt(δ)

replaced by Yft and Σfvt(δ), respectively.

Theorem 5.6 Suppose that the conditions in Theorem 5.4 hold. Then, as

n,m, and T go to infinity,

(i) ŝ1fv − ŝ2fv = Op(A
1/2(n,m, T )B3/2(T )),

(ii) ζ̂1fv − ζ̂2fv = Op(B(T )/T ) +Op(A
1/2(n,m, T )B5/2(T )).
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In particular, if Yft follows a diagonal VT-CBF model, the number of

estimated parameters in model (5.25) is O(r), which is easy to calculate in

practice. In view of model (5.23) and the fact that F ′F = Ir, we can predict

Yt by either F̂ Σ̂ft(γ̂1f )F̂
′+ Ŷ ∗0 based on θ̂1f or by F̂ Σ̂fvt(δ̂1fv)F̂

′+ Ŷ ∗0 based

on θ̂1fv, where δ̂1fv = (ŝ′1fv, û
′
1fv)

′.

6. Simulation

In this section, we first assess the performance of the MLE θ̂ and the two-

step estimator θ̂v in the finite sample. We generate 1000 replications of

sample size T = 1000 and 2000 from the following model:

Yt = Σ
1/2
t ∆tΣ

1/2
t with Σt = Ω0 + A10Yt−1A

′
10 +B10Σt−1B

′
10, (6.26)

where

Ω0 =


0.5 0.2 0.3

0.2 0.5 0.25

0.3 0.25 0.5

 , A10 =


0.4 0 0

0 0.55 0

0 0 0.5

 , B10 =


0.4 0 0

0 0.3 0

0 0 0.5

 ,

{∆t} is a sequence of independent F
(
ν0,

ν20−n−1
ν10

In
)

distributed random ma-

trices with n = 3, and ν0 = (10, 8), (15, 10), or (20, 10). For each repetition,

we calculate θ̂, θ̂v, and their related asymptotic standard deviations. For θ̂v,

we report the results related to Ω instead of S, and hence the asymptotic

standard deviation of the estimated parameters in Ω is absent in this case.
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Table 1 reports the sample bias, sample standard deviation (SD), and

average asymptotic standard deviation (AD) of θ̂ and θ̂v. From this table,

we can see that the biases of both estimators are small relative to the

magnitude of the parameters, and they become smaller as the sample size

T increases. This ensures the accuracy of both estimators. Furthermore, we

find that the SDs are, in general, close to the ADs for both estimators, and

all of the SDs and ADs become smaller as T increases from 1000 to 2000. In

terms of ADs or SDs, θ̂ is, in general, more efficient than θ̂v, although this

efficiency advantage is weak for many parameters. However, the estimation

time for θ̂v is almost 70% of that for θ̂, and this computation advantage can

be more significant when n increases.

Next, we examine the performance of the inner-product-based tests Π(l)

and Πv(l) in the finite sample. We generate 1000 replications of sample size

T = 1000 and 2000 from the following model:

Yt = Σ
1/2
t ∆tΣ

1/2
t with Σt = Ω0 + A10Yt−1A

′
10 + A20Yt−2A

′
20 +B10Σt−1B

′
10,

(6.27)

where the values of Ω0, A10, and B10 are chosen as in (6.26), A20 =

diag{λ, λ, λ} is a diagonal matrix with λ = 0, 0.05, 0.1, 0.15, 0.2, and {∆t}

is a sequence of independent F
(
ν0,

ν20−n−1
ν10

In
)

distributed random matrices

with n = 3 and ν0 = (10, 8). We fit each replication using the CBF model
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with (K,P,Q) = (1, 1, 1), and use Π(l) and Πv(l) to check whether the

fitted model is adequate. Here, we set the significance level α = 0.05 and

l = 2, 3, 4, 5, 6. The empirical sizes and power of both tests are reported in

Table 2, with sizes corresponding to the results for the case of λ = 0. From

Table 2, we find that Π(l) and Πv(l) always have accurate sizes, although

they are slightly oversized for small T . The power of both test is as ex-

pected. First, all of the power values become larger as T increases. Second,

both tests become more powerful as λ becomes larger. Third, the power of

Π(l) and Πv(l) is comparable, but the former needs a longer computational

time. Note that when ν0 = (15, 10) and (20, 10), the test results are similar

to those for ν0 = (10, 8), and hence are not reported for brevity.

Overall, both estimators θ̂ and θ̂v and both tests Π(l) and Πv(l) exhibit

good performance, especially when the sample size T gets larger. When the

dimension of Yt is small, our simulation results show that θ̂v is only slightly

less efficient than θ̂, and Πv(l) is, in general, as powerful as Π(l). When

the dimension of Yt is large, θ̂v and Πv(l) enjoy faster computation speeds

than those of θ̂ and Π(l), respectively. As such, we recommend using θ̂v

and Πv(l) in practice.
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Table 2: The results of Π(l) and Πv(l) for model (6.27)

l = 2 l = 3 l = 4 l = 5 l = 6

λ T Π(l) Πv(l) Π(l) Πv(l) Π(l) Πv(l) Π(l) Πv(l) Π(l) Πv(l)

0 1000 0.043 0.037 0.048 0.045 0.052 0.054 0.047 0.048 0.049 0.054

2000 0.048 0.056 0.058 0.059 0.053 0.054 0.052 0.059 0.051 0.052

0.05 1000 0.048 0.045 0.051 0.048 0.058 0.053 0.060 0.052 0.061 0.062

2000 0.060 0.063 0.063 0.073 0.064 0.075 0.063 0.076 0.058 0.074

0.1 1000 0.238 0.238 0.210 0.211 0.196 0.199 0.196 0.199 0.179 0.183

2000 0.414 0.408 0.371 0.364 0.350 0.354 0.309 0.328 0.316 0.320

0.15 1000 0.885 0.854 0.847 0.818 0.818 0.793 0.784 0.762 0.768 0.746

2000 0.974 0.956 0.966 0.951 0.956 0.933 0.946 0.925 0.941 0.919

0.2 1000 0.976 0.924 0.972 0.916 0.964 0.893 0.961 0.889 0.956 0.887

2000 0.992 0.951 0.989 0.945 0.987 0.923 0.987 0.914 0.985 0.910

7. Applications

In this section, we consider two applications to the U.S. stock market. Ap-

plication 1 studies the low-dimensional RCOV matrix series calculated using

the composite realized kernels (CRK) in Lunde et al. (2016). Application

2 studies the high-dimensional RCOV series calculated using the TARVM

estimator in Tao et al. (2011).
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7.1 Application 136

7.1 Application 1

In this application, we revisit the RCOV matrix data of Hewlett-Packard

Development Company, L.P. (HPQ), International Business Machines Cor-

poration (IBM), and Microsoft Corporation (MSFT) in Lunde et al. (2016).

This data set, denoted by {Yt}1474
t=1 , ranges from January 2006 to December

2011, with 1474 observations in total. Here, two flash crashes are flagged

on May 6, 2010, and August 9, 2011, and are replaced by an average of the

nearest five preceding and following matrices.
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Figure 2: Components of Yt

Figure 2 plots the diagonal and off-diagonal components of {Yt}1474
t=1 ,
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Figure 3: Sample ACFs of each component Yt,ij

showing that Yt has a clear clustering feature. Figure 3 plots their sam-

ple autocorrelation functions (ACFs), which show the significant temporal

dependence of Yt. Based on these facts, we first fit {Yt}1474
t=1 using a di-

agonal VT-CBF model with (P,Q,K) = (3, 1, 1), where the order K is

taken as one for ease of model identification, and the orders P and Q are

selected using the Bayesian information criterion (BIC). Specifically, this

diagonal VT-CBF model is estimated using the two-step estimation proce-

dure, and the corresponding estimates are give in Table 3. Second, because

the sample ACFs of each component in Figure 3 decay slowly, we also fit

{Yt}1474
t=1 using a diagonal VT-CBF-HAR model; the related estimation re-
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7.1 Application 138

sults are also listed in Table 3. From this table, we find that the estimates

of the degrees of freedom (especially for ν2) in both fitted models are close

to each other, and both estimates of ν2 are small, indicating the heavy-

tailedness of the examined data. For the estimates of the mean parameter

matrix S, its standard errors based on the VT-CBF model are smaller than

those based on the VT-CBF-HAR model. For other estimates of the pa-

rameter matrices, the estimated diagonal components in each parameter

matrix seem to have similar values, meaning that the three stocks possi-

bly have similar temporal structures. This similarity can also be seen from

the persistence values of each stock in Table 3, where the persistence of

stock s is defined by
∑P

i=1A
2
1i,ss +

∑Q
j=1B

2
1j,ss for the VT-CBF model and

A2
(d),ss + A2

(w),ss + A2
(m),ss for the VT-CBF-HAR model. After the estima-

tion, we apply our test statistics Πv(l) to both fitted models, and the results

summarized in Table 4 imply that both fitted models are adequate at the

5% level.

Next, we consider the forecasting performance of our proposed diagonal

VT-CBF and VT-CBF-HAR models. Specifically, we compute the one-step,

five-step and ten-step predictions of the RCOV matrices based on a rolling

window procedure, with the window size equal to T0 = 800. That is, for

T0 ≤ t ≤ T − t0, we fit the models based on T0 observations {Ys}ts=t−T0+1,
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Table 3: The results of the estimated diagonal VT-CBF and VT-CBF-HAR

models

Diagonal VT-CBF model

ν̂v Ŝv Â11,v B̂11,v B̂12,v B̂13,v persistence

74.0110 3.1523 1.1099 1.1635 0.7207 0.5358 0.0117 0.4129 0.9771

(10.7545) (1.8844) (0.9031) (0.7705) (0.0223) (0.0365) (0.0176) (0.0354)

40.5849 1.1099 2.3683 1.0965 0.7200 0.5620 0.0119 0.3800 0.9788

(3.9787) (0.9031) (2.1165) (0.9209) (0.0246) (0.0289) (0.0177) (0.0382)

1.1635 1.0965 2.7883 0.7118 0.5579 0.0127 0.3977 0.9762

(0.7705) (0.9209) (1.3276) (0.0211) (0.0292) (0.0190) (0.0354)

Diagonal VT-CBF-HAR model

ν̂v Ŝv Â(d),v Â(w),v Â(m),v persistence

69.0222 3.1523 1.1099 1.1635 0.6954 0.5735 0.3891 0.9639

(6.2261) (2.2543) (1.0464) (0.8881) (0.0256) (0.0443) (0.0344)

40.4021 1.1099 2.3683 1.0965 0.6884 0.6027 0.3557 0.9637

(2.9408) (1.0464) (2.3391) (1.0210) (0.0275) (0.0318) (0.0426)

1.1635 1.0965 2.7883 0.6703 0.6041 0.3812 0.9596

(0.8881) (1.0210) (1.4971) (0.0279) (0.0318) (0.0364)

The asymptotic standard errors are given in parentheses.
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Table 4: The results of Πv(l) for the diagonal VT-CBF and VT-CBF-HAR

models

Diagonal VT-CBF model Diagonal VT-CBF-HAR model

l 2 3 4 5 6 2 3 4 5 6

Πv(l) 1.494 4.170 8.004 9.428 11.513 4.385 6.127 7.004 10.310 11.583

p-value 0.474 0.244 0.091 0.093 0.074 0.112 0.106 0.136 0.067 0.072

and forecast Ŷt+t0 with t0 = 1, 5, 10, and calculate the forecasting error as

Ŷt+t0 −Yt+t0 . To compare the importance of ν2 in the CBF models, we also

apply the diagonal VT-CAW and VT-CAW-HAR models perform predic-

tions. The diagonal VT-CAW and VT-CAW-HAR models are defined in

the same way as the diagonal VT-CAW and VT-CAW-HAR models, except

that the matrix-F distribution for ∆t in the latter two models is replaced by

the Wishart distribution. In addition to the CAW-type models, we further

include a diagonal VAR-HAR model for comparison, where this VAR model

uses a HAR structure with the diagonal autoregressive parameter matrices

to fit yt = vech(Yt).

Table 5 gives the average forecasting errors in Frobenius and spectral

norms for all models. Here, we find that, regardless of the prediction hori-

zon, the diagonal VT-CBF-HAR model always has the smallest forecasting

error in both norms. Moreover, we apply the DM test of Diebold and
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Mariano (1995) to examine whether the diagonal VT-CBF-HAR model has

significantly better forecasting accuracy than those of the other four com-

peting models. The corresponding results are given in Table 5, and show

that the VT-CBF-HAR model is significantly better than its four compet-

ing models in terms of the five-step and ten-step forecasts. For one-step

forecasts, the VT-CBF-HAR and VT-CBF model models have comparable

forecasting accuracy, and the VT-CBF-HAR model is significantly better

than the remaining three models at the 10% level. Note that the VAR-

HAR model always performs worst in all examined cases, probably because

it disentangles the matrix-structure of the RCOV matrices, which may have

some intrinsic and useful value for forecasts.

7.2 Application 2

In this section, we consider intraday data of 112 stocks from four major

sectors constituting the S&P 500 index: 31 stocks from the financial sector,

31 stocks from the industrial sector, 25 stocks from the health care sector,

and 25 stocks from consumer discretionary sector; see the full lists of stocks

in Appendix S4. All intraday price data are downloaded from the Wharton

Research Data Services (WRDS) database, and are taken from July 1 ,

2009, to December 30, 2016, including a total of 1890 non-missing dates of
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Table 5: Forecasting errors based on different models and the related DM

testing results

1-step 5-step 10-step

Diagonal Model Frobenius Spectral Frobenius Spectral Frobenius Spectral

VT-CBF-HAR 1.5284 1.4607 1.9725 1.8850 2.2108 2.1091

VT-CBF 1.5349 1.4664 1.9955 1.9069† 2.2802∗ 2.1755∗

VT-CAW-HAR 1.5383∗ 1.4703∗ 2.0029∗ 1.9147∗ 2.2864� 2.1813�

VT-CAW 1.5390 1.4699 2.0253� 1.9351� 2.3364� 2.2286�

VAR-HAR 1.6472� 1.5661� 2.1700� 2.0626� 2.6088� 2.4711�

The DM test is used to compare the prediction accuracy between the diagonal VT-CBF-HAR and

the other four competing models. The result for each competing model is marked with a “†”, “∗” or

“�” if the DM test implies that the Diagonal VT-CBF-HAR model gives significantly more accurate

predictions than this competing model at the 10%, 5%, or 1% level, respectively.
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trading data.

Based on 100 times log of the price data, the daily RCOV matrices

{Yt}1890
t=1 are calculated using the TARVM method of Tao et al. (2011) for

each sector.

For each sector, because the dimension of the RCOV matrix is large,

we fit the RCOV matrix data using the diagonal F-VT-CBF and F-VT-

CBF-HAR models. To do this, we first look for the value of r in model

(5.23) by plotting the ratios { λi
λi+1
} for each sector in Fig 4, where {λi} are

the eigenvalues of S̄ in descending order. From Fig 4, we can choose r = 3

for the financial sector, r = 2 for the industrial sector, r = 2 for the health

care sector, and r = 1 for the consumer discretionary sector. To get more

information, we also plot the ratios { λi
λi+1
} for all four pooled sectors in Fig 5,

which suggests r = 3. This implies that all 112 stocks considered may be

driven by three latent factors. However, only two may affect the industrial

and health care sectors, and only one may affect the consumer discretionary

sector. Hence, it is more reasonable to study the RCOV matrix data across

sectors rather than together.

Next, we estimate the diagonal F-VT-CBF and F-VT-CBF-HAR mod-

els, and choose the orders using a similar procedure to that in Application

1; the related results are reported in Table 6. From this table, we find
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Figure 4: Ratios of adjacent eigenvalues of S̄ for each sector

that except for the mean parameter matrix, the diagonal components of

other parameter matrices seem to have different values, meaning that each

component of Yft has a different dynamical structure. Moreover, the values

of persistence for Yft,ss show clear differences across the four sectors, with

the largest persistence in the financial sector and the smallest persistence

in the health care sector. This finding indicates that the effect of past stock

returns to its current volatility decays very slowly in the financial sector,

but behaves oppositely in the health care sector.

Finally, we examine the forecasting performance of our F-CBF models.
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Figure 5: Ratios of adjacent eigenvalues of S̄ for all four pooled sectors

As in Application 1, five different diagonal factor models (see Table 7)

are considered to forecast Yt, based on a rolling window procedure with a

window size equal to 1000. Their forecasting performance is evaluated using

the average of the forecasting errors in the Frobenius and spectral norms as

well as the results of the related DM test in Table 7. From this table, we

can see that except for the health care sector, the diagonal F-VT-CBF-HAR

model always has the smallest forecasting error and the diagonal F-VAR-

HAR model has the largest forecasting error. For one-step forecasts in

the health care sector, the diagonal F-VT-CAW-HAR has a slightly smaller
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Table 6: The results of the estimated diagonal F-VT-CBF and F-VT-

CBF-HAR models
Diagonal F-VT-CBF model

Sector ν̂fv Ŝfv Â11,fv B̂11,fv B̂12,fv B̂13,fv B̂14,fv persistence

Financial

35.3380 25.7553 0.6808 0.1389 0.7269 0.5118 0.2741 0.3219 0.9691
(2.9679) (11.0314) (2.3577) (0.6519) (0.0348) (0.0518) (0.1014) (0.0606)
19.257 0.6808 2.5799 0.0211 0.6844 0.5382 0.3172 0.3628 0.9903

(1.0419) (2.3577) (9.6931) (0.1730) (0.0608) (0.1181) (0.1831) (0.0699)
0.1389 0.0211 1.6309 0.7292 0.3010 0.4490 0.3817 0.9696

(0.6519) (0.1730) (1.8857) (0.0732) (0.1468) (0.0897) (0.1201)

Industrial

24.9287 17.3161 2.1513 0.7277 0.6488 0.9505
(6.9460) (7.0877) (1.0290) (0.0729) (0.0709)
22.7808 2.1513 1.0614 0.6716 0.6921 0.9300
(7.6622) (1.0290) (0.3786) (0.0317) (0.0373)

Health Care

24.3415 8.6744 3.4402 0.7617 0.5396 0.1129 0.8841
(4.9720) (2.9442) (0.7505) (0.1324) (0.0651) (0.6685)
15.9965 3.4402 2.185 0.7351 0.5706 0.0001 0.8660
(5.1757) (0.7505) (0.4998) (0.1407) (0.1585) (0.8598)

Consumer
Discretionary

22.4570 15.3282 0.7516 0.4517 0.2604 0.1971 0.2666 0.9467
(4.0371) (4.9315) (0.0261) (0.0724) (0.1171) (0.1711) (0.1032)
12.2757
(1.4843)

Diagonal F-VT-CBF-HAR model

Sector ν̂fv Ŝfv Â(d),fv Â(w),fv Â(m),fv persistence

Financial

38.0409 25.7553 0.6808 0.1389 0.7041 0.5069 0.4573 0.9618
(3.1046) (15.5296) (2.6814) (0.8796) (0.0259) (0.0830) (0.1098)
18.9242 0.6808 2.5799 0.0211 0.6676 0.4588 0.5739 0.9855
(0.8746) (2.6814) (10.6104) (0.2816) (0.0441) (0.1162) (0.0628)

0.1389 0.0211 1.6309 0.7659 0.2502 0.5476 0.9491
(0.8796) (0.2816) (1.2904) (0.0484) (0.1678) (0.0537)

Industrial

25.0002 17.3161 2.1513 0.7161 0.5494 0.3549 0.9406
(5.9220) (10.0000) (1.2538) (0.0699) (0.0758) (0.0458)
22.3305 2.1513 1.0614 0.6361 0.6086 0.3283 0.8830
(6.7511) (1.2538) (0.4310) (0.0462) (0.0970) (0.1484)

Health Care

23.3766 8.6744 3.4402 0.7259 0.5357 0.1944 0.8625
(3.6648) (3.2870) (0.8134) (0.1095) (0.1141) (0.0369)
16.1320 3.4402 2.1850 0.6961 0.5689 0.0691 0.8130
(4.6804) (0.8134) (0.5280) (0.0918) (0.1620) (0.2421)

Consumer
Discretionary

23.1216 15.3282 0.7285 0.4865 0.4092 0.9348
(3.2789) (6.0954) (0.0299) (0.0599) (0.0502)
11.9375
(1.1630)

The asymptotic standard errors given in parentheses are based on Ŷft rather than Yft.

forecasting error than that of the diagonal F-VT-CBF-HAR model. In view

of the results of the DM test, the diagonal F-VT-CBF-HAR model exhibits

a significantly better performance than the other four models in terms of

five-step and ten-step forecasts. However, this advantage is slightly weak in

terms of one-step forecasts, for which the diagonal F-VT-CBF and F-VT-
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CAW-HAR models have similar performance in the industrial sector, and

the diagonal F-VT-CAW-HAR and F-VAR-HAR models have comparative

performance in the health care sector.

8. Conclusion

We propose a new CBF model to study the dynamics of RCOV matrices.

For this CBF model, we explore its stationarity and moment properties,

establish the asymptotics of its MLE, and investigate inner-product-based

tests for its model checking. Hence, a systematic inferential tool for this

CBF model is available for empirical researchers. In order to deal with large-

dimensional RCOV matrices, we also construct two reduced CBF models:

the VT-CBF model and the F-CBF model. For both reduced models, the

asymptotic theory of the estimated parameters is derived. Compared with

the CAW model with Wishart innovations, the CBF model with matrix-F

innovations is better able to capture the heavy-tailed RCOV. This advan-

tage is demonstrated by two real examples on U.S. stock markets. As

motivated by Chiriac and Voev (2011), an obvious future work is to intro-

duce a fractional integration structure into our CBF models. Furthermore,

we can extend the idea of using the matrix-F innovation in a number of

ways, resulting in a large family of models. This is important in terms of
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Table 7: Forecasting errors based on different factor models and the related

DM testing results

1-step 5-step 10-step

Sector Diagonal Model Frobenius Spectral Frobenius Spectral Frobenius Spectral

Financial

F-VT-CBF-HAR 8.7701 7.9339 10.4581 9.7229 11.0221 10.3200

F-VT-CBF 8.8116 7.9824† 10.6677∗ 9.9315� 11.3503∗ 10.6713�

F-VT-CAW-HAR 8.7865 7.9644∗ 10.5183 9.8144† 11.1072 10.4575

F-VT-CAW 8.8354∗ 8.0248� 10.7097∗ 10.0151∗ 11.5030� 10.8786�

F-VAR-HAR 8.8878∗ 8.0662∗ 11.1055� 10.4644� 11.7725� 11.1745�

Industrial

F-VT-CBF-HAR 7.9567 7.0936 9.3154 8.5480 9.8270 9.0842

F-VT-CBF 7.9735 7.1169 9.4094 8.6334 9.9837 9.2397

F-VT-CAW-HAR 7.9680 7.1112† 9.4106∗ 8.6494∗ 10.0565� 9.3255�

F-VT-CAW 7.9995∗ 7.1450∗ 9.4645∗ 8.7001∗ 10.1157∗ 9.3826∗

F-VAR-HAR 8.0567∗ 7.2170∗ 9.6801� 8.9531� 10.2809� 9.5794�

Health Care

F-VT-CBF-HAR 6.6253 5.8586 7.4977 6.8076 7.8436 7.1863

F-VT-CBF 6.6628† 5.9019† 7.6400∗ 6.9605∗ 8.0708� 7.4398�

F-VT-CAW-HAR 6.6126 5.8559 7.5658∗ 6.8892∗ 7.9743� 7.3317�

F-VT-CAW 6.7451� 6.0117� 8.0423� 7.3944� 8.3738� 7.7569�

F-VAR-HAR 6.6688 5.8954 7.6163∗ 6.9389∗ 7.9457† 7.2872

Consumer

Discretionary

F-VT-CBF-HAR 8.3355 7.0130 9.3278 8.1225 9.6830 8.5081

F-VT-CBF 8.3552† 7.0415∗ 9.4191† 8.2195† 9.8426∗ 8.6883∗

F-VT-CAW-HAR 8.3517∗ 7.0307∗ 9.3886� 8.1935� 9.7918� 8.6294�

F-VT-CAW 8.3727∗ 7.0560� 9.4489∗ 8.2546∗ 9.9211� 8.7754�

F-VAR-HAR 8.3914∗ 7.0762∗ 9.5017∗ 8.3282∗ 9.9085� 8.7575�

The DM test is used to compare the prediction accuracy between the diagonal F-VT-CBF-HAR and

the other four competing models. The result for each competing model is marked with a “†”, “∗”

or “�” if the DM test implies that the Diagonal F-VT-CBF-HAR model gives significantly more

accurate predictions than this competing model at the 10%, 5%, or 1% level, respectively.
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studying the positive definite dynamics.

Supplementary Material

The online Supplementary Material contains the proofs of all theorems,

some useful derivatives, and the stock lists used in the second application.
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