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Abstract: We consider a robust parametric procedure for estimating the structural

parameters in functional measurement error models. The methodology extends

the maximum Lq-likelihood approach to the more general problem of indepen-

dent, but not identically distributed observations and the presence of incidental

parameters. The proposal replaces the incidental parameters in the Lq-likelihood

with their estimates, which depend on the structural parameter. The resulting

estimator, called the maximum Lq-likelihood estimator (MLqE) adapts according

to the discrepancy between the data and the postulated model by tuning a single

parameter q, with 0 < q < 1, that controls the trade-off between robustness and

efficiency. The maximum likelihood estimator is obtained as a particular case

when q = 1. We provide asymptotic properties of the MLqE under appropriate

regularity conditions. Moreover, we describe the estimating algorithm based on

a reweighting procedure, as well as a data-driven proposal for the choice of the

tuning parameter q. The approach is illustrated and applied to the problem of

estimating a bivariate linear normal relationship, including a small simulation

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0414



MAXIMUM LQ-LIKELIHOOD ESTIMATION 2

study and an analysis of a real data set.

Key words and phrases: Functional measurement error models, incidental param-

eters, maximum Lq-likelihood, robustness.

1. Introduction

This study deals with robust estimation in functional measurement er-

ror models based on an extension of the maximum Lq-likelihood (MLq)

approach proposed by Ferrari and Yang (2010). In a typical measurement

error model, a response vector variable Y is functionally related to a vector

covariate ξ that is not observed exactly. Instead, it is observed with an er-

ror, a case often encountered in practice. Disregarding these measurement

errors when estimating the regression parameters results in asymptotically

biased (i.e., inconsistent) estimators. Numerous methods have been pro-

posed to correct for measurement errors; see Fuller (1987), Cheng and Van

Ness (1999), Carroll et al. (2006), and Buonaccorsi (2010), and the refer-

ences cited therein.

The classical measurement error model considers that we observe the

surrogate X = ξ + u, independent of Y , where the measurement error

u is a random variable. Inference is based on a sample of n independent

observations Z1, . . . ,Zn, where Zj = (XT
j ,Y

T
j )T , for j = 1, . . . , n. If the

unobserved covariates ξ1, . . . , ξn are unknown constants, then the model is
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referred to as a functional model, and ξ1, . . . , ξn are nuisance parameters,

the number of which increases with the sample size, called incidental pa-

rameters (Neyman and Scott (1948)). If ξ1, . . . , ξn are considered a random

sample from some distribution, then the model is referred to as a structural

model.

In this study, we consider functional models. We model the density

function of Zj, for j = 1, . . . n, by

fj(zj;θ, ξj) = fY (yj;θ1, ξj)fX(xj;θ2, ξj), (1.1)

where fY and fX are the models describing the relationships with the true

unobserved covariate of the response and the observed covariate, respec-

tively. Furthermore, θ = (θT1 ,θ
T
2 )T and ξj, for j = 1, . . . , n, are vectors of

unknown parameters. Here, θ is the same for each j and is called a struc-

tural parameter; ξj, which appears only once (in fj), is called an incidental

parameter. Our main interest lies in estimating the structural parameter

θ.

It is not generally true that a maximum likelihood estimation produces

consistent estimators of θ (Stefanski (1985)). The problem is due to the

large number of nuisance parameters (Neyman and Scott (1948); Andersen

(1970); Lancaster (2000)). Mak (1982) studied a method for estimating θ

that also covers the maximum likelihood procedure.

 
Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0414



MAXIMUM LQ-LIKELIHOOD ESTIMATION 4

On the other hand, the unwieldy functional likelihood and its failure

to produce consistent estimators have motivated the search for alternative

methods of estimation, for example, the conditional and corrected score

(Stefanski and Carroll (1987); Nakamura (1990); Giménez and Bolfarine

(2000); Carroll et al. (2006)).

Measurement error model regression procedures are known to be non-

robust, because they are highly sensitive to outlying observations and/or

mild deviations from the assumed model, and are less robust than stan-

dard regression procedures (Ammann and Van Ness (1988, 1989)). This

has motivated the search for more robust methods of estimation. In the lit-

erature, studies on robust estimation in measurement error models focused

mainly on the structural model. In this case, unlike the functional model,

the results are also sensitive to an incorrect specification of the parametric

distribution of the true covariate. In many ways, in structural measurement

error models, the methods for obtaining robust estimates are analogous to

those developed for the ordinary regression; see Cheng and Van Ness (1999,

Chap. 7) and the references cited therein, as well as Fekri and Ruiz-Gazen

(2004, 2006) and Croux, Fekri, and Ruiz-Gazen (2010). The number of

robust options in the literature for estimating the structural parameter in a

functional measurement error model is quite limited, owing to the presence
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of the incidental parameters. Carroll and Gallo (1982) discuss the classical

independent error model with replication in the predictors. Zamar (1985)

investigates robust orthogonal regression M -estimators. Abdullah (1989)

presents a computational scheme based on an iteratively reweighted regres-

sion method. Luong and Mak (1991) propose M -estimators. Vilca-Labra,

Bolfarine, and Arellano-Valle (1998) obtain robust estimators by deriving

maximum likelihood estimators in a functional linear model under the as-

sumption of elliptical distributions of the errors. In the same way, Galea and

de Castro (2017) study a functional model with replication using Student’s

t distribution.

We adopt a different approach, and propose a new robust fully para-

metric estimation procedure for functional measurement error models based

on the MLq approach introduced by Ferrari and Yang (2010) in the con-

text of small-tail inference. The method has an information-theoretical

perspective because it is based on minimizing an empirical version of the

Tsallis–Havdra–Charvat entropy, or q-entropy, employed in the context of

statistical mechanics (Tsallis (1988)). Ferrari and La Vecchia (2012) exam-

ine its infinitesimal robustness properties, and show that the procedure is

related to minimizing the power divergence, or q-divergence (Cressie and

Read (1984)), between the assumed model and the true model density un-
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derlying the data, when the parameter is properly rescaled.

We obtain an estimator of the structural parameter of the model using

the MLq approach when the incidental parameters are first replaced by

their estimates, which depend on the structural parameter. The resulting

estimator, called the maximum Lq-likelihood estimator (MLqE), adapts

according to the discrepancy between the data and the postulated model

by tuning a single parameter q (0 < q ≤ 1), which controls the trade-off

between robustness and efficiency. When q < 1, data points with high

likelihoods are assigned large weights. Outliers are usually assigned small

weights because of their low likelihoods. When the data are consistent with

the model and q → 1, the maximum likelihood estimator (MLE) is obtained

as a particular case.

The remainder of the paper is organized as follows. In Section 2, we re-

view the MLq estimation approach in the ordinary independent and identi-

cally distributed (i.i.d.) case. Then, we extend it to estimation in functional

measurement error models in the case of independent, but not identically

distributed observations and the presence of incidental parameters. In Sec-

tion 3, we provide asymptotic properties of the estimators under appropri-

ate regularity conditions. Section 4 describes the estimation algorithm and

its convergence properties. In Section 5, we briefly present a data-driven
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proposal for the choice of the tuning parameter q. Section 6 applies the

proposed approach to a bivariate linear normal relationship and illustrates

the performance of the method using a small simulation study and an anal-

ysis of a real data set. Some concluding remarks are provided in Section 7.

The proofs are included in the online Supplementary Material.

2. MLq estimation

2.1 MLq estimation for i.i.d. observations

Let G represent the true data-generating distribution having density g with

respect to the Lebesgue measure. The true unknown density function g is

modeled by the parametric family of densities F = {f(.;θ) : θ ∈ Θ ⊆ Rp}.

It is assumed that f(.;θ) = fθ and g have common support X ⊂ Rk, and

that the family F is identifiable. One way to estimate the parameters is

to minimize a data-based estimate of some appropriate divergence between

the assumed model and the true density underlying the data. Minimum di-

vergence estimators can afford considerable robustness at minimal expense

of efficiency (Beran (1977)). The MLq estimation approach introduced by

Ferrari and Yang (2010) in the context of small-tail inference provides a

fully parametric estimation method that minimizes the power divergence,

or q-divergence, between the true density g generating the data and the
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postulated model density fθ, defined by

Dq(g, fθ) = −1

q
EG Lq

{
f(Z;θ)

g(z)

}
= −1

q

∫
X
Lq

{
f(z;θ)

g(z)

}
g(z) dz, (2.1)

where Lq(u) = (u1−q − 1)/1 − q for q 6= 1, and Lq(u) = log u for q = 1,

recovering the Kullback–Leibler divergence. When q → 1, Lq(u)→ log(u).

(2.1) is a divergence in the sense that Dq(g, fθ) ≥ 0 and Dq(g, fθ) = 0 if and

only if the densities g and fθ are equal. Such a quantity was first considered

by Cressie and Read (1984) in the context of goodness-of-fit testing.

A direct minimization of (2.1) requires a nonparametric density estima-

tion, which can be troublesome in multidimensional problems. A nonpara-

metric density estimation can be avoided by approaching the minimization

of (2.1) indirectly by minimizing a generalized information measure called

q-entropy, or non-extensive entropy (Tsallis (1988)), given by

Hq(g, fθ) = −
∫
Lq{f(z;θ)}g(z) dz = −EG{Lq{f(Z;θ)}}. (2.2)

Ferrari and La Vecchia (2012) show that minimizing Hq(g, fθ) is equiv-

alent to minimizing Dq(g(1/q), fθ), where g(1/q) is the density proportional

to g1/q. Therefore, a transformation on the estimates is required in order

to obtain consistent estimates for the true density g. The key advantage of

working with (2.2) instead (2.1) is that the former can be estimated easily

from data averages.
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Let θ0 and θ∗ be the minimizers of Dq(g, fθ) andHq(g, fθ), respectively;

whereas θ is a generic element of Θ, θ∗ is called the surrogate parameter.

The existence and uniqueness of θ0 and θ∗ are assumed in the interior Θ◦

of Θ.

For 0 < α <∞, the power transformation of a density g is defined by

g(α)(z) =
g(z)α∫
g(z)α dz

, (2.3)

provided that the integral in the denominator converges and it is assumed

that F is closed under (2.3), for all 0 < α < 1. A continuous mapping

τα : Θ → Θ is defined satisfying f(z; τα(θ)) = f (α)(z;θ), ∀ z ∈ X . That

is, τα(θ) is simply the parameter of the density proportional to fαθ , which

can be computed analytically for common families of distributions, such as

the exponential distribution.

The considerations above motivate the following estimation strategy.

Given Z1, . . . ,Zn, an i.i.d. sample from G, with g its corresponding density,

a consistent estimator of the surrogate parameter θ∗ can be obtained by

minimizing the empirical version of the q-entropy (2.2) or, equivalently, by

maximizing the Lq-likelihood function. That is, the MLqE is defined by

θ̂
∗
n = arg maxθ∈Θ

∑n
j=1 Lq{f(Zj;θ)}.

Let U ∗(Z;θ) = ∇Lq{f(Z;θ)} = U(Z;θ)f(Z;θ)1−q be the q-score

function, whereU(Z;θ) = ∇ log{f(Z;θ)} is the usual maximum likelihood
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score function, and ∇ is the gradient with respect to θ. Then, θ̂
∗
n is a

solution of the estimating equations

n∑
j=1

U ∗(Zj;θ) =
n∑
j=1

U(Zj;θ)f(Zj;θ)1−q = 0. (2.4)

When q 6= 1, (2.4) can be viewed as a weighted version of the efficient max-

imum likelihood score equation, with weights proportional to the (1− q)th

power of the assumed density. Throughout this article, we assume 0 <

q < 1, such that observations that disagree with the model receive low

weight, providing remarkably robust estimators with negligible efficiency

losses compared with those of the maximum likelihood. If q = 1, all obser-

vations get weights equal to one and the MLqE coincides with the MLE.

Note that θ̂
∗
n is weakly consistent for θ∗. Assuming that τq(θ) is de-

fined for all θ ∈ Θ◦, Ferrari and La Vecchia (2012) show that θ̂n = τq(θ̂
∗
n)

is weakly consistent for θ0. This result is based on the fact that if fθ0 is the

true density generating the data, thenDq(f (1/q)

θ0
, fθ∗) = minθ∈ΘDq(f (1/q)

θ0
, fθ),

which is zero if and only if fθ∗ = f
(1/q)

θ0
, that is, θ∗ = τ1/q(θ

0).

2.2 MLq estimation in functional measurement error models

Here, we extend the MLq approach to estimate the structural parameter in

functional measurement error models. Adapting the approach to the case of

independent, but not identically distributed observations and the presence
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of incidental parameters requires a substantial and nontrivial extension to

the approach followed in the case of i.i.d. observations.

Let us assume that our data Z1, . . . ,Zn are independent, where Zj =

(XT
j ,Y

T
j )T , with Y j the vector response variable and Xj the observed co-

variate. We assume that each Zj has distribution function Gj and density

gj with respect to the Lebesgue measure. We want to model gj by the

family Fj = {fj(.;θ, ξj), θ ∈ Θ ⊂ Rp, ξj ∈ Ξ ⊂ Rr}, for all j = 1, . . . n,

where fj(.;θ, ξj) = fθ,ξj is the assumed model density of Zj given in (1.1).

Here, the observations Z1, . . . ,Zn are independent, but not identically dis-

tributed. The structural parameter θ is the same for each j, but fj depends

also on the incidental parameter ξj.

We assume that for j = 1, 2, . . . , Fj is closed under the power transfor-

mation (2.3). We define a continuous mapping τα : Θ× Ξ→ Θ× Ξ, where

τα(θ, ξj) = (τ 1
α(θ), τ 2

α(ξj)), satisfying fj(z; τ 1
α(θ), τ 2

α(ξj)) = f
(α)
j (z;θ, ξj)

∀ z ∈ X , for j = 1, 2, . . . The closure of Fj under (2.3) in the functional

model seems to be a stronger condition than in the structural model. How-

ever, a closed form for τα can be obtained in some relevant cases. Consider,

for example, the regression setting where the response variable Y j follows

the exponential family of densities

fY (yj;β, ξj) = exp{η(βTξj)
Ta(yj)− b(βTξj)},
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with a(.) and b(.) known functions. Here, the explanatory vector ξj is mea-

sured with an independent normal error such thatXj follows a multivariate

normal density with mean ξj and covariance matrix Σ. When η(βTξj) =

βTξj and θ = (βT , vechTΣ)T , we obtain τ 1
α(θ) = (αβT , α−1vechTΣ) and

τ 2
α(ξj) = ξj. Another example is given in Section 6.

We also assume the existence and uniqueness of (θ0, ξ0
1, . . . , ξ

0
n) and

(θ∗, ξ∗1, . . . , ξ
∗
n) as the minimizers of the averaged q-divergence 1

n

∑n
j=1Dq(gj, fθ,ξj)

and the averaged q-entropy 1
n

∑n
j=1Hq(gj, fθ,ξj), respectively, for all large

n. We call θ∗ the surrogate structural parameter. Finally, we assume that

τq is defined for all (θ, ξ) in the interior of Θ× Ξ.

Given the sample Z1, . . . ,Zn, the MLqE θ̂
∗
n, ξ̂

∗
1, . . . , ξ̂

∗
n is defined by

(θ̂
∗
n, ξ̂

∗
1, . . . , ξ̂

∗
n) = arg maxθ,ξ1,...,ξn

∑n
j=1 Lq{fj(Zj;θ, ξj)}. The main inter-

est lies in estimating the structural parameter. The approach pursued here

replaces the incidental parameters ξj with the estimators ξ̂j = ξ̂j(Zj;θ), for

j = 1, 2, . . . , given by ξ̂j = arg maxξj∈Ξ Lq{fj(Zj;θ, ξj)}, for j = 1, 2, . . .

Let

Hn(θ) =
n∑
j=1

Lq{fj(Zj;θ, ξ̂j(Zj;θ))} =
n∑
j=1

hj(Zj;θ) (2.5)

be the objective function. Then, we can characterize θ̂
∗
n, if it exists, as

θ̂
∗
n = arg maxθ∈Θ Hn(θ).
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We assume that the following derivatives exist a.e. for all j :

∇khj(Zj;θ) = U †jk(Zj;θ) and ∇klhj(Zj;θ) = I†jkl(Xj;θ), k, l = 1, . . . , p,

where ∇k and ∇kl represent the partial derivatives with respect to the indi-

cated components of θ. Let U †j(Zj;θ) = (U †j1(Zj;θ), . . . , U †jp(Zj;θ))T and

I†j(Zj;θ) be the symmetric matrix with (k, l)th element equal to I†jkl(Zj;θ).

Differentiating (2.5) with respect to θ, we have the following estimating

equation:

n∑
j=1

U †j(Zj;θ) =
n∑
j=1

Ũ j(Zj;θ)f̃j(Zj;θ)1−q = 0, (2.6)

where

f̃j(Zj;θ) = fj(Zj;θ, ξ̂j) and Ũ j(Zj;θ) = U j(Zj;θ, ξ̂j), (2.7)

with U j(Zj;θ, ξj) = ∇ log fj(Zj;θ, ξj).

The MLqE θ̂
∗
n is obtained as a solution of the estimating equation (2.6).

This equation is satisfied by the maximizer of Hn(θ) in (2.5), whenever this

maximum exists.

We also define the matrices

Λn(θ) =
1

n

n∑
j=1

EGj

[
I†j(Zj;θ)

]
and Γn(θ) =

1

n

n∑
j=1

EGj

[
U †j(Zj;θ)U †j(Zj;θ)T

]
.

If the true densities belong to the model family, then these matrices will

depend on the incidental parameters ξ1, . . . , ξn.
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3. Asymptotic properties

In this section, we study the asymptotic properties the MLqE of the struc-

tural parameter. The consistency and asymptotic normality of the MLqE

θ̂
∗
n can be derived under appropriate regularity conditions. Because in a

functional model, the basic assumption that the observations are i.i.d. is

not met, these regularity conditions are quite different from the usual i.i.d.

case. We assume the following:

C0. 1
n

∑n
j=1 EGj [hj(Zj; .)] converges uniformly to a function h̄(.) in a neigh-

borhood of θ†, where θ† ∈ Θ◦ is a local maximum of h̄.

Some additional regularity conditions (C1 to C6) are provided in the

Supplementary Material to establish the asymptotic properties of the

MLqE. Moreover, the asymptotic results of this section are derived

under the assumption that at θ†, we have

EGj [U
†
j(Zj;θ

†)] = 0, j = 1, 2, . . . (3.1)

Theorem 1. Let θ† in the interior of Θ satisfy the regularity conditions C0

and C1 to C6 in the Supplementary Material, as well as assumption (3.1),

(i) With probability tending to one, (2.6) has a root θ̂
∗
n, which converges

in probability to θ†. If θ̃n is any other consistent root of (2.6), then

θ̂
∗
n = θ̃n with probability tending to one.
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(ii) θ̂
∗
n is asymptotically normal with mean θ† and covariance matrix

n−1Ωn(θ†), where Ωn(θ) = Λ
−1

n (θ)Γn(θ)Λ
−1

n (θ)T .

The proof is provided in the Supplementary Material.

Remark 1. When all the true densities gj belong to the model family so

that gj = fj(.;θ
0, ξ0

j), for some common θ0, we have that

n∑
j=1

Dq(f (1/q)

θ0,ξ0j
, fθ∗,ξ∗j ) = min

θ,ξ1,...,ξn

n∑
j=1

Dq(f (1/q)

θ0,ξ0j
, fθ,ξj),

for all n, which is zero if and only if fθ∗,ξ∗j = f
(1/q)

θ0,ξ0j
, for j = 1, 2, . . . , that

is θ∗ = τ 1
1/q(θ

0) and ξ∗j = τ 2
1/q(ξ

0
j), for j = 1, 2, . . . . Owing to the noise in

estimating ξ̂j, in general, θ† is not equal to θ∗, unlike what happens for an

i.i.d. sample. In this case, θ† depends in general on the surrogate structural

parameter θ∗ and the incidental parameters ξ∗1, . . . , ξ
∗
n. Assumption (3.1)

is satisfied when it is possible to obtain estimators ξ̂j(Zj;θ) so that θ† is

determined only by θ∗ and is independent of the incidental parameters. In

this case, there exists a function ρ(.) such that θ† = ρ(θ∗), as shown in the

model considered in Section 6.

Remark 2. When the true densities belong to the model family and there

exists a one-to-one function ρ(.) such that θ† = ρ(θ∗), a consistent estimator

of θ0 is given by θ̂n = ηq(θ̂
∗
n), where ηq = τ 1

q ◦ρ−1. When this is the case, we

call θ̂n the corrected MLqE. We have that θ̂n is asymptotically normal with
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mean θ0 and covariance matrix n−1DΩn(θ†)DT , where D is the matrix

∇ηq evaluated in θ†. The asymptotic properties of the MLqE depend on

the asymptotic behavior assumed for the incidental parameter sequence.

When q = 1, we can obtain, as a particular case, the asymptotic results

derived by Mak (1982), which include the maximum likelihood estimation

in functional measurement error models.

4. Estimation algorithm

The form of the estimating equation suggests exploring reweighting strate-

gies to compute the estimates. If we define

ωj = ωj(Zj;θ) =
f̃j(Zj;θ)1−q∑n
k=1 f̃k(Zk;θ)1−q

, (3.2)

the estimating equation can be written as
∑n

j=1 ωjŨ j(Zj;θ) = 0, where

ωj, for j = 1, . . . , n, are weights that depend on the assumed model density,

such that
∑n

j=1 ωj = 1. If θ(s) denotes the estimator in step s, then the

estimator in step s+ 1 satisfies

n∑
j=1

ω
(s)
j Ũ j(Zj;θ

(s+1)) = 0, (3.3)

where the weights ω
(s)
j = ωj(Zj;θ

(s)), computed using (3.2), are updated at

each step. If 0 < q < 1, observations that disagree with the model receive a

low weight. In the case q = 1, all observations receive the same weight and
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the estimators coincide with the MLE. The algorithm can be initialized

by setting θ(0) as the MLE. The process continues until the convergence

criterion ‖θ(s+1) − θ(s)‖ < δ, for a certain stopping rule δ, is satisfied. The

results in Arslan (2004) can be used to study the convergence properties of

the algorithm.

It can be shown that the algorithm (3.3) produces at each step an ascent

of the objective function Hn given in (2.5). If we define the function Qn : Θ×

Θ → R by Qn(u,v) = −
∑n

j=1 f̃j(zj;v)1−q log f̃j(zj;u), then the iterative

procedure given by (3.3) implicitly defines a mapping Mn : Θ → Θ with

θ(s+1) = Mn(θ(s)), for s = 0, 1, 2, . . . , where Mn(v) = arg minu∈Θ Qn(u,v).

Because ∂
∂u

Qn(u,v) = −
∑n

j=1 f̃j(zj;v)1−qŨ j(zj;u), we can see that v is

a stationary point of Hn if and only if it is a fixed point of Mn.

In the following proposition, we show that if θ(s), for s = 0, 1, 2, . . . , is

not a fixed point of Mn, then the sequence {Hn(θ(s))}, for s = 0, 1, 2, . . . ,

forms a monotone increasing sequence.

Proposition 1. If v is not a fixed point of Mn, then Hn(v) < Hn(Mn(v)).

The global convergence behavior of the sequences
{
θ(s)
}
s≥0

and
{
Hn(θ(s))

}
s≥0

is presented in the following proposition.

Proposition 2. Let
{
θ(s)
}
s≥0

be a sequence generated by the equation

θ(s+1) ∈Mn(θ(s)), with an initial point θ(0) ∈ Θ. If all the points
{
θ(s)
}
s≥0
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are contained in a compact subset of Θ, then all the limit points of
{
θ(s)
}
s≥0

are stationary points of Hn, and Hn(θ(s)) converges increasingly to Hn(θ∗),

where θ∗ ∈ Θ is a stationary point of Hn.

Note that the notation θ(0) here refers to the starting point, and not to

the true value of the parameter θ0.

When the reweighting algorithm starts from a point very close to the

maximum of the objective function Hn, then the sequence
{
θ(s)
}
s≥0

con-

verges to it (Arslan (2004)). If the MLE cannot be computed efficiently,

then it might be better to take a random starting point. Another alternative

could be to take the naive MLE, which maximizes
∑n

j=1 log{fY (yj;θ,xj)},

assuming that the covariates ξ1, . . . , ξn are observed without error.

5. Choice of parameter q

Having a reasonable strategy for selecting q is crucial for applying the

method to practical real-data scenarios, because there may be substantial

variation in the performance of the estimators. The meaning of the param-

eters of each model could determine a more restrictive range of admissible

values of q, as is the case for the application of Section 6.

There can be no universal way of selecting an appropriate value of q in a

given situation. Choosing the tuning parameter to minimize the estimated
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summed mean squared error is a quite general approach for families of ro-

bust methods indexed by tuning parameters. Warwick and Jones (2005)

and Ghosh and Basu (2015) minimize of the estimated asymptotic mean

squared error. For the numerical example of Section 6, we consider a data-

based choice of an appropriate value of q by minimizing a parametric boot-

strap estimate of the mean squared error of the corrected MLqE, θ̂n. Given

the observed sample {z1, . . . ,zn}, for q fixed in a grid Q = {q1, . . . , qm},

the corresponding θ̂
(q)

n is computed and ξ̂
(q)
j = ξ̂j(zj; θ̂

(q)

n ), for j = 1, . . . , n.

Then, B bootstrap samples of size n, {z∗1, . . . ,z∗n}, are taken from the

densities fj( . ; θ̂
(q)

n , ξ̂
(q)
j ), for j = 1, . . . , n. For each of the B samples, the

estimators θ̂
(q)

n,(b), for b = 1, . . . , B, are calculated and the mean squared er-

ror (MSE) of θ̂
(q)

n is estimated using M̂SE(θ̂
(q)

n ) = B−1
∑B

b=1 ‖θ̂
(q)

n,(b)− θ̂
(q)

n ‖2.

The procedure is repeated for all q ∈ Q, and the optimal q is chosen as

qopt = arg minq∈Q M̂SE(θ̂
(q)

n ). A parametric bootstrap estimate of the MSE

may be more accurate than its nonparametric version, because in the lat-

ter case, outliers in the original sample may appear multiple times in a

resample.
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6. Application to the simple linear functional model with normal

errors

Consider the simple linear regression model represented by the equations

Yj = α + βξj + ej, and Xj = ξj + uj, j = 1, . . . , n, (3.4)

where ej and uj are independent and normally distributed with zero means

and variances σ2
e and σ2

u, respectively. Here, we consider the case where λ =

σ2
e/σ

2
u is assumed to be known for the identifiability of the model. Without

loss of generality, it is assumed that λ = 1, implying that σ2
e = σ2

u = φ. The

structural parameter is θ = (α, β, φ)T . The unknown quantities ξ1, . . . , ξn

are incidental parameters because their number increases with the sample

size. Denote the true unknown parameters by θ0 = (α0, β0, φ0)T and ξ0
j ,

for j = 1, 2, . . . . Model (3.4) can be written as Zj = a + bξj + εj, for

j = 1, . . . , n, where Zj = (Xj, Yj)
T are observable, εj = (uj, ej)

T , for

j = 1, . . . , n are i.i.d. with εj ∼ N2(0, φI2), a = (0, α)T , and b = (1, β)T .

Then, Zj ∼ N2(µj, φI2), where µj = a + bξj. We denote by fj(zj;θ, ξj)

the assumed model density. Observations Z1, . . . ,Zn are independent, but

not identically distributed. Here, the structural parameter θ = (α, β, φ)T

is the same for each j, but fj depends also on the incidental parameter ξj.

Note that the family density model is closed under transformation (2.3),
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where τq(θ, ξj) = (τ 1
q (θ), τ 2

q (ξj)), with τ 1
q (θ) = (α, β, q−1φ) and τ 2

q (ξj) = ξj.

The Lq-likelihood function is given by
∑n

j=1 Lq{fj(Zj;θ, ξj)}. Solving

∂Lq{fj(Zj;θ, ξj)}/∂ξj = 0, we obtain for each j and a given θ, the con-

ditional MLqE of ξj given θ, ξ̂j = ξ̂j(Zj;θ) = c−1[Xj + β(Yj − α)], where

c = bTb = 1 + β2. Then, replacing ξj by ξ̂j in the Lq-likelihood, we obtain

the objective function

Hn =
n∑
j=1

hj(Zj;θ) =
n∑
j=1

Lq{f̃j(Zj;θ)}, (3.5)

where f̃j(Zj;θ) = fj(Zj;θ, ξ̂j) = 1
2πφ

exp
{
− 1

2cφ
(Yj − α− βXj)

2
}
. When

the true density belongs to the model, that is, gj(.) = fj(.,θ
0, ξ0

j ), with

θ0 = (α0, β0, φ0)T , there exists a parameter θ† = (α0, β0, kφ0)T , where k =

q− 1
2
, that maximizes 1

n

∑n
j=1 Ej[hj(Zj;θ)] for all large n. Furthermore, the

parameter satisfies Ej[U
†
j(Zj;θ

†)] = 0, for j = 1, 2, . . . , where Ej denotes

the expectation with respect to the model distribution N2(µ0
j , φ

0I2), with

µ0
j = a0 + b0ξ0

j , a
0 = (0, α0)T , and b0 = (1, β0)T . Derivations of these

results are included in Lemmas 1 to 3 in Section S3.2 of the Supplementary

Material.

Because the parameter φ† = kφ0 is related to the error variance, it

must be that k > 0, and then we have 1
2
< q ≤ 1. Furthermore, it can

be shown that the regularity conditions are satisfied, provided that the se-

quence of incidental parameters (ξ0
j ) verify 0 < lim inf 1

n

∑n
j=1(ξ0

j − ξ̄0
n)2 ≤
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lim sup 1
n

∑n
j=1(ξ0

j−ξ̄0
n)2 <∞, where ξ̄0

n = 1
n

∑n
j=1 ξ

0
j and limn→∞

1

n1+
γ
2

∑n
j+1 |ξ0

j |2+γ =

0, for some γ > 0 (see Mak (1982)). Because the sequence of incidental

parameters is not observable, we cannot guarantee the validity of these as-

sumptions. However, we can see that they are satisfied if ξ̄0
n and 1

n

∑n
j=1(ξ0

j−

ξ̄0
n)2 converge to finite limits. This latter condition is the most commonly

adopted in the literature on asymptotics in functional measurement error

models; see, for example, Gleser (1983).

Obtaining an explicit expression for the asymptotic covariance matrix

and asymptotic relative efficiency with respect to the MLE involves exten-

sive, though not complicated calculations, which we omit here for brevity.

These results and an extension of the MLq approach to the multivariate

linear model are deferred to future research.

A simple reweighting algorithm can be derived to compute the MLqE

θ̂
∗
n = (α̂∗n, β̂

∗
n, φ̂

∗
n)T , following the strategy described in Section 4. The result-

ing equations are a weighted version of the maximum likelihood equations

(Kimura (1992); Gleser (1981)). A derivation of the algorithm is included

in Section S3.1 of the Supplementary Material.

Note that the MLqE of θ is consistent for α and β, but not for φ. We

have that ηq(θ̂
∗
n) = (α̂∗n, β̂

∗
n, k

−1φ̂∗n)T , with k = q − 1
2
, is consistent for θ,

where ηq corresponds to the mapping defined in Remark 2 of Section 3.
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In the next subsections, we analyze the performance of the estimators

by means of a small simulation study and the analysis of a real data set.

6.1 Simulation study

We perform a small simulation study in order to investigate the efficiency

and robustness of the MLqE under the pure model and various levels and

types of contamination. We focus mainly on analyzing the behavior of the

estimators when q varies. Owing to space considerations we do not include

a simulation here to explore the empirical performance of the data-driven

selection criterion for the tuning parameter under the different scenarios of

contamination.

We used 1000 replications to estimate the empirical bias, variance, and

MSE of the MLqE of parameter θ = (α, β, φ)T . The MSE is the sum of the

MSEs of the three individual estimators. For each simulation experiment,

we choose the true values of the parameters to be α0 = 0, β0 = 1, and

φ0 = 0.1. We take the sample size as n = 50. We choose true covariates

ξj randomly from the N(0, 1) distribution. To create different scenarios of

contamination, we choose the random errors uj and ej as follows:

uj ∼ (1− δx)N(0, φ) + δxN(2, φ) and ej ∼ (1− δy)N(0, φ) + δyN(2, φ).

This gives the case where approximately 100δx% of the observations repre-
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sent leverage points, and 100δy% of the residuals are large. The case of a

fully pure model with no artificially introduced large residuals or leverage

points is obtained by fixing δx = 0 and δy = 0. Choosing δx = 0 or δy = 0,

we have just large artificial residuals or leverage points, respectively. We

fixed a grid for 0.5 < q ≤ 1 with increments of 0.01.

For brevity, we present only some results for the sample size n = 50 and

φ = 0.1. The results for other sample sizes and values of φ are qualitatively

similar. In Table 1, the overall Monte Carlo MSE of the corrected MLqE of

θ is presented for several values of q and different levels of contamination

given by combinations of δx and δy. The minimum values of MSE in the

table are shown in bold, and qminMSE denotes the value of q that minimizes

the Monte Carlo mean squared error.

As expected, at the true model (δx = 0 and δy = 0), the MSE of the

corrected MLE (q = 1) is smaller than that of the MLqE with q < 1. This

situation changes progressively as the level of contamination increases. By

setting q < 1, we can successfully trade bias for variance and obtain a

better estimation. We see that as the contamination increases, the MLE

performs worst and the MSE of the MLqE tends to be smaller for values

of q increasingly far from one. In Table 2, we compare the behavior of

the MLE and the MLqE of the parameter β for q = qminMSE, in terms of
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bias, variance, and MSE, for different levels of contamination. The MLqE

has bias noticeably smaller than that of the MLE under all considered

contamination scenarios. There is also a variance reduction in the MLqE

with respect to the MLE, except for percentages of contamination between

15% and 20%. Figure 1 shows the bias distribution of the MLqE of the

parameter β for percentages of contamination with leverage points 5%, 10%,

15%, and 20% for various values of q. The box plots represent distributions

of 1000 simulated values β̂r − β0, for r = 1, . . . , 1000. We can see, for

example, that the MLqE of β can withstand up to 5% contamination for

q = 0.85, 15% for q = 0.8, and almost 20% for q = 0.75. The behavior for

the other model parameters with different values of φ is similar, though the

optimal values of q increase and are closer to one when φ increases.
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Table 1: Simulated MSE of the corrected MLqE of θ, with φ = 0.1 and

sample size n = 50.

q

δx δy 1 0.95 0.90 0.85 0.80 0.75 0.70 qminMSE

0 0 0.0092 0.0094 0.0099 0.0109 0.0127 0.0169 0.0259 1

0.02 0 0.0185 0.0131 0.0112 0.0115 0.0131 0.0173 0.0266 0.89

0.05 0 0.0429 0.0277 0.0166 0.0137 0.0144 0.0191 0.0283 0.84

0.10 0 0.1007 0.0764 0.0472 0.0269 0.0207 0.0230 0.0328 0.79

0.15 0 0.1733 0.1493 0.1136 0.0703 0.0448 0.0375 0.0441 0.76

0.20 0 0.2465 0.2280 0.1989 0.1513 0.1001 0.0748 0.0724 0.71

0.02 0.02 0.0293 0.0187 0.0133 0.0125 0.0138 0.0186 0.0281 0.86

0.02 0.05 0.0612 0.0400 0.0227 0.0154 0.0152 0.0201 0.0289 0.83

0.05 0.05 0.0793 0.0558 0.0322 0.0192 0.0177 0.0223 0.0314 0.81

0.02 0.10 0.1500 0.1179 0.0772 0.0421 0.0302 0.0305 0.0402 0.78

0.05 0.10 0.1603 0.1324 0.0940 0.0539 0.0379 0.0376 0.0472 0.78

0.02 0.15 0.2799 0.2503 0.2045 0.1388 0.0917 0.0779 0.0791 0.73

0.05 0.15 0.2881 0.2647 0.2266 0.1627 0.1061 0.0853 0.0946 0.73
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Table 2: Monte Carlo squared bias, variance, and MSE of the MLE and

MLqE of β with q = qminMSE, for φ = 0.1 and sample size n = 50.

MLE MLqE

δx δy bias2 Var MSE bias2 Var MSE q

0 0 0.0000 0.0049 0.0049 0.0000 0.0049 0.0049 1

0.02 0 0.0014 0.0075 0.0089 0.0000 0.0058 0.0058 0.89

0.05 0 0.0079 0.0101 0.0180 0.0000 0.0071 0.0071 0.84

0.10 0 0.0253 0.0126 0.0379 0.0001 0.0008 0.0109 0.79

0.15 0 0.0480 0.0128 0.0608 0.0007 0.0197 0.0204 0.76

0.20 0 0.0697 0.0126 0.0823 0.0031 0.0371 0.0402 0.71

0.02 0.02 0.0000 0.0126 0.0126 0.0000 0.0064 0.0064 0.86

0.02 0.05 0.0053 0.0195 0.0248 0.0001 0.0077 0.0078 0.83

0.05 0.05 0.0002 0.0228 0.0230 0.0000 0.0096 0.0096 0.81

0.02 0.10 0.0276 0.0315 0.0591 0.0003 0.0160 0.0163 0.78

0.05 0.10 0.0109 0.0352 0.0461 0.0004 0.0216 0.0220 0.78

0.02 0.15 0.0699 0.0400 0.1099 0.0020 0.0466 0.0486 0.73

0.05 0.15 0.0430 0.0517 0.0947 0.0022 0.0516 0.0538 0.73
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Figure 1: Bias distributions of the MLqE of β for values of q =

0.75, 0.80, 0.90, and 1 under a contaminated normal distribution with per-

centages of contamination 2%, 5%, 10%, and 15%, for φ = 1 and n = 50.

6.2 Numerical example

In this section, we explore the numerical performance of the MLqE by

analyzing a real data set. For all numerical calculations, the stopping rule

for the reweighting algorithm is taken as δ = 10−6. The algorithm converges

quickly, typically around 15 or 20 iterations, for values of q near the optimal.

We compare the robustness performance of the MLqE with respect to
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that of the MLE, considering the consistent estimator of the parameter

φ. We present a data-driven way of choosing the tuning parameter q by

minimizing a bootstrap estimate of the MSE, as described in Section 5.

We fixed a grid for 0.5 < q ≤ 1 with increments of 0.01, and based the

calculations on 500 bootstrap repetitions.

Example: Hertzsprung–Russell data of the star cluster.

These data come from astronomy and are taken from Rousseeuw and Leroy

(1987), who studied the robust least median of squares (LMS) estimator

in the context of an ordinary simple linear regression. The Hertzsprung–

Russell diagram of the star cluster CYG OB1 contains 47 stars in the di-

rection of Cygnus. For these data, x is the logarithm of the effective tem-

perature at the surface of the star (Te), and y is the logarithm of its light

intensity (L/L0). Rousseeuw and Leroy (1987) inferred that there are two

groups of data points; the four stars known as red giants (with indices 11,

20, 30, and 34) in the upper-left corner of the scatter plot (Fig. 2) represent

a huge leverage point, and clearly form a separate group. The data were

also analyzed by Ghosh and Basu (2013, 2015) for robust regression using

the density power divergence approach. Here, we consider a simple linear

regression with measurement errors (which corresponds to the case of model

(3.4), with p = 1), taking into account that, in general, linear regression in
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astronomy is characterized by measurement errors in the variables (Kelly

(2007)). On the other hand, because the only stars of interest are those

represented in the sample, we can consider that the true covariates are not

a random sample from a large population. Then, it seems appropriate to

consider a functional model. The parameters of the model are α, β, and φ.

The assumption that both measurements are subject to random errors with

equal variances seems reasonable. The MLqE of the model parameters for

some values of q are presented in Table 3. It is clear that the MLE corre-

sponding to q = 1 is highly sensitive to the presence of the four leverage

points. We can see that for 0.7 ≤ q ≤ 0.95, the MLqE is quite close, can

ignore the outliers, and provides satisfactory fits. The optimal q obtained

using the parametric bootstrap is q = 0.88, and the corresponding MLqE

estimates are α̂ = −21.09, β̂ = 5.90, and φ̂ = 0.01. For comparison, we find

the MLE and the MLqE after removing the four extreme outliers (cases 11,

20, 30, and 34) and the outlying point 7. The resulting estimates are pre-

sented in Table 4, and the fitted lines along with the MLE and the MLqE

fits for the full data are plotted in Figure 2. We can see that the MLE fits

without the outliers are very close to the MLqE fit for the full data with

q = 0.88. Moreover, as expected, the MLqE fits after removing the outliers

are very close to the MLE fits, with optimal values of q closer to one.
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Table 3: MLqE and number of iterations of the algorithm for the

Hertzsprung–Russell data using several values of q.

q 1 0.95 0.90 0.85 0.80 0.75 0.70

α̂ 35.43 -20.46 -21.01 -21.13 -21.03 -20.78 -20.44

β̂ -7.06 5.77 5.88 5.91 5.88 5.83 5.75

φ̂ 0.08 0.01 0.01 0.01 0.01 0.01 0.01

iter. 1 28 17 17 14 19 26

Table 4: MLE and MLqE for the Hertzsprung–Russell data using all data

and with outliers removed.

Using all data Removing cases Removing cases

11, 20, 30, 34 7, 11, 20, 30, 34

Estimates MLE MLqE MLE MLqE MLE MLqE

q = 0.88 q = 0.90 q = 0.93

α̂ 35.43 -21.09 -18.26 -21.01 -20.75 -20.95

β̂ -7.06 5.90 5.28 5.88 5.84 5.87

φ̂ 0.08 0.01 0.01 0.01 0.01 0.01
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Figure 2: Scatter plot and four fitted regression lines for Hertzsprung–

Russell data. MLE using all data and with outliers removed and MLqE

using all data.

7. Conclusion

We have provided a robust fully parametric estimation procedure that

extends maximum likelihood estimation in functional measurement error

models. The method also extends the MLq approach to the more gen-
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eral problem of estimation where we have independent, but not identically

distributed observations and the presence of incidental parameters. The

method applies generally to any functional measurement error model, as

long as the model family assumed is closed under a power transformation.

We have established asymptotic properties of the MLqE under appropriate

regularity conditions. The estimation procedure can be implemented easily

by a simple and fast reweighting algorithm with well-established conver-

gence behavior. The MLqE adapts according to the discrepancy between

the data and the postulated model by tuning a single parameter q, which for

0 < q < 1 controls the balance between robustness and efficiency. Choices

of q near one afford considerable robustness, while retaining efficiency close

to that of the MLE.

Our illustration of the methodology using a simple linear model showed

that the MLqE is appealing in that it provides practitioners with a simple

and fast estimation strategy with satisfactory fit to real-world data, while

keeping a simple normal model. A simulation study and real-data analysis

showed the satisfactory behavior of the MLqE and its advantages over the

MLE in the presence of outlying observations and/or deviations from the

assumed model. There can be no universal way of selecting an appropriate

value of q in a given situation. We consider a data-based choice of an
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appropriate value of q by minimizing a bootstrap estimate of the mean

squared error of the estimators. However, other strategies for the optimal

selection of q should be explored as well.

For the sake of brevity, we illustrated the proposed approach using a

normal simple linear model. However, the results can be extended without

difficulty to a multivariate functional linear model. In this case, the steps

of the reweighting algorithm reduce to a simple variable transformation of

the algorithm proposed by Gleser (1981).

Estimation for functional generalized linear measurement error models

in canonical form when the explanatory vector is measured with an inde-

pendent normal error could be addressed using the proposed methodology.

For some of these models, the family of densities of Zj = (XT
j , Yj)

T , given

by (1.1), will be closed under the power transformation (2.3), as mentioned

in Section 2.2. Moreover, for these models, we might consider replacing the

incidental parameters ξj with uniform minimum variance unbiased estima-

tors that depend on the structural parameters, as in Stefanski and Carroll

(1987).

Furthermore, because the proposed approach uses a quite general inci-

dental parameter framework, it can be applied in settings beyond functional

measurement error models, such as panel, longitudinal, or clustered data
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models, when the likelihood can be fully specified.

In this study, we replace the incidental parameters in the Lq-likelihood

with their estimates, which depend on the structural parameters. Moreover,

in some models, the incidental parameters can be eliminated by condition-

ing on certain sufficient statistics (Andersen (1970)). Then, based on a

conditional density independent of the incidental parameters, an MLq ap-

proach can be explored.

Another case of interest is the hypothesis testing problem. Asymp-

totics on MLqE can be used to develop a robust and efficient test of a

hypothesis involving the structural parameter. Wald-type tests and Lq-

likelihood-ratio-type tests, as introduced by Qin and Priebe (2017), can be

considered.

Supplementary Material

The online Supplementary Material includes (i) the regularity condi-

tions used to prove the asymptotic properties, (ii) proofs of Theorem 1 and

Propositions 1 and 2, and (iii) derivations of some results in the simple

linear functional model.
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