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Abstract: Minimum aberration is a popular method of selecting fractional facto-

rial designs. Numerous extensions to the original methods have benefited fields

of experimental design such as multi-stratum designs, multi-group designs, and

multi-platform designs. However, most of these extensions are ad hoc, devel-

oped on case-by-case bases without strong statistical justifications or a unified

rationale. As such, we provide a new perspective on minimum aberration using

a Bayesian approach. Our theory includes a unified framework for minimum

aberration and is easily applied to many situations. Furthermore, it enables ex-

perimenters to derive their own aberration criteria. Several theoretical results

and three numerical illustrations are provided.
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1. Introduction

Minimum aberration is a well established field. The first aberration crite-

rion was proposed by Fries and Hunter (1980) and is popular for assessing
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fractional factorial designs. It is especially beneficial when experimenters

have little knowledge about the potentially important factorial effects. This

criterion was originally developed to evaluate regular fractional factorial de-

signs with unstructured experimental units ; refer to Wu and Hamada (2009)

and Cheng (2014) for a comprehensive review.

Several modifications of the aberration criterion of Fries and Hunter

(1980) have been proposed, including those for nonregular designs, block

designs, and split-plot designs (Dean et al., 2015). Sitter, Chen, and Feder

(1997), Chen and Cheng (1999), and Cheng and Wu (2002) developed

aberration criteria for blocked two-level regular fractional factorial designs.

Cheng, Li, and Ye (2004) proposed a version for blocked two-level nonreg-

ular fractional factorial designs. Lin (2014) extended the results in Cheng,

Li, and Ye (2004) to blocked mixed-level orthogonal arrays. In addition to

block designs, minimum aberration has been used or modified for split-plot

designs as well. Huang, Chen, and Voelkel (1998), Bingham and Sitter

(1999), and Bingham, Schoen, and Sitter (2004) used it to compare two-

level split-plot designs. Tichon, Li, and Mcleod (2012) considered selecting

split-plot designs under five scenarios, each associated with a modified aber-

ration criterion. Yang and Lin (2017) used the same approach as that of Lin

(2014) to develop an aberration criterion for mixed-level split-plot designs.
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An aberration criterion is mathematically formulated by a wordlength

pattern, which requires an order of desirability among pertinent words. In

the literature, however, most wordlength patterns are ad hoc modifications

of that of Fries and Hunter (1980) and lack strong statistical justifications.

For block designs, one needs to argue an order between block defining words

and treatment defining words, while three distinct orders were individually

proposed by Sitter, Chen, and Feder (1997), Chen and Cheng (1999), and

Cheng and Wu (2002). Apart from the difficulty of judging an appropriate

order, the lengths of defining words do not provide enough information for

ranking designs in many situations, such as blocked nonregular designs.

This is because designs that can estimate the same number of models may

have different estimation efficiencies, not to mention to account for the

structures of experimental units.

We develop a unified theory of aberration criteria for various scenarios

in the literature based on a statistically meaningful framework. Moreover,

our theory yields a systematic method allowing experimenters to derive

aberration criteria appropriate for specific experimental conditions. An-

other work relevant to ours is that of Cheng and Tang (2005), who adopt

the notion of minimizing contamination. However, Cheng and Tang (2005)

studied two-level factorial designs with unstructured experimental units.
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Our theory, based on a Bayesian approach, has a sound statistical ratio-

nale and can be used to assess and compare mixed-level fractional factorial

designs with experimental units that have complex structures.

In our work, the treatment factors are allowed to have multiple groups,

in the sense that those in the same group are assumed to have (nearly) equal

importance on the response. This setting has been considered in the litera-

ture, for example, with control factors and noise factors in robust parame-

ter designs (Taguchi, 1987). Zhu (2003) studied two-level factorial designs

with multiple groups of treatment factors. Tichon, Li, and Mcleod (2012)

investigated optimal split-plot designs with two groups of treatment factors,

separately corresponding to the whole-plot and subplot strata. Recently, an

application of multi-group treatment factors was studied in multi-platform

experiments (Sadeghi, Qian, and Arora, 2016, 2017), where the sliced fac-

tor itself is in one group and has higher importance than the other factors.

Li, Zhou, and Zhang (2015) and Li, Mee, and Zhou (2018) proposed new

aberration criteria for factorial designs with multiple groups of treatment

factors. We discuss applying our work to multi-platform experiments in

Section S5 of the Supplementary Material.

The remainder of this paper is organized as follows. Section 2 pro-

vides necessary preliminaries. Section 3 gives the theoretical results of our
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work and introduces a general aberration criterion with some applications.

Section 4 illustrates minimum aberration designs under three settings: un-

structured units, blocked mixed-level orthogonal arrays, and three-stage

manufacturing processes. Finally, Section 5 concludes this paper. All proofs

are deferred to the Supplementary Material.

2. Preliminaries

2.1 Unit factors and block structures

The experimental units considered in this study have a structure, hereafter

referred to as a block structure. Many common block structures, such as

block designs, split-plot designs, strip-plot designs, and block strip-plot

designs, belong to a specific class of block structures: simple block structures

(Nelder, 1965a,b). A larger class of block structures, covering simple block

structures and most block structures commonly encountered in practice, is

that of orthogonal block structures (Speed and Bailey, 1982; Bailey, 1985);

refer to Bailey (2008) and Cheng (2014) for details.

We denote the number of experimental units by N . A block structure

can be described by a set of unit factors defined on the experimental units.

An nF -level unit factor F can be thought of as a partition of the N units

into nF disjoint subsets. Each subset is called an F -class and consists of
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units that have the same level of F . A unit factor is said to be uniform if all

of its classes are of the same size. For two different unit factors F1 and F2,

we say that F1 is nested in (or finer than) F2, denoted by F1 ≺ F2, if two

units in the same F1-class implies that they are in the same F2-class. The

expression F1 � F2 stands for either F1 ≺ F2 or F1 = F2. The finest unit

factor, denoted by E , has N levels, with each class consisting of one single

unit. On the other hand, U denotes the unit factor that has a single level

with all units in the same class. A split-plot design has the block structure

{U ,P , E}, where P partitions the N units into nP whole-plots. We always

include U and E into every block structure. A set of unstructured units can

be treated as having the block structure {U , E}.

In this study, we consider block structures that satisfy conditions (i),

(ii), (iii), (v), and (vi) in Definition 12.4 of Cheng (2014, p. 233), which cover

orthogonal block structures. To save space, these five conditions, denoted

by (S1.1)–(S1.5), and their importance for the theoretical results in our

work are given in Section S1 of the Supplementary Material. Note that

the block structures of most experiments encountered in practice, such as

blocked, split-plot, or strip-plot factorial experiments, satisfy (S1.1)–(S1.5).
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2.2 Treatment factorial effects

Suppose there are n treatment factors with levels p1, ..., pn, and denote∏n
i=1 pi by Ξ. Let β0 be the intercept and β1, ..., βΞ−1 be the Ξ− 1 factorial

effects. Denote the Ξ × 1 vector of all βj by βββ. Let ααα be the Ξ × 1 vector

of the effects of all Ξ treatment combinations. Then, ααα can be expressed

as ααα = Pβββ, where P is a Ξ × Ξ full model matrix for a complete factorial

experiment with PTP = IΞ. It follows that P−1 = PT and βββ = PTααα.

The matrix P can be systematically constructed based on Kurkjian

and Zelen (1962) as follows. For each factor i = 1, ..., n, define a pi × pi

orthogonal matrix Pi, with the first column proportional to the all-one

vector. Then, let the remaining pi − 1 columns define pi − 1 treatment

contrasts of the main effects of factor i. If p1 = 3, for example, a choice

of P1 is


1/
√

3 −1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6

1/
√

3 1/
√

2 1/
√

6

, in which the first column represents

the intercept, the second column represents the linear main effect, and the

third column represents the quadratic main effect. Once P1, ...,Pn have

been constructed, one can obtain P by

P = P1 ⊗ · · · ⊗Pn, (2.1)

where ⊗ denotes the Kronecker product operator.
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The components of βββ can be divided into 2n groups in terms of the

treatment factors involved. Let S be a subset of {1, ..., n}, where the empty

set is denoted by φ. Each S represents one such group and corresponds

to certain βj. For example, S = φ corresponds to the intercept, S =

{i} corresponds to the pi − 1 main effects of factor i, and S = {i1, ..., ik}

corresponds to the (pi1 − 1) · · · (pik − 1) k-factor interactions among factors

i1, ..., ik.

We adopt a Bayesian framework for βββ. To specify the prior distribution

of βββ, we assume that βββ comprises uncorrelated random variables and follows

a zero-mean multivariate normal distribution with var(βl) = var(βj) if both

βl and βj are associated with the same S. Hence, there are at most 2n

distinct values of var(βi). These values are denoted by vS, for S ⊆ {1, ..., n}.

Furthermore, we require

vS ≥ vS′ if S ⊂ S ′. (2.2)

This requirement, referred to as the property of nested decreasing interac-

tion variances in Kerr (2001), is consistent with the effect heredity principle

(Yates, 1935; Wu and Hamada, 2009, p. 172). This Bayesian framework is

inspired by Mitchell, Morris, and Ylvisaker (1995), Kerr (2001), Joseph

(2006), and Joseph and Delaney (2007). A common technique of their

approaches is to induce the prior distribution of βββ from ααα, where ααα is as-
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sumed to be a realization of a stationary Gaussian process. Some results

of the prior distribution of βββ are given in Section S2 of the Supplementary

Material.

2.3 Statistical model

Suppose N experimental units have a block structure B = {F0,F1, ...,Fm},

where F0 = U and Fm = E . For each Fi ∈ B, let XFi
be an N × nFi

incidence matrix that describes the relationship between the units and the

levels of Fi. Each entry of XFi
is zero or one such that the ljth entry of

XFi
is one if and only if the lth unit is in the jth Fi-class.

Under a fractional factorial design d with N treatment combinations,

let

y = Uβββ +
m∑
i=0

XFi
γγγFi ,

where y is a vector of responses, U is the N × Ξ full model matrix under

d (composed of N corresponding rows from P), and γγγFi = (γFi
1 , . . . , γFi

nFi
)T

with γFi
j being the effect of the jth level of unit factor Fi (e.g., block

effects, whole-plot effects, and subplot effects). We assume that the γFi
j are

uncorrelated, with each γFi
j following a zero-mean normal distribution with

variance σ2
Fi

, and that they are independent of βββ. Then, the conditional
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distribution of y given βββ is the multivariate normal distribution

y|βββ ∼ N(Uβββ,
m∑
i=0

σ2
Fi

XFi
XT
Fi

). (2.3)

Let V =
∑m

i=0 σ
2
Fi

XFi
XT
Fi

. If B satisfies conditions (S1.1)–(S1.5), then

V has m+1 eigenspaces WF0 , . . . ,WFm , with one eigenspace associated with

each of the m + 1 unit factors. Here, WF0 = WU is the one-dimensional

space consisting of all the vectors with constant entries, and each other

eigenvector defines a unit contrast (Cheng, 2014, p. 237). It follows that∑m
i=0 PWFi

= IN , where PWFi
is the orthogonal projection matrix onto WFi

.

Let the corresponding eigenvalues be ξF0 , . . . , ξFm . Here, WFi
and ξFi

are

called a stratum and stratum variance, respectively. It can be shown that

ξFi
≤ ξFj

if Fi � Fj (Cheng, 2014, p. 246). The case where γFi
1 , . . . , γFi

nFi

are unknown constants (fixed effects) can be treated by letting σ2
Fi

= ∞,

leading to ξFj
=∞ if Fi � Fj.

A systematic method to construct PWF is as follows. Define VF as

the column space of XF , for each F ∈ B. The orthogonal projection

matrix onto VF is PVF = XF(XT
FXF)−1XT

F . It can be shown that PWF =

PVF −
∑
G∈B:F≺G PWG . Thus, one can obtain every PWF by starting from

PWU = 1
N

1N1TN . More details can be found in Cheng (2014, p. 243).
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3. A general aberration criterion

In this section, we propose an aberration criterion for design assessment

and selection based on the Bayesian approach. This criterion is capable

of handling mixed-level treatment factors, as well as complex structures

of experimental units. In addition, it is easily modified according to ex-

perimenters’ beliefs about important factorial effects. Sections 3.1 to 3.3

illustrate its three common applications.

From (2.2) and (2.3), the posterior distribution βββ|y is multivariate

normal with a mean vector and the covariance matrix cov(βββ|y) = Σβ −

ΣβU
T (UΣβU

T +V)−1UΣβ, where Σβ is the (prior) covariance matrix of βββ.

Let M = cov(βββ|y)−1. A commonly used design selection criterion, Bayesian

D-optimality, maximizes det[M]. However, while the D-optimality has a

good statistical interpretation, it is not easily manageable. A good surro-

gate for the D-optimality, referred to as the (M.S)-optimality due to Eccle-

ston and Hedayat (1974), first maximizes tr[M], and then minimizes tr[M2]

among the designs that maximize tr[M].

For each S ⊆ {1, ..., n}, let US be composed of the columns in U

associated with S. If S = {1, 2} with p1 = 2 and p2 = 3, for example, then

US consists of (2 − 1)(3 − 1) = 2 columns, each representing a treatment

contrast of the two-factor interaction between factors 1 and 2 under the
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given design.

Define

Φ1(d;ξξξ,v) =
m∑
i=0

∑
S⊆{1,...,n}

vS
ξFi

tr
[
UT
SPWFi

US

]
,

Φ2(d;ξξξ,v) =
m∑
i=0

1

ξ2
Fi

tr
[
(ΣβU

TPWFi
U)2

]
+ 2

∑
0≤l<s≤m

1

ξFl
ξFs

tr
[
(ΣβU

TPWFl
U)(ΣβU

TPWFs
U)
]
,

where v and ξξξ are the vectors of vS and ξFi
, respectively. We have the

following result for the Bayesian (M.S)-optimality.

Theorem 1. The Bayesian (M.S)-optimality involves first maximizing Φ1(d;ξξξ,v),

and then minimizing Φ2(d;ξξξ,v) among the designs that maximize Φ1(d;ξξξ,v).

To obtain a more structured form of Φ1(d;ξξξ,v), we need Lemmas 1

and 2 in Section S3 of the Supplementary Material, which jointly state that

tr
[
UT
SUS

]
does not depend on the choice of designs and orthogonal-column

bases of the column space of P. We summarize these the following theorem.

Theorem 2. For an S ⊆ {1, ..., n}, tr
[
UT
SUS

]
is a constant for any choice

of N-run designs, as well as for any choice of orthogonal-column bases in

P.

With Theorem 2 and the property
∑m

i=0 PWFi
= IN , maximizing Φ1(d;ξξξ,v)
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is reduced to minimizing

Φ∗1(d;ξξξ,v) =
m−1∑
i=0

∑
S⊆{1,...,n}

vS

(
1

ξFm

− 1

ξFi

)
tr
[
UT
SPWFi

US

]
by replacing PWFm

with IN −
∑m−1

i=0 PWFi
.

In addition to the choice of designs, Φ∗1(d;ξξξ,v) and Φ2(d;ξξξ,v) depend

on unknown parameters v and ξξξ. The following result serves as a useful

tool for searching for optimal designs with respect to minimizing Φ∗1(d;ξξξ,v)

for all feasible v and ξξξ. Here, v and ξξξ are said to be feasible if v satisfies

(2.2) and Fi ≺ Fj implies ξFi
≤ ξFj

.

Theorem 3. Suppose B is a block structure satisfying conditions (S1.1)–

(S1.5). Then, a necessary and sufficient condition for a design to minimize

Φ∗1(d;ξξξ,v) for all feasible v and ξξξ is that it minimizes

∑
S∈S

∑
i:Fi∈G

tr
[
UT
SPWFi

US

]
,

for all nonempty subsets S ⊆ 2{1,...,n} \ {φ} and G ⊆ B \ {Fm}, such that

S ∈ S, S ′ ∈ 2{1,...,n} \ {φ}, and S ′ ⊂ S ⇒ S ′ ∈ S, (3.4)

F ∈ G,F ′ ∈ B, and F ≺ F ′ ⇒ F ′ ∈ G. (3.5)

We illustrate Theorem 3 using a simple scenario. Suppose n = 2 and

B = {F0,F1,F2} with F2 ≺ F1 ≺ F0. The subsets of 2{1,2} \ {φ} =

{{1}, {2}, {1, 2}} that all satisfy (3.4) are S1 = {{1}}, S2 = {{2}}, S3 =
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{{1}, {2}}, S4 = {{1}, {2}, {1, 2}}. Likewise, the subsets of B \ {F2} that

all satisfy (3.5) are G1 = {F0}, G2 = {F0,F1}. By Theorem 3, if a design

minimizes
∑

S∈Si

∑
j:Fj∈Gl

tr
[
UT
SPWFj

US

]
, for i = 1, ..., 4 and l = 1, 2,

then it minimizes Φ∗1(d;ξξξ,v) for all feasible v and ξξξ.

Theorem 3 extends Theorem 5.1 in Chang and Cheng (2018) in two

ways. First, Chang and Cheng (2018) limit their theory to two-level designs,

whereas here we deal with mixed-level treatment factors. Second, Theorem

3 provides a sufficient and necessary condition for a design to be optimal

for all feasible v and ξξξ, whereas Theorem 5.1 in Chang and Cheng (2018)

requires the values of v.

Similarly to Chang and Cheng (2018), Theorem 3 is able to eliminate in-

ferior designs. For two designs d1 and d2, if
∑

S∈S
∑

i:Fi∈G tr
[
UT
SPWFi

US

]
of d1 is no greater than that of d2 under every combination of S and G,

with strict inequality for at least one combination, then d2 is worse than

d1, and is said to be inadmissible. Eliminating inadmissible designs yields

a considerable reduction of designs that need to be considered. If there

remains one design (up to isomorphism), it minimizes Φ∗1(d;ξξξ,v) for all fea-

sible v and ξξξ. Usually, using Φ∗1(d;ξξξ,v) is enough to distinguish designs.

If more than one nonisomorphic design remains, we can assess them using

either Φ2(d;ξξξ,v) or the actual Bayesian D-optimal criterion.
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In the remainder of this section, we illustrate equivalent forms of min-

imizing Φ∗1(d;ξξξ,v) under several specific scenarios. Some are reduced to

well-known aberration criteria. To define an aberration criterion, one needs

a desirability order about the importance of factorial effects. This can be

achieved under appropriate settings of the values of v.

If it is known that the 2n subsets of {1, ..., n} can be divided into J

groups H1, ...,HJ , such that vS = vS′ for S, S ′ in the same group and vS > vS′

for S ∈ Hl and S ′ ∈ Hl′ with l < l′, then, because Φ∗1(d;ξξξ,v) is linear in

vS’s, the following wordlength pattern is induced:

m−1∑
i=0

{(
1

ξFm

− 1

ξFi

)(∑
S∈H1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
j∈HJ

tr
[
UT
SPWFi

US

])}
.

(3.6)

An aberration criterion can be defined as sequentially minimizing this wordlength

pattern. Since tr
[
UT
SPWFi

US

]
= tr

[
USUT

SPWFi

]
, it follows from the proof

of Lemma 2 (in the Supplementary Material) that (3.6) does not depend

on orthogonal bases in P.

If, on the other hand, the information about important factorial effects

is vague, then the effect hierarchy principle in Wu and Hamada (2009,

p. 172) is often assumed, especially for screening experiments (Dean and

Lewis, 2006). Under the Bayesian framework, this principle is basically

consistent with choosing Hl = {S ⊆ {1, ..., n} : |S| = l}, for l = 1, ..., n; or
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equivalently,

(i) vS = vS′ if |S| = |S ′|,

(ii) vS > vS′ if |S| < |S ′|. (3.7)

It is obvious that (3.7) satisfies (2.2). By replacing “S ′ ⊂ S” in (3.4)

with “vS′ ≥ vS”, we can establish another version of Theorem 3, tailored

to the setting in (3.7).

Theorem 4. Suppose B is a block structure satisfying conditions (S1.1)–

(S1.5). Then, under (3.7), a necessary and sufficient condition for a design

to minimize Φ∗1(d;ξξξ,v), for all v that satisfy (3.7) and feasible ξξξ, is that it

minimizes

∑
S∈S

∑
i:Fi∈G

tr
[
UT
SPWFi

US

]
,

for all nonempty subsets G ⊆ B \ {Fm} satisfying (3.5), and S ⊆ 2{1,...,n} \

{φ} satisfying

S ∈ S, S ′ ∈ 2{1,...,n} \ {φ}, and vS′ ≥ vS ⇒ S ′ ∈ S. (3.8)

For n = 3, the nonempty subsets of 2{1,2,3}\{φ} = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

that all satisfy (3.8) are Sk = {S ⊆ {1, ..., n} : 0 < |S| ≤ k}, k = 1, 2, 3,

each corresponding to main effects, effects up to two-factor interactions, or

effects up to the three-factor interaction.
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When (3.7) holds, with an additional requirement that vS � vS′ if

|S| < |S ′| (i.e., lower-order effects are much more important than higher-

order ones), minimizing Φ∗1(d;ξξξ,v) is equivalent to sequentially minimizing

W =
m−1∑
i=0


(

1

ξFm

− 1

ξFi

) ∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
S:|S|=n

tr
[
UT
SPWFi

US

] .

The W can be regarded as a wordlength pattern and induces an aberration

criterion for complex block structures. This criterion, not an ad hoc one, is

developed based on good properties of a statistical model. If ξξξ are known,

their values can be inserted. Otherwise, based on Theorem 4, a design

sequentially minimizes W for all feasible ξξξ provided that it sequentially

minimizes

WG =

 ∑
i:Fi∈G

∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
i:Fi∈G

∑
S:|S|=n

tr
[
UT
SPWFi

US

] ,

for all G ⊆ B \ {Fm} satisfying (3.5).

Note that each WG can be regarded as a wordlength pattern and induces

an aberration criterion for the block structure G ∪ {Fm}, where all unit

effects are fixed effects; that is, ξF =∞ if F ∈ G, because under the block

structure G ∪ {Fm},

lim
ξF→∞:F∈G

Φ∗1(d;ξξξ,v) ∝
∑
i:Fi∈G

∑
S⊆{1,...,n}

vStr
[
UT
SPWFi

US

]
.

Consequently, if a design has minimum aberration under each case of fixed
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unit effects (i.e., WG with G satisfying (3.5)), then it has minimum aber-

ration under random unit effects (i.e., W).

The aberration criterion induced by W can be applied to any block

structure that satisfies conditions (S1.1)–(S1.5). In Sections 3.1 to 3.3, we

introduce three common applications.

As a remark, if a finer hierarchy exists among βj such that they can

be divided into K groups I1, ...,IK , with those in the same group having

equal variance and var(βj) > var(βj′) for βj ∈ Il and βj′ ∈ Il′ with l < l′,

then a more flexible version of (3.6) is

m−1∑
i=0

{(
1

ξFm

− 1

ξFi

)(
tr
[
UT

1 PWFi
U1

]
, . . . , tr

[
UT
KPWFi

UK

])}
, (3.9)

where Ul is composed of the columns in U associated with the βj belonging

to Il. This is useful in situations such as multi-platform experiments and

experiments with quantitative treatment factors.

3.1 Unstructured units

For unstructured experimental units, the block structures are denoted by

{F0,F1} with F0 = U and F1 = E . Because WF0 is spanned by a vector

of ones, we have PWF0
= 1

N
1N1TN and PWF1

= IN − PWF0
. It follows that
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sequentially minimizing W is equivalent to sequentially minimizing

W0 =

 ∑
S:|S|=1

(1TNUS)(1TNUS)T , . . . ,
∑

S:|S|=n

(1TNUS)(1TNUS)T

 . (3.10)

As given by Cheng (2014, p. 340), the wordlength pattern of the general-

ized aberration criterion proposed by Xu and Wu (2001) takes the following

form: Ξ
N2

∑
S:|S|=k(1

T
NUS)(1TNUS)T , for k = 1, ..., n. Thus, it is equivalent

to sequentially minimizing W0. Moreover, it follows from Theorem 4 that

if a design minimizes
∑

S:0<|S|≤k(1
T
NUS)(1TNUS)T for all k = 1, ..., n, then it

minimizes Φ∗1(d;ξξξ,v) for all v satisfying (3.7); based on this, a generalized

minimum aberration design must not be inadmissible. The following result

implies that a design cannot minimize Φ∗1(d;ξξξ,v) for all v satisfying (3.7)

if it has replication.

Theorem 5. If an N-run design consists of m replicates, then

n∑
k=0

∑
S:|S|=k

(1TNUS)(1TNUS)T = N + 2m.

Theorem 5 discloses a disadvantage of using designs with replicates

in terms of estimating factorial effects. By Theorem 5, for two designs

with the same run size, the one with more replicates has a larger value of∑n
k=0

∑
S:|S|=k(1

T
NUS)(1TNUS)T . Thus, it does not reach the necessary and

sufficient condition in Theorem 4 and cannot minimize Φ∗1(d;ξξξ,v) for all
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v satisfying (3.7). This is not surprising because replicates do not provide

any information about factorial effects.

3.2 A chain of nested unit factors

In many real applications, the experimental units are partitioned by a chain

of nested unit factors, such as block designs, split-plot designs, or split-split

plot designs.

Without loss of generality, suppose the block structure is {F0,F1, ...,Fm}

with Fi ≺ Fj if i > j, where block designs or split-plot designs correspond

to m = 2 and split-split plot designs correspond to m = 3. Because the

G that satisfy (3.5) are {F0}, {F0,F1},..., {F0,F1,F2, ...,Fm−1}, it follows

from Theorem 4 that a design sequentially minimizes W for all feasible ξξξ

provided that it sequentially minimizes

Wl =

 l∑
i=0

∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

l∑
i=0

∑
S:|S|=n

tr
[
UT
SPWFi

US

] ,

for all l = 0, 1, ...,m− 1.

For block or split-plot experiments, we have m = 2 and F1 partitions

the units into blocks or whole-plots. In this case, we have PWF0
= 1

N
1N1TN ,

PWF1
= PVF1

−PWF0
, PWF2

= IN − (PWF0
+ PWF1

), and

W =
∑
i=0,1


(

1

ξF2

− 1

ξFi

) ∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
S:|S|=n

tr
[
UT
SPWFi

US

] .
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Then, we have that if a design sequentially minimizes W0 and W1, then it

sequentially minimizes W for all feasible ξξξ.

Under a block design, W1 defines an aberration criterion for models

with fixed block effects. By letting

W1,i =

 ∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
S:|S|=n

tr
[
UT
SPWFi

US

] , i = 0, 1,

we have W1 = W1,0 + W1,1. It can be seen that W1,0 = 1
N
W0, which

is proportional to the generalized wordlength pattern; also, W1,1 defines a

wordlength pattern proportional to the block wordlength pattern in the lit-

erature (e.g., Cheng, Li, and Ye (2004)). Thus, W1 combines the treatment

wordlength pattern and block wordlength pattern using W1 = W1,0 +W1,1,

which differs from those in previous works, such as Chen and Cheng (1999);

Cheng, Li, and Ye (2004); Lin (2014). For example, Cheng, Li, and Ye

(2004) and Lin (2014) proposed aberration criteria for blocked nonregu-

lar designs by arguing two types of desirability between treatment defining

words and block defining words. The two wordlength patterns in Cheng,

Li, and Ye (2004) are proportional to

W1 = (δ1,0, δ2,0, δ1,1, δ3,0, δ4,0, δ2,1, δ5,0, δ6,0, δ3,1, δ7,0, . . .) ,

W2 = (δ1,0, δ1,1, δ2,0, δ3,0, δ2,1, δ4,0, δ5,0, δ3,1, δ6,0, δ7,0, . . .) ,

with δk,i =
∑

S:|S|=k tr
[
UT
SPWFi

US

]
. Those defined in Lin (2014) possess
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the same patterns but are under (3.9) with Il consisting of the βj of the

same polynomial degree l. It can be seen that δk,1 precedes δ2k,0 in W2,

whereas δ2k,0 precedes δk,1 in W1. Because W1 ∝ limξF1→∞W, we expect

W1 produce designs that are more similar to W2 than to W1 because W2

regards confounding treatments with blocks as more severe than W1 does.

However, deciding to use W1 or W2 relies heavily on subjective judgment.

In our work, the use of W1 is justified by the Bayesian (M.S)-optimality.

In addition, it can be shown that W1 tends to maximize D-efficiency under

certain fixed-effect models. More details can be found in Section S7 of the

Supplementary Material. A numerical comparison of W1, W1, and W2 is

given in Section 4.2.

3.3 Experiments with multiple processing stages

For experiments with multiple processing stages, the experimental units are

partitioned into disjoint classes at each stage. For the treatment factors at

some stage, their levels are randomly assigned to the classes of the par-

tition, with the same level assigned to all units in the same class. Many

industrial experiments have a sequence of processing stages (Mee and Bates,

1998; Butler, 2004; Bingham et al., 2008; Antolino et al., 2009a,b; Ranjan,

Bingham, and Dean, 2009; Cheng and Tsai, 2011; Yuangyai and Lin, 2013).
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In an experiment with multiple processing stages, the partition of the

experimental units at the ith stage defines a unit factor Fi. As mentioned

in Cheng and Tsai (2011), the resulting block structure may not satisfy

conditions (S1.1)–(S1.5). Cheng and Tsai (2011) proved that if the Fi

(except U and E) are uniform, mutually orthogonal, and are not nested in

one another, then the resulting block structure satisfies the five conditions

if and only if these Fi define an orthogonal array of strength two.

Here, we consider block structures B = {U , E ,F1, ...,Fh}, where F1, ...,Fh

define an orthogonal array of strength two on the experimental units. Be-

cause E ≺ F1, ...,Fh ≺ U and the Fi are not nested in one another, the

G that satisfy (3.5) are {U}, {U ,Fi} with 1 ≤ i ≤ h, {U ,Fi,Fj} with

1 ≤ i, j ≤ h,..., {U ,F1, ...,Fh}. There are 2h such subsets to be considered.

It follows that PWU = 1
N

1N1TN and PWFi
= PVFi

−PWU for i = 1, ..., h.

The split-lot designs in Mee and Bates (1998) belong to this category.

Suppose 16 batches of material are to be arranged into four groups of equal

size at each of three stages (h = 3). From Theorem 4, a design sequentially

minimizes W for all feasible ξξξ provided that it sequentially minimizes

WI =

∑
F∈I

∑
S:|S|=1

tr
[
UT
SPWFUS

]
, . . . ,

∑
F∈I

∑
S:|S|=n

tr
[
UT
SPWFUS

] ,

(3.11)

for all I = {U}, {U ,F1}, {U ,F2}, {U ,F3}, {U ,F1,F2}, {U ,F1,F3}, {U ,F2,F3},
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and {U ,F1,F2,F3}. Note that this is a scenario of orthogonal block struc-

tures but not simple block structures.

4. Examples: Minimum aberration designs under three scenar-

ios

In this section, we apply the aberration criteria developed in Section 3 under

(3.7) to three block structures. For the situations where v does not satisfy

(3.7), it is easy to derive appropriate aberration criteria based on the results

in Section 3 (e.g., (3.9)).

4.1 Eighteen-run nonregular designs

Suppose there are 18 unstructured experimental units. We have the block

structure {U , E}. Consider a three-level 18-run orthogonal array of strength

two in columns two to eight of Table 8C.2 of Wu and Hamada (2009), also

given in Section S6 of the Supplementary Material. Many three-level 18-run

nonregular designs with fewer factors can be obtained by deleting columns

from the array.

For n = 3, Wang and Wu (1995) showed that there are three nonisomor-

phic designs. Xu and Wu (2001) gave their generalized wordlength patterns,

which are (0, 0, 0.5), (0, 0, 1), (0, 0, 2). The first has generalized minimum
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aberration and, by Theorem 4, minimizes Φ∗1(d;ξξξ,v) for all v satisfying

(3.7). Moreover, because the sums of the generalized wordlengths of the

three designs are 0.5, 1, and 2, respectively, it follows from (1TNUφ)(1TNUφ)T =

N2

Ξ
= 12 and Theorem 5 that 33

182
{(18 + 2m)− 12} = l with l = 0.5, 1, 2 for

the three designs. We have m = 0, 3, 9, respectively. Therefore, the first

design does not have replicates, while the other two designs separately have

3 and 9 replicates.

For n = 4, Xu and Wu (2001) gave the generalized wordlength patterns

of the only four nonisomorphic designs, which are (0, 0, 2, 1.5), (0, 0, 2.5, 1),

(0, 0, 3.5, 0), and (0, 0, 3.5, 0). The first one has generalized minimum aber-

ration and, by Theorem 4, minimizes Φ∗1(d;ξξξ,v) for all v satisfying (3.7).

The sums of the generalized wordlengths are all equal to 3.5. By Theorem

5, we have 34

182
{(18 + 2m)− 4} = 3.5. Thus, m = 0 and these four designs

have no replicates.

4.2 Blocked mixed-level orthogonal arrays

Lin (2014) studied blocked mixed-level orthogonal arrays and listed several

minimum aberration designs in terms of W1 and W2. We consider a sce-

nario in their study: 18-run blocked orthogonal arrays with three blocks of

size six and four treatment factors, consisting of one two-level factor and
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three three-level factors. Each blocked orthogonal array is constructed by

selecting five columns in Table 8C.2 of Wu and Hamada (2009), also given

in Section S6 of the Supplementary Material, where one is the two-level col-

umn, one is a three-level column for blocking, and the others are three-level

columns. There are 7× C6
3 = 140 candidate designs.

A complete search shows that no design has minimum aberration with

respect to both W0 and W1. The minimum aberration design with re-

spect to W1, denoted by d∗, is constructed by selecting the eighth column

for blocking, the first column for the two-level treatment factor, and the

second, fourth, fifth columns for the three-level treatment factors. It has

W1 = (0, 0.125, 0.708, 1, 0.75, 0.042, 0). Figure 1 gives the ranking of all 140

candidate designs in terms of W1, where each point represents a design and

the x-axis shows their rank values (average if tied, smaller the better). The

black filled circle is d∗, with rank value one. The black filled square and

black triangle represent those with minimum aberration in terms of W1 and

W2, respectively. We can see that the three minimum aberration designs

under the three different aberration criteria do not coincide. As discussed

in Section 3.2, the one obtained using W2 is closer to that using W1. In

addition, d∗ has maximum D-efficiency under certain fixed-effects models.

Refer to Section S7 of the Supplementary Material for details.
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Figure 1: Comparison of W1, W1, and W2
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4.3 Three-stage manufacturing process

Butler (2004) mentioned a three-stage manufacturing process with a few

treatment factors in each stage. Suppose there are 36 experimental units

and each stage consists of two three-level treatment factors. The 36 units

are divided into six groups of equal size in each stage. We have the block

structure {U ,F1,F2,F3, E}, where each Fi is a unit factor for one stage and

partitions the 36 units into six classes. We also require that F1,F2, and F3

define an orthogonal array of strength two that can be represented by the

following Latin square (Wu and Hamada, 2009, p. 151):

A B C D E F

B C F A D E

C F B E A D

D E A B F C

E A D F C B

F D E C B A

where each row, column, and letter represent a group of the first, second,

and third stages, respectively. To reduce the computational burden, we

assume that the interactions of the treatment factors across different stages

are all negligible.

A complete search shows that the design given in Table 1 has minimum
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aberration with respect to (3.11) for all I = {U}, {U ,F1}, {U ,F2}, {U ,F3},

{U ,F1,F2}, {U ,F1,F3}, {U ,F2,F3}, and {U ,F1,F2,F3}, with wordlength

patterns (0, 6), (16, 20), (16, 20), (16, 20), (32, 34), (32, 34), (32, 34), and

(48, 48), respectively. Thus, it has minimum aberration with respect to

W for all feasible ξξξ. The three stages share the same design settings and

balance, and are without replicates.

Stage 1 Stage 2 Stage 3

0 0 0 0 0 0

0 1 0 1 0 1

1 0 1 0 1 0

1 2 1 2 1 2

2 1 2 1 2 1

2 2 2 2 2 2

Table 1: Minimum aberration design: Three-stage manufacturing process

5. Conclusion

We have developed a unified theory for aberration criteria using a Bayesian

perspective. Our theory provides applications mixed-level/multi-group treat-

ment factors, nonregular designs, and orthogonal block structures. Given
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design situations, experimenters can create suitable aberration criteria based

on our theory. In addition, we provide a useful result to screen out inad-

missible designs.

The block structures we consider require uniform unit factors. In real

applications, however, this may not be feasible. For instance, this is impos-

sible if the number of experimental units is not a multiple of the number of

levels of some unit factor. Because this assumption is crucial to our theory,

developing a more general theory is needed, and will be considered in future

work.

Supplementary Material

The online Supplementary Material contains all proofs and several ad-

ditional explanations.
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