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zero-norm penalized quantile regression estimator

Dongdong Zhang, Shaohua Pan and Shujun Bi

School of Mathematics, South China University of Technology, Guangzhou.

Abstract: This study examines the computation of the high-dimensional zero-

norm penalized quantile regression estimator, defined as the global minimizer of

the zero-norm penalized check loss function. To seek a desirable approximation

to the estimator, we reformulate this NP-hard problem as an equivalent aug-

mented Lipschitz optimization problem. Then, we exploit its coupled structure

to propose a multi-stage convex relaxation approach (MSCRA PPA), each step of

which solves inexactly a weighted `1-regularized check loss minimization problem

using a proximal dual semismooth Newton method. Under a restricted strong

convexity condition, we provide a theoretical guarantee for the MSCRA PPA by

establishing the error bound of each iterate to the true estimator and the rate

of linear convergence in a statistical sense. Numerical comparisons using syn-

thetic and real data show that the MSCRA PPA exhibits comparable or better

estimation performance and requires much less CPU time.

Key words and phrases: High-dimension, Zero-norm penalized quantile regres-

sion, Variable selection, Proximal dual semismooth Newton method.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0415



Computing zero-norm penalized QR estimator 2

1. Introduction

Sparse penalized regression has become a popular approach for high-

dimensional data analysis. In the past two decades, many classes of such

regressions have been developed by imposing a suitable penalty term on the

least squares loss. These include the bridge penalty of Frank and Friedman

(1993), Lasso of Tibshirani (1996), smoothly clipped absolute deviations

(SCAD) penalty of Fan and Li (2001), elastic net of Zou and Hastie (2005),

and adaptive Lasso of Zou (2006), among others; see the survey papers

by Bickel and Li (2006) and Fan and Lv (2010) for further information.

These penalties, as a convex surrogate (e.g., the `1-norm) or a nonconvex

approximation (e.g., the bridge penalty) to the zero-norm, essentially try

to capture the performance of the zero-norm, first used in the best subset

selection by Breiman (1996). The sparse least squares regression approach is

useful, but it focuses on the central tendency of the conditional distribution.

However, it is known that a particular covariate may not have a significant

influence on the mean value of the response, but may have a strong effect on

the upper quantile of the conditional distribution owing to the heterogeneity

of the data. It is likely that a covariate has different effects at different

segments of the conditional distribution. As illustrated by Koenker and

Bassett (1978), the quantile regression (QR) outperforms the least squares
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regression significantly for nonGaussian error distributions.

Inspired by this, many researchers have recently considered the QR in-

troduced by Koenker and Bassett (1978) for high-dimensional data analysis,

owing to its robustness to outliers and its ability to offer unique insights

into the relation between the response variable and the covariates; see, for

example, Wu and Liu (2009), Belloni and Chernozhukov (2011), Wang et

al. (2012), Wang (2013), Fan et al. (2014a) and Fan et al. (2014b). Bel-

loni and Chernozhukov (2011) focused on the theory of the `1-penalized QR,

showing that this estimator is consistent at the near-oracle rate and provid-

ing the conditions under which the selected model includes the true model.

Wang (2013) studied the `1-penalized least absolute derivation (LAD) re-

gression, verifying that the estimator has near-oracle performance with a

high probability. and Fan et al. (2014a) studied the weighted `1-penalized

QR and established the model selection oracle property and the asymptotic

normality for this estimator. For nonconvex penalty-type QRs, Wu and Liu

(2009), under mild conditions, achieved the asymptotic oracle property of

the SCAD and the adaptive-Lasso penalized QRs. Furthermore, Wang et

al. (2012) showed that with probability approaching one, the oracle esti-

mator is a local optimal solution to the SCAD or minimax concave penalty

(MCP) penalized QRs of ultrahigh dimensionality. Note that the above
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results are all established for the asymptotic case n→∞.

In addition to the above theoretical works, some examine the computa-

tion of (weighted) `1-penalized QR estimators. Compared with the (weight-

ed) `1-least-squares estimator, these requires more sophisticated algorithms,

owing to the piecewise linearity of the check loss function. Although the

`1-penalized QR model can be transformed into a linear program (LP) by

introducing additional variables, and one may use an interior point method

(IPM) program, such as SeDuMi (Sturm (1999)), to solve it, this is limited

to the small- or medium-scale case; see Figures 1–2 in Section 5. Inspired by

this, Wu and Lange (2008) proposed a greedy coordinate descent algorithm

for the `1-penalized LAD regression, Yi and Huang (2017) proposed a semis-

mooth Newton coordinate descent algorithm for the elastic-net penalized

QR, and Gu et al. (2018) recently developed a semi-proximal alternating

direction method of multipliers (sPADMM) and a combined version of the

ADMM and the coordinate descent method (which is actually an inexact

ADMM) to solve the weighted `1-penalized QR. In addition, for nonconvex

penalized QRs, Peng and Wang (2015) developed an iterative coordinate

descent algorithm and established the convergence of any subsequence to

a stationary point. Furthermore, Fan et al. (2014b) provided a systematic

study of folded concave penalized regressions, including the SCAD and M-
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CP penalized QRs as special cases, showing that with high probability, the

oracle estimator can be obtained within two iterations of the local linear

approximation (LLA) approach proposed by Zou and Li (2008). However,

Peng and Wang (2015) and Fan et al. (2014b) did not establish the error

bound of the iterates to the true solution.

This study focuses on the computation of the high-dimensional zero-

norm penalized QR estimator, a global minimizer of the zero-norm regu-

larized check loss. To seek a high-quality approximation to this estimator,

we reformulate this NP-hard problem as a mathematical program with an

equilibrium constraint (MPEC). Then, we obtain an equivalent augmented

Lipschitz optimization problem from the global exact penalty of the M-

PEC. This augmented problem not only has a favorable coupled structure,

but also implies an equivalent difference of convex (DC) surrogate for the

zero-norm regularized check loss minimization; see Section 2. By solving

the augmented Lipschitz problem in an alternating way, in Section 3, we

propose an MSCRA to compute a desirable surrogate for the zero-norm pe-

nalized QR estimator. Similarly to the LLA method of Zou and Li (2008),

in each step, the MSCRA solves a weighted `1-regularized check loss mini-

mization, but the subproblems are allowed to be solved inexactly. Under a

mild restricted strong convexity condition, we provide its theoretical guar-
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antee in Section 4 by establishing the error bound of each iterate to the

true estimator and the rate of linear convergence in a statistical sense.

Motivated by the work of Tang et al. (2019), we also develop a prox-

imal dual semismooth Newton method (PDSN) in Section 5 to solve the

subproblems in the MSCRA. In contrast to the semismooth Newton method

of Yi and Huang (2017), this is a proximal point algorithm (PPA) in which

the subproblems are solved by applying the semismooth Newton method

to their duals, rather than to a smooth approximation of the elastic-net

penalized check loss minimization problem. Numerical comparisons are

made using synthetic and real data for the MSCRA PPA, MSCRA IPM,

and MSCRA ADMM, which are MSCRA in which the subproblems are

solved using the PDSN, SeDuMi of Sturm (1999), and semi-proximal AD-

MM of Gu et al. (2018), respectively. We find that the MSCRA IPM

and MSCRA ADMM have very similar performance. In contrast, the M-

SCRA PPA not only exhibits comparable estimation performance with the

two methods, but also requires only one-fifteenth of the CPU time required

by the MSCRA ADMM and MSCRA IPM.

Throughout this paper, I and e denote an identity matrix and a vector

of all ones, the dimensions of which are known from the context. For an x ∈

Rp, write |x| := (|x1|, . . . , |xp|)T and sign(x) := (sign(x1), . . . , sign(xp))
T,
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and denote by ‖x‖1, ‖x‖, and ‖x‖∞ the l1-norm, l2-norm, and l∞-norm of x,

respectively. For a matrix A ∈ Rn×p, ‖A‖, ‖A‖max, and ‖A‖1 respectively

denote the spectral norm, element-wise maximum norm, and maximum

column sum norm of A. For a set S, IS means the characteristic function

on S; that is, IS(z) = 1 if z ∈ S, otherwise IS(z) = 0. For given a, b ∈ Rp,

with ai ≤ bi for i = 1, . . . , p, [a, b] means the box set. For an extended real-

valued function f : Rp → (−∞,+∞], write dom f := {x ∈ Rp | f(x) <∞},

and denote Pγf and eγf for a given γ > 0 as the proximal mapping and the

Moreau envelope of f , defined as Pγf(x) := arg minz∈Rp
{
f(z)+ 1

2γ
‖z−x‖2

}
and eγf(x) := minz∈Rp

{
f(z) + 1

2γ
‖z − x‖2

}
, respectively. In the following,

we write Pf for P1f . When f is convex, Pγf : Rp → Rp is a Lipschitz

mapping with modulus one, and eγf is a smooth convex function with

∇eγf(x) = γ−1(x− Pγf(x)).

2. Zero-norm penalized quantile regression and equivalent dif-

ference of convex model

Quantile regression is a popular method for studying the influence of a set

of covariates on the conditional distribution of a response variable, and has

been widely used to handle heteroscedasticity; see Koenker and Bassett

(1982) and Wang et al. (2012). For a univariate response Y and a vector of
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covariates X ∈ Rp, the conditional cumulative distribution function of Y is

defined as FY(t|x) := Pr(Y ≤ t | X = x), and the τth conditional quantile

of Y is given by QY(τ |x) := inf
{
t : FY(t|x) ≥ τ

}
. Let X= [x1 · · · xn]T be

an n× p design matrix on X. Consider the linear quantile regression

y = Xβ∗ + ε, (2.1)

where y = (y1, . . . , yn)T ∈ Rn is the response vector, ε = (ε1, . . . , εn)T is

the noise vector, with components that are independently distributed and

satisfy Pr(εi ≤ 0|xi) = τ for some known constant τ ∈ (0, 1), and β∗ ∈ Rp

is the true, but unknown coefficient vector. This quantile regression model

actually assumes that QY(τ |xi) = xTi β
∗, for i = 1, . . . , n. We are interested

in the high-dimensional case where p > n and the sparse model in the sense

that only s∗(� p) components of the unknown true β∗ are nonzero. For

τ ∈(0, 1), let fτ : Rn → R be the check loss function of (2.1); that is,

fτ (z) := n−1
∑n

i=1θτ (zi), with θτ (u) := (τ − I{u≤0})u, (2.2)

which was first introduced by Koenker and Bassett (1978). To estimate the

unknown true β∗ in (2.1), we consider the zero-norm regularized problem

β̂(τ) ∈ arg min
β∈Rp

{
νfτ (y −Xβ) + ‖β‖0

}
, (2.3)

where ν > 0 is the regularization parameter, and ‖β‖0 denotes the zero-

norm of β (i.e., the number of nonzero entries of β). By the expression of fτ ,
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fτ is nonnegative and coercive (i.e., fτ (β
k) → +∞ whenever ‖βk‖ → ∞).

By Lemma 3 in Appendix A, the estimator β̂(τ) is well defined. Because

β̂(τ) depends on τ , model (2.3) can be used to monitor different “locations”

of the conditional distribution. Then, the heteroscedasticity of the data,

when existing, can be inspected by solving (2.3) using different τ ∈ (0, 1).

For simplicity, in the following we use β̂ to replace β̂(τ), and for a given

τ ∈ (0, 1), we write τ := min(τ, 1−τ) and τ := max(τ, 1−τ).

Owing to the combination of the zero-norm, the computation of β̂ is

NP-hard. To design an algorithm for a high-quality approximation to β̂, we

next derive an equivalent augmented Lipschitz optimization problem from

a primal-dual viewpoint. To and to demonstrate that such a mechanism

provides a unified way to yield equivalent DC surrogates for the zero-norm

regularized problem (2.3), we introduce a family of proper lsc convex func-

tions on R, denoted by L , satisfying the following conditions:

int(domφ) ⊇ [0, 1], t∗ := arg min
0≤t≤1

φ(t), φ(t∗) = 0, and φ(1) = 1. (2.4)

With a φ ∈L , clearly, the zero-norm ‖z‖0 is the optimal value function of

min
w∈Rp

{∑p
i=1φ(wi) s.t. 〈e− w, |z|〉 = 0, 0 ≤ w ≤ e

}
.

This characterization of the zero-norm shows that (2.3) is equivalent to

min
β∈Rp,w∈Rp

{
νfτ (y −Xβ) +

p∑
i=1

φ(wi) s.t. 〈e− w, |β|〉 = 0, 0 ≤ w ≤ e
}

(2.5)
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in the following sense: if β is globally optimal to (2.3), then (β, sign(|β|)) is a

global optimal solution of problem (2.5); and conversely, if (β, w) is a global

optimal solution of (2.5), then β is globally optimal to (2.3). Problem (2.5)

is a mathematical program with an equilibrium constraint e−w ≥ 0, |β| ≥ 0,

〈e−w, |β|〉 = 0 (abbreviated as MPEC). The equivalence between (2.3) and

(2.5) shows that the difficulty of model (2.3) arises from the hidden equilibri-

um constraint. It is well known that the handling of nonconvex constraints

is much harder than that of nonconvex objective functions. Then, it is

natural to consider the penalized version of problem (2.5),

min
β∈Rp,w∈[0,e]

{
νfτ (y −Xβ) +

[∑p
i=1φ(wi) + ρ〈e− w, |β|〉

]}
, (2.6)

where ρ > 0 is the penalty parameter. Because β 7→fτ (y−Xβ) is Lipschitz

continuous, the following conclusion holds by Section 3.2 of Liu et al. (2018).

Theorem 1. The problem (2.6) associated with each ρ > ρ :=
φ′−(1)(1−t∗)τν‖X‖

1−t0

has the same global optimal solution set as the MPEC (2.5) does, where t0

is the minimum element in [t∗, 1) such that 1
1−t∗ ∈ ∂φ(t0).

Theorem 1 states that problem (2.6) is a global exact penalty of (2.5)

in the sense that there is a threshold ρ > 0 such that the former, associated

with every ρ > ρ, has the same global optimal solution set as the latter

does. Together with the equivalence between (2.3) and (2.5), model (2.3)
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is equivalent to (2.6). Note that the objective function of (2.6) is globally

Lipschitz continuous over its feasible set, and that its nonconvexity is the

result of the coupled term 〈e−w, |β|〉 rather than the combination. Thus,

problem (2.6) provides an equivalent augmented Lipschitz reformulation

for (2.3). In fact, problem (2.6) associated with every ρ > ρ implies an

equivalent DC surrogate for (2.3). To illustrate this, let ψ(t) = φ(t) if

t ∈ [0, 1], and φ(t) = +∞ otherwise. Then, using the conjugate ψ∗(s) :=

supt∈R{st− ψ(t)} of ψ, one may check that (2.6) is equivalent to

min
β∈Rp

{
Θν,ρ(β) := fτ (y −Xβ) + ν−1

∑p
i=1

[
ρ|βi| − ψ∗(ρ|βi|)

]}
. (2.7)

Because ψ∗ is a nondecreasing finite convex function on R, the function

s 7→ ψ∗(ρ|s|) is convex, and problem (2.7) is a DC program. To summarize,

problem (2.7) associated with every ρ > ρ provides an equivalent DC surro-

gate for (2.3). Moreover, Hρ(β) :=
∑p

i=1 hρ(βi), with hρ(t) := ρ|t|−ψ∗(ρ|t|)

for t ∈ R, is a DC surrogate for the zero-norm. To close this section, we

present some examples of φ ∈ L .

Example 1. Let φ(t) = t for t ∈ R. After a simple computation, we have

ψ∗(s) =


0 if s ≤ 1,

s− 1 if s > 1

and hρ(t) =


ρ|t| if |t| ≤ 1

ρ
,

1 if |t| > 1
ρ
.

It follows immediately that the function ν−1hρ(t) reduces to the capped

`1-function t 7→ λmin(|t|, α) in Zhang (2010) with ν = ρ/λ and ρ = α−1.
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Example 2. Let φ(t) := a−1
a+1

t2 + 2
a+1

t (a > 1), for t ∈ R. One can calculate

ψ∗(s) =


0 if s ≤ 2

a+1
,

((a+1)s−2)2

4(a2−1)
if 2

a+1
< s ≤ 2a

a+1
,

s− 1 if s > 2a
a+1

;

(2.8)

hρ(t) =


ρ|t| if |t| ≤ 2

(a+1)ρ
,

ρ|t| − ((a+1)ρ|t|−2)2

4(a2−1)
if 2

(a+1)ρ
< |t| ≤ 2a

(a+1)ρ
,

1 if |t| > 2a
(a+1)ρ

.

It is not hard to check that ν−1hρ(t) reduces to the SCAD function ρλ(t)

in Fan and Li (2001) when ν = 2
(a+1)λ2

and ρ = 2
(a+1)λ

.

Example 3. Let φ(t) := a2

4
t2 − a2

2
t+ at+ (a−2)2

4
(a > 2), t ∈ R. We have

ψ∗(s) =


− (a−2)2

4
if s ≤ a− a2/2,

1
a2

(a(a−2)
2

+ s)2 − (a−2)2

4
if a− a2/2 < s ≤ a,

s− 1 if s > a;

hρ(t) =


ρ|t| − 1

a2
(a(a−2)

2
+ ρ|t|)2 + (a−2)2

4
if |t| ≤ a/ρ,

1 if |t| > a/ρ.

Then, ν−1hρ(t) reduces to the MCP of Zhang (2010) if ν = 2
aλ2
, ρ = 1

λ
.

3. Multi-stage convex relaxation approach

From the last section, to compute the estimator β̂, we need only solve a sin-

gle penalty problem (2.6), which is much easier than solving the zero-norm
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problem (2.3) because its nonconvexity arises only from the coupled term

〈w, |β|〉. Observe that (2.6) becomes a convex program when either w or β

is fixed. Thus, we solve it in an alternating way and propose the following

multi-stage convex relaxation approach (MSCRA) using φ in Example 2.

Algorithm 1 (MSCRA for computing β̂)

Initialization: Choose τ ∈ (0, 1), ν > 0, ρ0 = 1, w0∈ [0, 1
2
e]. Set λ = ρ0

ν
.

for k = 1, 2, . . . .

1. Seek an inexact solution to the weighted `1-regularized problem

βk ≈ arg min
β∈Rp

{
fτ (y −Xβ) + λ

∑p
i=1(1−wk−1

i )|βi|
}
. (3.1)

2. When k = 1, select a suitable ρ1 ≥ ρ0 in terms of ‖β1‖∞. If k = 2, 3,

select ρk such that ρk ≥ ρk−1; otherwise, set ρk = ρk−1.

3. For i = 1, 2, . . . , p, compute the following minimization problem

wki = arg min
0≤wi≤1

{
φ(wi)− ρkwi|βki |

}
. (3.2)

end for

Remark 1. (i) Step 1 of Algorithm 1 solves problem (2.6), with w fixed

to be wk−1, while Step 3 solves this problem with β fixed to be βk; that is,

Algorithm 1 solves the nonconvex penalty problem (2.6) in an alternating

way. In the first stage, because there is no information on estimating the

nonzero entries of β∗, it is reasonable to impose an unbiased weight on each
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component of β. Motivated by this, we restrict the initial w0 in [0, 0.5e],

a subset of the feasible set of w. When w0 = 0, the first stage is precisely

the minimization of the `1-penalized check loss function. Although the

threshold ρ is known when the parameter ν in (2.3) is given, we select a

varying ρ for (3.2) because it is just a relaxation of (2.6).

(ii) By the optimality condition of (3.2), ρk|βki | ∈ ∂ψ(wki ) for each i, which,

by Theorem 23.5 in Rockafellar (1970) and (2.8), is equivalent to saying

wki = min
[
1,max

(
0,

(a+ 1)ρk|βki | − 2

2(a− 1)

)]
for i = 1, . . . , p. (3.3)

Clearly, when ρk|βki | is close to zero, (1−wki ) in (3.3) may be close to,

but not equal to one; when ρk|βki | is much larger, (1−wki ) in (3.3) may

be close to, but not equal to zero. To achieve a high-quality solution with

Algorithm 1, the last term of (3.1) implies that a smaller (1−wk−1
i ) but

not zero is expected for those larger |βi|, and a larger (1−wk−1
i ) but not

one is expected for those smaller |βi|. Thus, the function φ in Example 2

is desirable, especially for problems with solutions that have small nonzero

entries. The weight wk associated with the function φ in Example 3 exhibits

a similar performance. However, the weight wk associated with the function

φ in Example 1 is different since wki = 0 if ρk|βki | < 1, wki = 1 if ρk|βki | > 1,

and wki ∈ [0, 1] otherwise.

(iii) Algorithm 1 is actually an inexact majorization-minimization (MM)
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method (see Lange et al. (2000)) for solving the equivalent DC surrogate

(2.7) using a special starting point. Indeed, for a given β′ ∈ Rp, the convexi-

ty and smoothness of ψ∗ implies that with wi = (ψ∗)′(ρ|β′i|), for i = 1, . . . , p,

p∑
i=1

ψ∗(ρ|βi|) ≥
p∑
i=1

ψ∗(ρ|β′i|) + ρ〈w, |β| − |β′|〉 ∀β ∈ Rp. (3.4)

Note that each wi ∈ [0, 1] by the expression of ψ∗. Hence, the function

fτ (y −Xβ) + λ
∥∥(e−wk−1) ◦ β

∥∥
1
− λ
[ p∑
i=1

ψ∗(ρ|βk−1
i |) + ρ〈wk−1, |βk−1|〉

]
is a majorization of Θλ,ρ at βk−1, and the subproblem (3.1) is the inex-

act minimization of this majorization function. In addition, for any given

ρ0 > 0, when ‖β0‖∞ ≤ 2
(a+1)ρ0

, we have w0
i = (ψ∗)′(ρ0|β0

i |) = 0, by (2.8).

Thus, the first stage of Algorithm 1 with w0 = 0 is precisely the inexact

MM method for (2.7), with β0 satisfying ‖β0‖∞ ≤ 2
(a+1)ρ0

. In addition,

Algorithm 1 can be regarded as an inexact inversion of the LLA method

proposed by Zou and Li (2008) for (2.7), but it differs from the DC algorith-

m of Wu and Liu (2009) becasue the latter depends on the majorization of

β 7→
∑p

i=1ψ
∗(ρ|βi|) at βk and the obtained approximation lacks symmetry.

(iv) Considering that a practical computation always involves a deviation,

we solve the problem in (3.1) inexactly, with the accuracy measured in the
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following way: ∃δk ∈ Rp and rk ≥ 0, with ‖δk‖ ≤ rk such that

δk ∈ ∂
[
fτ (y −Xβ) + λ‖(e−wk−1) ◦ β‖1

]
β=βk

=−XT∂fτ (y−Xβk) + λ
[
(1−wk−1

1 )∂|βk1 | × · · · × (1−wk−1
p )∂|βkp |

]
, (3.5)

where the equality follows from Theorem 23.8 in Rockafellar (1970). Note

that the first-order optimality conditions of (2.6) take the following form:

u ∈ ∂fτ (z); ρ|βi| ∈ ∂ψ(wi) for i = 1, . . . , p; y −Xβ − z = 0;

XTu ∈ λ
[
(1−w1)∂|β1| × · · · × (1−wp)∂|βp|

]
,

where u ∈ Rn is the Lagrange multiplier associated with y −Xβ − z = 0.

By Step 2 of Algorithm 1, ρk|βk| ∈ ∂ψ(wk1)× · · · × ∂ψ(wkp). In view of this,

we measure the KKT residual of (2.6) associated with ρk at (βk, zk, uk) by

Errk :=

√
‖∆1‖2 + ‖∆k

2‖2 + ‖y −Xβk −zk‖2

1 + ‖y‖
≤ tol, (3.6)

where ∆k
1 := zk − Pfτ (zk + uk) and ∆k

2 := XTuk − Phk(XTuk + βk) with

hk(β) := ‖λ(e−wk) ◦ β‖1 for β ∈ Rp. (3.7)

4. Theoretical guarantees of Algorithm 1

We denote by S∗ the support of the true vector β∗, and define the set

C(S∗) :=
⋃

S∗⊂S,|S|≤1.5s∗

{
β ∈ Rp : ‖βSc‖1 ≤ 3‖βS‖1

}
.
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The matrix X is said to have κ-restricted strong convexity on C(S∗) if

κ > 0 and
1

2n
‖X∆β‖2 ≥ κ‖∆β‖2, for all ∆β ∈ C(S∗). (4.1)

The RSC is equivalent to the restricted eigenvalue condition of the Gram

matrix 1
2n
XTX of van de Geer and Bühlmann (2009) and Bickel et al.

(2009). Note that C(S∗) ⊇
{
β ∈ Rp : ‖β(S∗)c‖1 ≤ 3‖βS∗‖1

}
. This RSC

is a little stronger than that used by Negahban et al. (2012) for the `1-

regularized smooth loss minimization. In this section, we provide deter-

ministic theoretical guarantees for Algorithm 1 under this RSC, including

the error bound of the iterate βk to the true β∗ and the decrease analysis

of the error sequence. The proofs are included in Appendix B. We need the

following assumption on the optimality tolerance rk of βk.

Assumption 1. There exists ε > 0 such that for each k ∈ N, rk ≤ ε.

First, by Lemma 4 in Appendix B, we have the following error bound.

Theorem 2. Suppose that Assumption 1 holds, that X has the κ-RSC over

C(S∗), and that the noise vector ε is nonzero. If ρ3 and λ are chosen such

that ρ3 ≤ 8
9
√

3cτλ‖ε‖∞
and λ ∈

[
16τ‖X‖1

n
+ 8ε, τ

2κ−c−1−3τ‖X‖max(2n−1τ‖X‖1+ε)s∗

3τ‖X‖maxs∗

]
,

for some constant c ≥ 1
τ2κ−27τ‖X‖max(2n−1τ‖X‖1+ε)s∗

, then for every k ∈ N,

‖βk − β∗‖ ≤ 9cτλ
√

1.5s∗

8
‖ε‖∞.
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Remark 2. (i) For the `1-regularized least squares smooth loss estimator

βLS ∈ arg minβ∈Rp
{

1
2n
‖y−Xβ‖2 +λn‖β‖1

}
, the error bound ‖βLS− β∗‖ =

O(σ
√
s∗ log p/n) is obtained in Corollary 2 of Negahban et al. (2012) by

taking λn =
√

log p/n, where σ > 0 represents the variance of the noise. By

comparing with this error bound, the error bound in Theorem 2 involves

the infinite norm ‖ε‖∞ of the noise ε, rather than its variance. Moreover,

it still has the same order O(
√
s∗ log p/n) when the parameter λ = O(1) in

our model is rescaled to be λn.

(ii) For the following `1-regularized square-root nonsmooth loss estimator

βsr ∈ arg minβ∈Rp
{

1√
n
‖y −Xβ‖ + λ′

n
‖β‖1

}
, the error bound ‖βsr−β∗‖ =

O
(
σ
√
s∗λ′$
n

)
with $ ≥ 1√

n
‖ε‖ is achieved in Theorem 1 of Belloni et al.

(2011) by setting λ′ = O(n). By considering that fτ (y−Xβ) = O(
√
n‖y−

Xβ‖), the parameter λ in our model corresponds to λ′/n. Thus, the error

bound in Theorem 2 corresponds to O(
√
s∗λ′‖ε‖∞

n
), which has the same order

as O
(
σ
√
s∗λ′$
n

)
because ‖ε‖∞ = O( 1√

n
‖ε‖).

(iii) To ensure that the constant c > 0 exists, the constant κ needs to

satisfy κ > 54τ2s∗‖X‖max‖X‖1
nτ2

, and the inexact accuracy ε of βk needs to

satisfy 0 ≤ ε < nτ2κ−54τ2s∗‖X‖max‖X‖1
27nτs∗

. Because ‖X‖1 = O(n), it is necessary

to solve the subproblem (3.1) with a very small inexact accuracy ε.

Theorem 2 establishes an error bound for every iterate βk, but it does
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not tell us whether the error bound of the current βk is better than that

of the previous βk−1. In order to seek an answer, we study the decrease of

the error bound sequence by bounding maxi∈S∗(1− wki ). For this purpose,

write F 0 := S∗ and Λ0 := {i : |β∗i | ≤ 4a
(a+1)ρ0

}, and for each k ∈ N, define

F k :=
{
i :
∣∣|βki | − |β∗i |∣∣ ≥ 1

ρk

}
and Λk :=

{
i : |β∗i | ≤

4a

(a+1)ρk

}
. (4.2)

From Lemma 6 in Appendix B, the value maxi∈S∗(1−wki ) is upper bounded

by maxi∈S∗ max(IΛk(i), IFk(i)). By this, we have the following conclusion.

Theorem 3. Suppose that Assumption 1 holds, X has the κ-RSC over

C(S∗), and the noise ε is nonzero. If λ is chosen as in Theorem 2 and the

parameter ρ3 satisfies ρ3 ≤ 1
cτλ‖ε‖∞(

√
4.5s∗+

√
3/8)

, then for each k ∈ N,

‖βk− β∗‖ ≤ (3 +
√

3)cτ 2
√
s∗‖X‖1‖ε‖∞
n

+
(3 +3

√
3)cτλ

√
s∗‖ε‖∞

2
√

2
max
i∈S∗

IΛ0(i)

+ cτ‖ε‖∞
√
s∗

k−2∑
j=0

rk−j

( 1√
3

)j
+
( 1√

3

)k−1∥∥β1− β∗
∥∥, (4.3)

where we stipulate that
∑k−2

j=0 rk−j(
1√
3
)j = 0, for k = 1.

Remark 3. (i) The error bound in (4.3) consists of the statistical error due

to the noise, the identification error maxi∈S∗ IΛ0(i) related to the choice of a

and ρ0, and the computation errors
∑k−2

j=0 rk−j(
1√
3
)j and ( 1√

3
)k−1‖β1− β∗‖.

By the definition of Λ0, when ρ0 and a are such that (a+1)ρ0
4a

> 1
mini∈S∗ |β∗i |

,

the identification error becomes zero. If mini∈S∗|β∗i | is not too small, it
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would be easy to choose such ρ0. Clearly, when ρ0 and a are chosen to

be larger, the identification error is smaller. However, when ρ0 and a are

larger, ρ1 becomes larger and each component of w1 is close to one by (3.3).

Consequently, it will become very conservative to cut those smaller entries

of β2 when solving the second subproblem. Hence, there is a trade-off

between the choice of a and ρ0 and the computation speed of Algorithm 1.

(ii) If the subproblem (3.1) could be solved exactly, the computation error∑k−2
j=0 rk−j(

1√
3
)j would vanish. If the subproblem (3.1) is solved with the

accuracy rk satisfying rk ≤ ( 1√
3
)k 1
kν

for ν > 1, this computation error will

tend to zero as k → +∞. Because the third term on the right-hand side

of (4.3) is a combination of the noise and
∑k−2

j=0 rk−j(
1√
3
)j, it is strongly

suggested that the subproblem (3.1) is solved as well as possible.

For the RSC assumption in Theorems 2–3, from Raskutti et al. (2010),

we know that if X is from the Σx-Gaussian ensemble (i.e., X is formed

by independently sampling each row xTi ∼ N(0,Σx), there exists a constant

κ > 0 (depending on Σx) such that the RSC holds on C(S∗) with probability

greater than 1− c1 exp(−c2n), as long as n > c0s
∗ log p, where c0, c1, and

c2 are absolutely positive constants. From Banerjee et al. (2015), for some

sub-Gaussian X, the RSC holds on C(S∗) with a high probability when n

is over a threshold that depends on the Gaussian width of C(S∗).
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5. Proximal dual semismooth Newton method

By Remark 1 (iv), the pivotal part of Algorithm 1 is the exact solution of

min
β∈Rp

{
fτ (y −Xβ) + hk−1(β)− 〈δk, β − βk−1〉

}
, (5.1)

where, for each k ∈ N, hk is the function defined in (3.7). In this section,

we develop a proximal dual semismooth Newton method (PDSN) for (5.1),

which is a proximal point algorithm (PPA), with the subproblems solved

by applying the semismooth Newton method to their dual problems.

Algorithm 2 PPA for solving problem (5.1)

Initialization: Fix k. Choose γ1,0, γ2,0, γ > 0, %∈ (0, 1). Let β0 = βk−1.

for j = 0, 1, 2, . . ..

1. Seek the unique minimizer βj+1 to the following convex program

min
β∈Rp

{
fτ (y−Xβ)+hk−1(β)−〈δk, β−βk−1〉+γ1,j

2
‖β−βj‖2+

γ2,j

2
‖X(β−βj)‖2

}
.

2. If βj+1 satisfies the stopping rule, then stop. Otherwise, update γ1,j

and γ2,j by γ1,j+1 = max(γ, %γ1,j) and γ2,j+1 = max(γ, %γ2,j).

end for

Remark 4. (i) Because fτ (y−X·) and hk−1 are convex but nondiffer-

entiable, we follow Tang et al. (2019) to introduce a key proximal term
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γ2,j
2
‖Xβ −Xβj‖2, except the common

γ1,j
2
‖β − βj‖2. As shown later, this

provides an effective way to handle the nonsmooth fτ (y −X·).

(ii) The first-order optimality conditions for (5.1) have the form u ∈ ∂fτ (z), XTu+

δk ∈ ∂hk−1(β), y −Xβ −z = 0, where u ∈ Rn is the multiplier vector asso-

ciated with y −Xβ − z = 0. Hence, the KKT residual of problem (5.1) at

(βj, zj, uj) can be measured by

ErrjPPA :=

√
‖zj−Pfτ (zj+uj)‖2 +‖βj−Phk−1(XTuj+δk)‖2 +‖y −Xβj−zj‖2

1 + ‖y‖
.

Thus, we suggest ErrjPPA≤ εjPPA as the stopping condition of Algorithm 2.

The efficiency of Algorithm 2 depends on the solution of its subproblem,

which, by introducing a variable z ∈ Rn, is equivalently written as

min
β∈Rp,z∈Rn

{
fτ (z) + hk−1(β)−〈δk, β −βk−1〉+

γ1,j

2
‖β − βj‖2 +

γ2,j

2
‖z − zj‖2

}
s.t. Xβ + z − y = 0 with zj = y −Xβj. (5.2)

After an elementary calculation, the dual of (5.2) takes the following form:

min
u∈Rn

{
Ψk,j(u) :=

‖u‖2

2γ2,j

−eγ−1
2,j
fτ

(
zj− u

γ2,j

)
−eγ−1

1,j
hk−1

(
βj−X

Tu+δk

γ1,j

)
+
‖XTu‖2

2γ1,j

}
.

Because Ψk,j is a smooth convex function, seeking an optimal solution of

the last dual problem is equivalent to finding a root for the system

Φk,j(u) := −Pγ−1
2,j
fτ

(
zj− u

γ2,j

)
−XPγ−1

1,j
hk−1

(
βj−X

Tu+δk

γ1,j

)
+y = 0. (5.3)

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0415



23

Because Pγ−1
2,j
fτ and Pγ−1

1,j
hk−1 are strongly semismooth, by Appendix A,

and the compositions of strongly semismooth mappings are strongly semis-

mooth, by Facchinei and Pang (2003), Φk,j is strongly semismooth. Inspired

by this, we use the semismooth Newton method to seek a root for (5.3),

which by Qi and Sun (1993) is expected to have a superlinear, or even

quadratic convergence rate. By Proposition 2.3.3 and Theorem 2.6.6 of

Clarke (1983), the Clarke Jacobian ∂CΦk,j(u) of Φk,j at u is included in

γ−1
2,j ∂C

[
Pγ−1

2,j
fτ
](
zj− u

γ2,j

)
+γ−1

1,jX∂C
[
Pγ−1

1,j
hk−1

](
βj−X

Tu+ δk

γ1,j

)
XT

= γ−1
2,jUj(u) + γ−1

1,jXVj(u)XT ∀u ∈ Rn, (5.4)

where (5.4) follows from Lemmas 1–2 in Appendix A, Uj(u) and Vj(u) are

Uj(u) :=
{

Diag(v1, . . . , vn) | vi ∈ ∂C
[
Pγ−1

2,j
(n−1θτ )

]
(zji − γ−1

2,jui)
}
,

Vj(u) :=
{

Diag(v) | vi = 1 if |(γ1,jβ
j−XTu−δk)i| > ωki , otherwise vi ∈ [0, 1]

}
.

For each U j ∈ Uj(u) and V j ∈ Vj(u), the matrix γ−1
2,jU

j +γ−1
1,jXV

jXT is

semidefinite, and is positive definite when {i | τ−1
nγ
≤ zji −γ−1

2,jui ≤ τ
nγ
} = ∅ or

the matrixXJ has full row rank with J ={i | |(γ1,jβ
j−XTu−δk)i| > ωki }. To

ensure that each iterate of the semismooth Newton method works, or each

element of Clarke Jacobian ∂CΦk,j(u) is nonsingular, we add a small positive

definite perturbation µI to γ−1
2,jU

j +γ−1
1,jXV

jXT. The detailed iterates of

the semismooth Newton method are provided in Appendix C.
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6. Numerical experiments

We test the performance of Algorithm 1 by solving the subproblems using

PDSN, SeDuMi, and sPADMM on synthetic and real data, and call the

three solvers MSCRA PPA, MSCRA IPM, and MSCRA ADMM, respec-

tively. SeDuMi solves the equivalent LP of (3.1):

min
(β+,β−)∈R2p

+ ,(ζ+,ζ−)∈R2n
+

〈ωk, β+〉+ 〈ωk, β−〉+
τ

n
〈ζ+, e〉+

1− τ
n
〈ζ−, e〉

s.t. Xβ+ −Xβ− + ζ+ − ζ− = y,

and the iterates of sPADMM are described in Appendix C. All numerical

results are computed on a laptop computer running 64-bit Windows with

an Intel(R) Core(TM) i7-8565 CPU 1.8GHz and 8 GB RAM.

For SeDuMi, we adopt the default setting. For the sPADMM, we choose

the step-size % = 1.618 and the initial σ = 1, and adopt the stopping crite-

rion in Appendix C with jmax = 3000 and εADMM = 10−6. For the PDSN,

we choose γ = 10−8, % = 5/7, and γ1,0 = γ2,0 = min(0.1, R0), where R0 is

the relative KKT residual at the initial (β0, z0, u0). Furthermore, we adopt

the stopping criterion in Remark 4(ii) with εj+1
PPA = max(10−8, 0.1εjPPA) for

ε0PPA = 10−6, and the stopping rule
‖Φk,j(ul)‖

1+‖y‖ ≤ 0.1εjPPA for Algorithm 1 in

Appendix C.

For the MSCRA IPM, MSCRA ADMM, and MSCRA PPA, we use
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w0 = 0, and terminate them at βk when k > 10, Nnz(β
k) = · · · = Nnz(β

k−3)

and Errk ≤ 10−5, or Nnz(β
k) = · · · = Nnz(β

k−2) and |Errk − Errk−2| ≤

10−6, where Nnz(β
k) :=

∑p
i=1 I

{
|βki | > 10−6 max(1, ‖βk‖∞)

}
denotes the

number of nonzero entries of βk, and Errk is the KKT residual at the

kth step, defined in (3.6). We update ρk by ρ1 = max
(
1, 1

3‖β1‖∞

)
and

ρk = min
(

5
4
ρk−1,

108

‖βk‖∞

)
for k = 2, 3. In addition, when implementing

the three solvers, we run SeDuMi, sPADMM, and PSDN to solve the kth

subproblem, with the optimal solution of the (k−1)th subproblem as the

starting point. For k = 1, we choose β0 = 0 to be the starting point of the

MSCRA IPM and MSCRA ADMM, and use β0 = 0 to run Algorithm 2.

6.1. Comparisons of the three solvers for the subproblem

We compare SeDuMi, sPADMM, and PDSN numerically by applying

them to (3.1) for k = 1, that is, the `1-regularized check loss minimization

problem. Inspired by Gu et al. (2018), we consider the simulation model

yi = xTi β
∗+κεi for i = 1, . . . , n in Friedman et al. (2010) to generate the da-

ta, where xTi ∼ N(0,Σ) for i = 1, . . . , n, with Σ = (α+(1−α)I{i=j})p×p, β∗j =

(−1)j exp(−2j−1
20

), ε ∼ N(0,Σ), and κ chosen such that the signal-noise ra-

tio of the data is 3.0. We focus on the high-dimensional situation with

(p, n) = (5000, 500) and α = 0 and 0.95. Figures 1–2 show the optimal val-

ues yielded by three solvers and their CPU time (in seconds) when solving
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(3.1) with k = 1 and the same sequence of 50 values of λ. From the results

in Section 4, we select the 50 values of λ as

λi = max
(
0.01, γi‖X‖1/n

)
with γi = γmin + ((i− 1)/49)(γmax − γmin),

for i = 1, 2, . . . , 50, where γmin = 0.02 and γmax = 0.25 and 0.38 for α = 0

and 0.95, respectively. Here, γmax is such that Nnz(β
f ) attains the value

zero, where βf represents the final output of a solver.
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Figure 1: Optimal values of three solvers for the sample size n = 500

Figure 1 shows that the three solvers yield comparable optimal values,

and the optimal values given by the PDSN are a little better than those

given by SeDuMi and the sPADMM. Figure 2 shows that the PDSN requires

much less CPU time than SeDuMi and the sPADMM do. For α = 0.95,

the CPU time of the former is, on average, about 0.03 and 0.09 times that
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Figure 2: CPU times of three solvers for the sample size n = 500

of SeDuMi and the sPADMM, respectively, but for α = 0, τ = 0.5, when

λ < λ3, the PDSN requires more CPU time because the Clarke Jacobians

are close to singularity. This shows that if the parameter λ in the model

is not too small (a common setting for sparsity), the PDSN is superior to

SeDuMi and the sPADMM in terms of the optimal value and CPU time. We

find that the sPADMM always attains the maximum number of iterations

3000 for all test problems (it even attains the maximum number of iterations

if jmax = 10000). Because jmax = 3000 is used here, its CPU time is less

than that of SeDuMi.

6.2. Numerical performance of Algorithm 1

We first apply the MSCRA PPA to the example in Section 3.1 of Wang
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et al. (2012); that is, we solve (2.6) with ν = λ−1 for λ = max(0.01, 0.1‖X‖1/n),

for which the scalar response is generated according to the heteroscedastic

location-scale model Y = X6 +X12 +X15 +X20 +0.7X1ε, where ε ∼ N(0, 1)

is independent of the covariates. Table 1 reports its identification perfor-

mance for τ = 0.3, 0.5, and 0.7 under different sample sizes, where Size,

AE, P1, and P2 have the same meaning as in Wang et al. (2012). We see

that, for τ = 0.5, P2 is always equal to zero. Thus, the check loss with

τ = 0.5 cannot identify X1, but the check loss with τ = 0.3 and 0.7 can do

so, and the proportion of identifying X1 increases as n becomes large.

Next, we use a synthetic example to show that the MSCRA PPA can

efficiently solve a series of zero-norm regularized problems (2.3) with d-

ifferent τ , but a fixed λ. We generate an independent and identically

distributed standard normal random vector β∗S∗ , with s∗ = b0.5√pc en-

tries of S∗ chosen randomly from {1, . . . , p} for p = 15000. Then, we

obtain the response vector y from model (2.1), where xTi ∼ N(0,Σ), for

i = 1, . . . , n, with Σ = 0.6E + 0.4I and n = b2s∗ log pc, and the noise εi is

from the Laplace distribution with density d(u) = 0.5 exp(−|u|). Here, E is

a p× p matrix of all ones. Figure 3 describes the average absolute `2-error

‖β̂f−β∗‖ and time when applying the MSCRA PPA to 10 test problems

for τ ∈ {0.05, 0.1, 0.15, . . . , 0.95} with ν = λ−1 and λ = 37.5/n. We see
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Table 1: Identification performance of the MSCRA PPA

n = 250 n = 300 n = 400 n = 500

τ = 0.3

Size 11.800(4.369) 9.320(3.146) 6.290(1.472) 5.330(0.697)

P1 0.81 0.83 0.93 0.91

P2 0.81 0.83 0.93 0.91

AE 0.197(0.174) 0.170(0.165) 0.176(0.155) 0.145(0.127)

τ = 0.5

Size 10.960(3.075) 7.910(2.060) 5.270(1.171) 4.370(0.597)

P1 1.00 1.00 1.00 1.00

P2 0.00 0.00 0.00 0.00

AE 0.034(0.014) 0.027(0.011) 0.021(0.010) 0.018(0.008)

τ = 0.7

Size 12.590(4.356) 8.320(2.169) 6.310(1.308) 5.380(0.693)

P1 0.79 0.88 0.91 0.93

P2 0.79 0.88 0.91 0.93

AE 0.183(0.175) 0.220(0.180) 0.151(0.146) 0.162(0.142)

that the MSCRA PPA yields better `2-errors for τ close to 0.5, and worse

`2-errors for τ close to zero or one. Therefore, for this class of noise, the

check loss with τ close to 0.5 is suitable. The MSCRA PPA yields a desired

solution for all test problems in 40 seconds, and the CPU time for τ close

to 0 or 1 is about 1.5 times that of τ close to 0.5. This means that it is an
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efficient solver for the series of zero-norm regularized problems in (2.3).
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Figure 3: Performance of the MSCRA PPA under different quantile levels τ

7. Conclusion

We have proposed a multi-stage convex relaxation approach, the MSCRA PPA,

for computing a desirable approximation to the zero-norm penalized QR,

which is defined as a global minimizer of an NP-hard problem. Under the

common RSC condition and a mild restriction on the noise, we established

the error bound of every iterate to the true estimator and the linear rate of

convergence of the iterate sequence in a statistical sense. Numerical com-

parisons with the MSCRA IPM and the MSCRA ADMM show that the M-

SCRA PPA exhibits comparable estimation performance within much less

time.
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Supplementary Material

The online Supplementary Material consists of four parts. Appendix

A includes some preliminary knowledge on generalized subdifferentials and

Clarke Jacobian, as well as the lemmas used in Sections 2–5; Appendix B in-

cludes the proofs of Theorems 2–3; Appendix C introduces the semismooth

Newton method and the semi-proximal ADMM of Gu and Zou (2016);

Appendix D includes performance comparisons between the MSCRA IPM,

MSCRA ADMM, and MSCRA PPA using synthetic and real data.
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