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Abstract: Gene expression and phenotype association can be affected by potential

unmeasured confounders from multiple sources, leading to biased estimates of the

associations. Because genetic variants largely explain gene expression variations,

they can be used as instrumental variables (IVs) when studying the association

between gene expressions and phenotypes in a high-dimensional IV regression

framework. Because the dimensions of both genetic variants and gene expres-

sions are often larger than the sample size, statistical inferences (e.g., hypothesis

testing) for such high-dimensional IV models are not trivial, and have not been

investigated in the literature. The problem is made more challenging because

the IVs (e.g., genetic variants) have to be selected from a large set of genetic

variants. This study considers the problem of hypothesis testing for sparse IV

regression models, and presents methods for testing a single regression coefficient

and for multiple testing of multiple coefficients, where the test statistic for each

single coefficient is constructed based on an inverse regression. A multiple testing

procedure is developed for selecting variables, and is shown to control the false
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discovery rate. Simulations are conducted to evaluate the performance of our

proposed methods. Lastly, we apply the proposed methods by analyzing a yeast

data set in order to identify genes that are associated with growth in the presence

of hydrogen peroxide.

Key words and phrases: Debiased estimation, FDR control, Genetical genomics,

Inverse regression, Multiple testing.

1. Introduction

Many genomic studies collect both germline genetic variants and tissue-

specific gene expression data on the same set of individuals in order to un-

derstand how genetic variants perturb gene expressions that lead to clinical

phenotypes. Here, popular methods include association analyses between

gene expressions and phenotypes such as the differential gene expression

analysis. Such studies have shown that gene expressions are associated

with many common human diseases, such as liver disease (Romeo et al.,

2008; Speliotes et al., 2011) and heart failure (Liu et al., 2015). However,

there may be many unmeasured factors that affect both gene expressions

and phenotypes of interest (Leek and Storey, 2007; Hoggart et al., 2003).

Unmeasured confounding variables can cause a correlation between the er-

ror term and one or more of the independent variables, causing us to identify

false associations. In particular, the independence assumption between gene
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expressions and errors is required in a linear regression in order to obtain a

valid statistical inference of the effects of gene expressions on phenotypes. If

this assumption is violated, standard methods can lead to biased estimates

(Lin et al., 2015; Fan and Liao, 2014).

One way to deal with unmeasured confounding is to apply an instru-

mental variable (IV) regression, which has been studied extensively in low-

dimensional settings (Imbens, 2014). In our applications, we treat genetic

variants as IVs when studying the association between gene expressions and

phenotypes. The standard method used to fit IV models involves applying

two-stage regressions to obtain valid estimations of the true parameters.

Using genetic variants as IVs has attracted much interest, because these

variants can be considered as randomly assigned to individuals, owing to

Mendelian segregation. In genetics, owing to the availability of large-scale

genetics data, Mendelian randomization has been proposed for investigating

the causal relationship between two variables. Kang et al. (2016) studied

the problem of IV estimation by allowing for some invalid instruments. Zhao

et al. (2019) considered the statistical inference of Mendelian randomiza-

tion using summary statistics from two genome-wide association studies,

focusing on how to deal with bias in the causal estimate due to weak or

invalid instruments.
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While the methods of Kang et al. (2016) and Zhao et al. (2019) can be

applied to study the effect of one given gene on the response, it is also im-

portant to consider many genes jointly in high-dimensional IV regressions.

In such models, the dimensions of the genetic variants and gene expres-

sions are much larger than their respective sample sizes, making the classic

two-stage regression methods of fitting IV models infeasible. To account

for high dimensionality, penalized regression methods have been developed

that select the instruments in the first stage, and then select gene expres-

sions in the second stage (Lin et al., 2015). Lin et al. (2015) provided the

estimation error bounds of the proposed two-stage estimators, but did not

study the related problem of statistical inference.

Here, we presents hypothesis testing methods for high-dimensional IV

models, including a statistical test of a single regression coefficient and a

false discovery rate (FDR) controlling method for simultaneously testing

each of the coefficients. For linear regression models in high-dimensional

settings, Javanmard and Montanari (2014) developed a debiased procedure

to construct an asymptotically normally distributed estimator based on the

original biased Lasso estimator. The asymptotic results can be used for

hypothesis testing. Zhang and Zhang (2014) proposed a low-dimensional

projection estimator to correct the bias, sharing a similar idea to that of
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Javanmard and Montanari (2014). In a more general framework, Ning

et al. (2017) considered the hypothesis testing problem for the general pe-

nalized M-estimator, constructing a decorrelated score statistic in a high-

dimensional setting. All these methods for high-dimensional linear regres-

sion inferences require the critical assumption that the error terms are in-

dependent of the covariates, and therefore cannot be applied to IV models

directly.

Our proposed inference methods build on the work of Lin et al. (2015)

to obtain consistent estimators of the regression coefficients, and on the

work of Liu (2013) to construct the bias-corrected test statistics using an

inverse regression. Inverse regressions were first used to study the Gaussian

graphical model, and have been extended to perform hypothesis testing in

high-dimensional linear regression models (Liu and Luo, 2014). The proce-

dure uses information from the precision matrix to quantify the correlations

between the test statistics. We combine this inverse regression procedure

with the estimation methods in Lin et al. (2015) to propose a test statistic

with desired properties. In addition, in a high-dimensional setting, the spar-

sity assumption on the true regression coefficient results in a small number

of alternatives, which can lead to conservative FDR control. A less con-

servative approach is to control the number of falsely discovered variables
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(FDV) (Liu and Luo, 2014). The proposed test statistic for a single regres-

sion coefficient in IV models is shown to be asymptotically normal, and the

proposed multiple testing procedure is shown to control the FDR or FDV.

The proposed two-stage regression can be used to identify gene expres-

sions that cause diseases by jointly analyzing genotype and gene expression

data. This is similar in spirit to transcriptome-wide association studies

(TWAS) (Wainberg et al., 2019; Gamazon et al., 2015) that aim to identify

the molecular mechanisms through which genetic variations affect pheno-

types. Most TWAS are performed based on two independent data sets,

where the expression panel or reference eQTL data are used to learn per-

gene predictive models of expression level. These models are used to predict

a gene expression for each individual in a separate genome-wide association

study (GWAS) data set. Finally, statistical associations are tested between

the predicted gene expression and the trait (Wainberg et al., 2019). Such

analyses can also be performed using summary statistics (Gusev et al., 2016;

Barbeira et al., 2018). Another related topic is the two-sample Mendelian

randomization (MR) from gene expression to trait, using genetic variants

as possible IVs (Zhu et al., 2016, 2018; Sanderson et al., 2018). Most of

these MR methods are based on two sets of GWAS summary statistics, and

are performed for one gene at a time. In contrast, our method focuses on

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0408



7

identifying possible causal genes by considering all genes jointly when trait,

genotype, and gene expression data are measured on the same set of indi-

viduals. Our method allows multiple causal genes for a given trait, some

of which can be associated with the same set of genetic variants through

trans-regulation. In this scenario, the key assumption of an absence of

pleiotropy in a single-gene MR analysis is violated, which can lead to false

causal association (Wainberg et al., 2019). Finally, our proposed l1 penal-

ized estimation method allows us to select the highest number of possible

causal genes from among those that are highly correlated.

The remainder of the paper is organized as follows. Section 2 presents

the high-dimensional IV model, the test statistics for single hypothesis,

and a multiple testing procedure that controls the FDR or FDV. Section

3 provides the theoretical results of the single coefficient test statistic and

the multiple testing procedure. Simulation results are presented in Section

4. An analysis of a yeast data set using the proposed methods is given in

Section 5. A discussion and suggestions for future work are provided in

Section 6. Proofs of the theorems are included as online Supplementary

Material.
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2. IV Models and Proposed Methodology

We first introduce the notation used in the paper. For any set S, |S|

denotes its cardinality. For a vector x, supp(x) is its support, ‖x‖p is

the standard `p-norm, and ‖x‖0 is defined as |supp(x)|. For any matrix

A = (aij), for i ∈ I and j ∈ J , and subsets S ⊂ I and R ⊂ J , AS,R denotes

the submatrix {(aij) : i ∈ S, j ∈ R}, and A−S,−R denotes the submatrix

{(aij) : i /∈ S, j /∈ R}. For a matrix A, A·,j represents the jth column of

this matrix. For a sequence of random variables xn and a random variable

x, xn  x implies xn converges weakly to x as n → ∞. Finally, a ∧ b

represents the minimum value between a and b, and a . b if there exists

some constant C such that a ≤ Cb, and a .p b if the inequality a ≤ Cb

holds with probability going to one.

2.1 Sparse IV Model

Denote Y ∈ Rn as the n-dimension phenotype vector, X ∈ Rn×p as the gene

expression matrix of p genes, and Z ∈ Rn×q as the matrix of q possible IVs

such as the genotypes of q genetic variants. Lin et al. (2015) considered the

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0408



9

following high-dimensional IV regression model:

Y = Xβ0 + η, (2.1)

X = ZΓ0 + E, (2.2)

where β0 ∈ Rp is the vector of regression coefficients that reflects the as-

sociation between phenotype Y and gene expression X, and Γ0 reveals the

relationships between the gene expressions X and the genetic variants Z.

Without loses of generality, we assume Z is centered and standardized.

The error terms η = (η1, η2, . . . , ηn)> and E = (ε1, . . . , εn)> are an n-

dimensional vector and an n-by-p matrix, respectively. We assume that

the error
(
ε>i , ηi

)
is element-wise sub-Gaussian with mean 0 and covariance

matrix Σe, and is independent of Z. To emphasize the correlation between

Y and X, we assume that the correlation between εi and ηi is not zero. We

are interested in the high-dimensional setting where the dimensions of the

covariates p and the potential IVs q can both be larger than n.

As suggested by Lin et al. (2015), we can estimation β0 in a sparse

setting using a two-stage penalized least squares method. Specifically, we

first estimate the coefficient matrix Γ0 in (2.2) column by column, as the

follows:

Γ̂·,j = argmin
γ∈Rq

(
1

2n
‖X·,j − Zγ‖22 + λ2j‖γ‖1

)
, j = 1, 2, . . . , p, (2.3)
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where λ2j is a tuning parameter. After obtaining an estimate of Γ0, we plug

the predicted value of X, which is X̂ = ZΓ̂, into the second-stage model

(2.1) to obtain an estimator of β0:

β̂ = argmin
β∈Rp

(
1

2n
‖Y − X̂β‖22 + λ1‖β‖1

)
, (2.4)

where λ1 is a tuning parameter.

The focus of this paper is to develop a statistical test of a single null hy-

pothesisH0i : β0i = 0 vs. H1i : β0i 6= 0 for a given i, and to develop an FDR

controlling procedure for simultaneously testing p such null hypotheses, for

i = 1, · · · , p.

2.2 Hypothesis Testing for a Single Hypothesis Using Inverse

Regression

Denote D = ZΓ0. From models (2.1) and (2.2), we have

Y = µ+ Dβ0 + ξ, (2.5)

where ξ = η + Eβ0. When Z consists of all valid instruments, D and ξ

are independent by the causal assumptions for valid IVs and (2.5) can be

treated as a standard linear regression, but with correlated errors. Owing

to the dependent errors, the debiased method of Javanmard and Montanari

(2014) cannot be applied directly to this linear model, even when D is
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known. Instead, we use an inverse regression (Liu and Luo, 2014; Liu, 2013)

to construct our test statistics. For each i = 1, 2, . . . , p, Di is regressed on

(Y,D·,−i) as

D·,i = ai + (Y,D·,−i)θi + ζi, (2.6)

where ζi satisfies Eζi = 0 and is uncorrelated with (Y,D·,−i). The regression

coefficient θi is chosen so that Eζi = 0, and ζi is uncorrelated with (Y,D·,−i)

and has the smallest variance. It is easy to check that such a θi is related

to the target parameter β0, using the following equality:

θi = −σ2
ζi

(
−β0i
σ2
ξ

,
β0iβ

>
−0i

σ2
ξ

+ ΩD
−i,i

)
, (2.7)

where σ2
ζi

and σ2
ξ denote the variances of ζi and ξ, respectively, and ΩD =

Σ−1D is the precision matrix for D. Because Cov(D, ξ) = 0, we have σ2
ζi
β0i =

σ2
ξθi1 = θi1Cov(ξ, y) = −Cov(ξ, ζi); therefore, the null hypothesis H0i :

β0i = 0 is equivalent to

H0i : Cov(ξ, ζi) = 0 vs. H1i : Cov(ξ, ζi) 6= 0,

for i = 1, 2, . . . , p.

Because the data observed are {yk,Xk,Zk, k = 1, 2, · · ·n}, the vector

Di in (2.6) is not observed for any i = 1, 2, . . . , p. One can estimate θi via
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regularization by replacing D with its estimated value D̂ = X̂ = ZΓ̂,

θ̂i = argmin
θ

{
1

2n
‖D̂·,i −

(
Y, D̂·,−i

)
θi‖22 + µi‖θ‖1

}
, (2.8)

for i = 1, 2, . . . , p, where µi is a tuning parameter.

The sample correlation between ξ and ζi is then used to construct the

test statistic for H0i (Liu, 2013). Using the estimates β̂, D̂, and θ̂i, the

estimated residuals are

ξ̂k = yk − Y −
(
D̂k − D̂

)>
β̂,

ζ̂k,i = D̂k,i − D̂i −
{
yk − Y ,

(
D̂k,−i − D̂−i

)>}
θ̂i,

for k = 1, 2, . . . , n and i = 1, 2, . . . , p, where

Y =
1

n

n∑
k=1

yk, D̂ =
1

n

n∑
k=1

D̂k, D̂i =
1

n

n∑
k=1

D̂k,i, D̂−i =
1

n

n∑
k=1

D̂k,−i.

Using the bias-correction formula in Liu (2013), for each i, define the test

statistic as

Ti =
√
n

(
1

n

n∑
k=1

ξ̂kζ̂k,i +
1

n

n∑
k=1

ξ̂2kθ̂1,i +
1

n

n∑
k=1

ζ̂2k,iβ̂i

)/
σ̂ξσ̂ζi ,

where σ̂2
ξ = n−1

∑n
k=1 ξ̂

2
k and σ̂2

ζi
= n−1

∑n
k=1 ζ̂

2
k,i.

The bias-correction formula adds two extra terms to the original sample

correlation in order to eliminate the higher-order bias resulting from the bias

of the Lasso-type estimator. Using the transformation theorem in Anderson
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(2003), the final test statistic for testing H0i : Cov(ξ, ζi) = 0 is defined as

T̂i =
Ti

1− T 2
i

n
1
(
T 2
i

n
< 1
) ,

which has an asymptotic N(0, 1) distribution under the null (see Theorem

1).

2.3 Rejection Regions for Multiple Testing Procedure with FDR

and FDV Control

After obtaining the test statistic T̂i for H0i, we determine the rejection

region for multiple tests of T̂i for H0i, for i = 1, · · · , p. Recall that the

definitions of FDR and FDV are:

FDR = E


∑

i∈H0
1
(
|T̂i| ≥ t

)
∑p

i=1 1
(
|T̂i| ≥ t

)
∨ 1

 , FDV = E

{∑
i∈H0

1
(
|T̂i| ≥ t

)}
.

Suppose the rejection region for each H0i is {|T̂i| ≥ t}. By the definitions of

false discovery proportion and FDR, an ideal choice of t that controls the

FDR below a certain level α is

t0 = inf

0 ≤ t ≤
√

2 log p :

∑
i∈H0

1
(
|T̂i| ≥ t

)
∑p

i=1 1
(
|T̂i| ≥ t

)
∨ 1
≤ α

 . (2.9)

In practice, the quantity
∑

i∈H0
1
(
|T̂i| ≥ t

)
can be estimated by 2p (1− Φ(t)),

which gives the critical value t̂0, where Φ(t) is the cumulative distribution
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function of the standard normal distribution. We reject the hypothesis H0i

if |T̂i| ≥ t̂0, for i = 1, 2, . . . , p.

Similarly, to control the FDV, the rejection region |T̂i| ≥ t̂0 is given by

t̂0 = G−1
(
k

p

)
, (2.10)

where G(t) = 2(1− Φ(t)).

2.4 Implementation

The construction of the test statistics involves a set of convex optimizations

and selecting the tuning parameters in order to solve the Lasso regressions

(2.3), (2.4), and (2.8). The optimizations can be implemented efficiently

using the coordinate descent (CD) algorithm (Friedman et al., 2010; Lin

et al., 2015). The CD algorithm is a well known and widely used convex

optimization algorithm for penalized regressions, so we omit the details

here.

For the tuning parameter selection, we have separate strategies for the

two groups of tuning parameters λ and µ. For the optimization problems

(2.3) and (2.4), the tuning parameters λ1 and λ2j, for j = 1, 2, . . . , p, can

be chosen using K-fold cross-validation (CV), for K = 5 or 10, where λopt1

and λopt2j , for j = 1, 2, . . . , p, are determined by minimizing the CV errors

of the corresponding optimization problem. When both p and q are very
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large, performing CV can be time consuming. Therefore, in our simulations

and real-data applications, we applied an alternative method to select these

two groups of tuning parameters that relies on the scaled Lasso (Sun and

Zhang, 2012), which is computationally more efficient.

The tuning parameters for the inverse regression (2.8) are selected using

a data-driven procedure, as suggested by Liu (2013) and Liu and Luo (2014).

Specifically, let δj = j, for j = 1, 2, . . . , 100, and µj = 0.02δj

√
Σ̂D
i,i log p/n,

where Σ̂D is the sample covariance matrix of D̂. The choice of δ is deter-

mined by

δ̂ = argmin
δ

90∑
k=30


∑p

i=1 1
(
|T̂i| ≥ Φ−1 (1− k/200)

)
kp/100

− 1


2

.

The tuning parameter µi in (2.8) is chosen as µ̂i = 0.02δ̂
√

Σ̂D
i,i log p/n.

3. Theoretical Results

Here, we provide some theoretical results for the proposed methods. Be-

cause our proposed hypothesis test is based on the two-stage penalized esti-

mation of Lin et al. (2015), we first briefly state the estimation error bounds

for β̂ and Γ̂·,j. Under assumptions similar to those of Bickel et al. (2009)

and Lin et al. (2015) to ensure that the matrices Z and D are well-behaved

and that the `1 norms of the true parameters β0 and Γ0 are bounded away
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from infinity, Lin et al. (2015) showed that when the tuning parameters are

chosen appropriately, we have

‖Z
(
Γ̂− Γ0

)
‖2F ≤ 16C̃2C2

κ2(s2,Z)
s2p (log p+ log q) , (3.11)

‖β̂ − β0‖1 ≤ C3s1

√
s2 (log p+ log q)

n
, (3.12)

where C̃, C, and C3 are some constants, s1 = ‖β0‖0, s2 = maxj ‖Γ·,j‖0, and

κ2(s2,Z) is the constant in the restricted eigenvalue condition for Z. See

the Supplementary Material (S1) for detailed conditions (A1) - (A3).

3.1 Asymptotic Distribution of the Test Statistic for Single Null

Hypothesis

In order to make an inference for the parameter β0 using an inverse regres-

sion, three additional assumptions are needed.

(B1) In the inverse regression model (2.6), denote Mi = (Y,D·,−i), for

i = 1, . . . , p; then Mi satisfies the restricted eigenvalue condition with

some constant κ(r,Mi). In addition, assume that there exists a posi-

tive constant κ(Y,D) such that mini κ(r,Mi) ≥ κ(Y,D).

(C1) The precision matrix ΩD and covariance matrix ΣD satisfy

max1≤j≤p
(
ΩD
j,j,Σ

D
j,j

)
≤ C, for some constant C and Var(Yi) ≤ C.
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(C2) The dimensional parameters n, p, q, s1, s2, and r satisfy the following

asymptotic scaling condition as n→∞:

max{r
√
s2, s1, s2}

√
log p (log p+ log q)

n
= o(1).

Assumption (B1) guarantees that θi is well estimated. This assumption

is implicitly assumed, though not stated, in Liu and Luo (2014). Assump-

tions (C1) and (C2) are needed to obtain the asymptotic distribution of T̂i.

In particular, assumption (C1) bounds the entries of the covariance matrix

ΣD and the precision matrix ΩD, and assumption (C2) provides the rela-

tion between the dimension and the sparsity parameters n, p, q, s1, s2, and

r, where s1, s2, and r control the sparsity of β0, Γ0, and θi respectively.

In addition, if we fix q, which is the number of instruments, then assump-

tion (C2) is equivalent to log p = o(
√
n). This assumption is often made

in inference results related to the Lasso and other high-dimensional models

(Gold et al., 2017; Javanmard and Montanari, 2014; Ning et al., 2017).

We have the following lemma on the estimation error bound of θi in

the inverse regression.

Lemma 1 (Estimation error bounds of θi). Under assumptions (A1)–(A3)

(Supplementary Material) and (B1), for each i = 1, 2, . . . , p, there exists
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some positive constants C4, C5, C
∗
5 . If the tuning parameter µi is chosen as

µi =
C∗4

κ(s2,Z)

√
s2(log p+ log q)

n
,

with C∗4 = C∗5 max(C, σζi), then with probability at least 1 − C4 (pq)−C5, θ̂i

in (2.8) satisfies

‖θ̂i − θi‖1 ≤
64C∗4

κ2(Y,D)κ(s2,Z)
r

√
s2(log p+ log q)

n
.

This lemma 1, together with the estimation bounds (3.11) and (3.12)

can be used to derive the asymptotic distribution of the test statistic T̂i

under the null H0i.

Theorem 1 (Asymptotic distribution of T̂i). Under assumptions (A1)–

(A3), (B1), and (C1)–(C2), with proper choices of the tuning parameters

λ1, λ2j, and µ, as stated in Lemma 1 and Lemma 1 in the Supplementary

Material, for each i = 1, 2. . . . , p, under the null H0i : β0i = 0,

T̂i  N(0, 1).

3.2 Theoretical Results on FDR and FDV

For the proposed multiple testing procedure, in order to control the FDR or

FDV, one additional condition on the precision matrix is needed to ensure

that the test statistics are not too highly correlated.
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(C3) The precision matrix ΩD satisfies the following condition: for some

ε > 0 and δ > 0,

∑
(i,j)∈A(ε)

p
2|ρij,ωD |
1+|ρij,ωD |+δ = O(p2/(log p)2),

where ρij,ωD
= ΩD

ij/(Ω
D
ii Ω

D
jj)

1/2 andA(ε) = B((log p)−2−ε), with B(δ) =

{(i, j) : |ρij,ωD
| ≥ δ, i 6= j}.

The next theorem shows that the proposed multiple testing procedure

controls the FDR at a prespecified level.

Theorem 2 (Asymptotic result for multiple testing procedure). Denote

FDR= FDR(t̂0). Assuming (A1)–(A3), (B1),(C1), and (C3) hold, p ≤ nc,

for some c > 0. We further assume a condition stronger than (C2) such

that the quantities in the left of assumption (C2) are of order o((log p)−
1
2 )

instead of o(1), and for some c̃ > 2,

∑
i∈H1

1

 βi√
σ2
ξΩ

D
i,i

≥
√
c̃ log p/n

→∞, (3.13)

as (n, p) → ∞. Then, with a proper choice of all tuning parameters and

the threshold t̂0, with a prespecified level α, we have

lim
n,p→∞

FDR

αp0/p
= 1 and lim

n,p→∞

FDV

kp0/p
= 1.

This theorem indicates that under proper conditions, the empirical

FDR(eFDR) is controlled under a prespecified level. In addition to the
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assumptions mentioned previously, we require a stronger condition (3.13),

which requires that the number of true alternatives tends to infinity. This

condition is also required in Liu and Luo (2014).

4. Simulation Studies

We evaluate the performance of the proposed methods using a set of sim-

ulations. Following models (2.1) and (2.2), we first generate the instru-

ments matrix Z, where Zi ∼ N(0,Σz). The covariance matrix Σz satisfies

(Σz)ij = 0.5|i−j|. For each Γ·,j, we first randomly pick s2 out of q nonzero

entries, and then each entry is generated randomly from a uniform distri-

bution U([−b,−a]∪ [a, b]), with a = 0.75, b = 1. The parameter β0 is gener-

ated similarly, where we pick s1 out of p nonzero entries, and each entry is

generated randomly from U([−0.3,−0.1]∪ [0.1, 0.3]). For the joint distribu-

tion of
(
ε>i , ηi

)
, the covariance matrix Σe is generated by (Σe)ij = 0.2|i−j|,

for 1 ≤ i, j ≤ p and (Σe)p+1,p+1 = 1, and from among (Σe)i,p+1, where

i = 1, . . . , p, 10 entries are picked randomly and set to be 0.3. We im-

pose this structure so that ηi is correlated with εi. The covariates X and

response Y are generated based on our model.

We consider different values of (n, p, q), with (n, p, q) = (200, 100, 100), (400,

200, 200), and (200, 500, 500), and (s1, s2) = (10, 10). Because we focus on
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Figure 1: Box plots of the empirical type-I errors for single hypothesis test-

ing based on an IV regression and a naive Lasso regression under different

settings for α-level of 0.05 (left) and 0.01 (right).

inferences on β, we omit the estimation comparisons here; see Lin et al.

(2015) for an extensive study. We observed similar improvements over the

estimates from the naive Lasso estimate. We compare our methods with

the test developed in Liu and Luo (2014) for a high-dimensional regression

analysis linking Y to X, ignoring the fact that X and η are correlated. It

should be noted that the independent error assumption is necessary for the

method in Liu and Luo (2014) to work. We evaluate the performances of the

hypothesis testing procedures by calculating the empirical type-I errors for

testing single regression coefficients, and the eFDR, empirical FDV(eFDV)

for multiple testing procedures.
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4.1 Type-I Error of Single Hypothesis Test

Figure 1 shows box plots of the empirical type-I errors for testing the single

null hypothesis for the variables with a zero coefficient, based on IV models

and the standard Lasso regression. When the errors and covariates are

correlated owing to unobserved confounding, the naive Lasso regression

may fail to control the type I error for some null coefficients, leading to

inflated type-I errors. This indicates that the naive method may falsely

select some unrelated variables. As a comparison, the test based on the IV

regression controls the type-I errors below the specified significance level.

4.2 FDR Controlling for Multiple Testing

To examine the performance of the proposed multiple testing procedure,

for a given α = 0.05, 0.1, 0.2, we calculate the eFDR defined as the average

of the observed FDR:

FDR =

∑
i∈H0

1
(
|T̂i| ≥ t̂0

)
∑p

i=1 1
(
|T̂i| ≥ t̂0

)
∨ 1

.

Similarly, the power of the multiple testing procedure is defined as
∑

i∈H1
1
(
|T̂i| ≥ t̂0

)
/|H1|.

Table 1 shows the eFDR for the proposed procedure for the IV re-

gression and the method of Liu and Luo (2014) for the standard high-

dimensional regression, without including the IVs. We observe that the
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proposed multiple test procedure for the IV regression can indeed control

the FDR at the correct level. In contrast, the procedure based on the stan-

dard high-dimensional regression fails to control the FDR, unless the model

is very sparse, as when p = q = 500.

We similarly evaluate the procedure for controlling the number of falsely

discovered variables k=2,3,4. The eFDV is defined as average of the ob-

served FDV=
∑

i∈H0
1
(
|T̂i| ≥ t̂FDV

)
, and its power is given by

∑
i∈H1

1
(
|T̂i| ≥ t̂FDV

)
.

Table 1 shows that the proposed procedure also controls the FDV at the

specified level. However, the method based on the standard regression can

result in a larger eFDV than the prespecified number.

Note that for p = q = 500, the performance of our proposed method is

very similar to that of the naive test. The reason is that, by our construction

of the covariance matrix of the error terms, the dependency between the

covariates and the errors becomes very weak for large p, in which case, the

two methods are expected to perform similarly.

4.3 Sensitivity to Model Assumptions

We perform a sensitivity analysis to determine how non-normal errors im-

pact the performance of our method. We consider the same model parame-

ters as in the previous section, but assume that
(
ε>i , ηi

)
have a multivariate
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Table 1: Simulation results based on 500 replications. The eFDR/eFDV

and power for the multiple testing procedure based on the IV regression

and the naive high-dimensional linear regression (eFDR∗ and eFDV∗) for

different combinations of (n, p, q) and different α/k−levels.

FDR FDV

α eFDR power (sd) eFDR∗ k eFDV power (sd) eFDV∗

(n, p, q)=(200, 100, 100)

0.05 0.044 0.547 (0.15) 0.198 2 1.35 6.35 (1.5) 4.11

0.10 0.075 0.58 (0.15) 0.239 3 1.94 6.57 (1.4) 4.87

0.20 0.134 0.622 (0.15) 0.296 4 2.49 6.71 (1.4) 5.55

(n, p, q)=(400, 200, 200)

0.05 0.026 0.752 (0.13) 0.153 2 1.27 8.16 (1.1) 4.18

0.10 0.060 0.781 (0.12) 0.197 3 1.94 8.31 (1.1) 5.13

0.20 0.124 0.814 (0.12) 0.268 4 2.59 8.42 (1.1) 5.96

(n, p, q)=(200, 500, 500)

0.05 0.074 0.390 (0.12) 0.055 2 2.21 4.93 (1.3) 2.04

0.10 0.129 0.427 (0.13) 0.103 3 3.19 5.17 (1.4) 3.01

0.20 0.224 0.472 (0.14) 0.197 4 4.13 5.39 (1.4) 3.98
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t-distribution with mean 0, covariance Σe, and degree of freedom three,

where Σe is the same as in Section 4. Table 2 shows that eFDR and eFDV

are, in general, controlled below the specified values, indicating that the

method is not too sensitive to the distribution of the error terms.

We further examine the performance of our method when the IVs have

direct effects on the outcome, a violation of being a valid IV. We generate

the data by Yi = Xiβ0 + Ziτ + εi. In the setting of weak or moderate

direct effects, we assume two IVs to have nonzero coefficients of 0.2 and

−0.2 (weak), and 0.5 and -0.5 (moderate), respectively. Table 2 shows that

under the weak or moderate direct effects, the proposed method can still

control the FDR or FDV well. However, if the IV have very strong effects

with a coefficient of (1, 1, 0.5, 0.5,−0.5), we observe over-inflated eFDRs

and eFDVs.

5. Application to a Yeast Data Set

We demonstrate our method using a data set collected on 102 yeast seg-

regants by crossing two genetically diverse strains (Brem and Kruglyak,

2005). The data set includes the growth yields of individual segregants

grown in the presence of different chemicals (Perlstein et al., 2007). These

segregants have different genotypes, represented by 585 markers, after re-
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Table 2: Sensitivity analysis for non-normal errors and invalid IVs with

weak, moderate, or strong direct effects on the outcome. Simulation results

are based on 500 replications.

α-level eFDR k eFDV α-level eFDR k eFDV

(n, p, q)=((200, 100, 100) (n, p, q)=(400, 200, 200)

t-distribution of the errors

0.05 0.09 2 1.5 0.05 0.057 2 1.62

0.1 0.11 3 2.19 0.1 0.09 3 2.36

0.2 0.17 4 2.90 0.2 0.16 4 3.2

Weak direct effects

0.05 0.050 2 1.42 0.05 0.035 2 1.38 5

0.1 0.081 3 2.03 0.1 0.068 3 2.05

0.2 0.14 4 2.69 0.2 0.13 4 2.77

Moderate direct effects

0.05 0.13 2 2.44 0.05 0.09 2 2.23

0.1 0.16 3 3.08 0.1 0.13 3 3.04

0.2 0.23 4 3.82 0.2 0.21 4 3.76

Strong direct effects

0.05 0.51 2 8.50 0.05 0.56 2 13.10

0.1 0.54 3 9.51 0.1 0.60 3 14.49

0.2 0.58 4 10.30 0.2 0.65 4 15.68
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moving the markers that are in almost complete linkage disequilibrium.

The genotype differences in these strains contribute to rich phenotypic di-

versity in the segregants. In addition, 6189 yeast genes were profiled in rich

media and in the absence of any chemical or drug using expression arrays

(Brem and Kruglyak, 2005). Using the same data preprocessing steps as

Chen et al. (2009), we compiled a list of candidate gene expression features

based on their potential regulatory effects, including transcription factors,

signaling molecules, chromatin factors, and RNA factors and genes involved

in vacuolar transport, endosome, endosome transport, and vesicle-mediated

transport. We further filter out genes with s.d ≤ 0.2 in expression level,

yielding a total of 813 genes in our analysis.

We are interested in identifying genes with expression levels that are

associated with yeast growth yield after being treated with hydrogen per-

oxide by fitting the proposed two-stage sparse IV model. Figure 2 shows

a histogram of the number of SNPs selected for each gene expression, and

a histogram of the estimated regression coefficients (Γ0) from the Lasso.

These results show that genetic variants are strongly associated with gene

expressions, and therefore, can be used as IVs for gene expressions.

Using these selected genotypes as the IVs for each of the gene expres-

sions, we obtain the fitted expression values. Then we apply the Lasso

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0408



28

0

40

80

120

0 5 10

Number of genotype associated with gene expression

co
un

t

0

200

400

600

800

−0.50 −0.25 0.00 0.25 0.50

Estimated Values

co
un

t
Figure 2: Analysis of yeast eQTL data sets, showing a histogram of the

number of genotypes associated with each gene expression (left plot), and

a histogram of the estimated regression coefficients in the first stage (Γ̂)

based on Lasso regressions (right plot).

with these fitted expressions as the predictors and the yeast growth yield

as the response. For each gene j, we test the null of βj = 0 and obtain its

p-value. The 15 significant genes at a nominal p < 0.05 are presented in

Table 3. At FDR< 0.10, three genes are selected. These genes are related

to resistance to chemicals, competitive fitness, and cell growth, partially

explaining their association with yeast growth in the presence of hydrogen

peroxide. For example, among the genes with negative coefficients, over-

expression indicates decreased yeast growth. The RRM3 gene is involved

in DNA replication, and over-expression of the gene leads to abnormal bud-

ding and decreased resistance to chemicals. Over-expression of the POP5

and FUN26 genes causes a decreased vegetative growth rate of the yeast
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(https://www.yeastgenome.org).

The three selected genes using FDR< 0.10 all have positive coefficients,

indicating that an over-expression of these genes led to increased yeast

growth in the presence of hydrogen peroxide. Among these, BDP1 is a

general activator of RNA polymerase III transcription, and is required for

transcription from all three types of polymerase III promoters (Ishiguro

et al., 2002). Here, an over-expression of this gene is expected to increase

the yeast viability and growth. PET494 is a mitochondrial translational

activator specific to mitochondrial mRNA encoding cytochrome c oxidase

subunit III (coxIII) (Marykwas and Fox, 1989). Finally, a null mutant of

the ARG4 gene shows decreased resistance to chemicals (https://www.

yeastgenome.org); therefore, segregants with higher expressions of this

gene are expected to have increased resistance to chemicals and increased

growth yield.

As a comparison, we also apply a Lasso regression with 813 gene ex-

pressions as the predictors, without using the genotype data. The same

statistical test is applied to each of the genes. At a nominal p-value of

0.05, 34 genes are selected by the Lasso. However, no gene is selected after

adjusting for multiple comparisons with FDR< 0.10. This suggests that

by effectively using the genotype data, we are able to identify biologically
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Table 3: Results from the analysis of the yeast growth yield data set. The

table shows the selected genes using a single test statistic (p < 0.05) and

the multiple testing procedure with FDR< 0.10 and FDV< 2(marked by

∗). The gene names and estimated regression coefficients β̂ and refitted

values β̂∗ are listed.

Gene id Gene β̂ β̂∗ Gene id Gene β̂ β̂∗

Negative coefficient Negative coefficient

YHR031C RRM3 -3.82 -5.00 YNL331C AAD14 0.07 0.17

YAL033W POP5 -0.22 -0.69 YHR014W SPO13 0.47 2.20

YLR275W SMD2 -0.20 -0.31 YNR045W∗ PET494 0.70 0.86

YNL236W SIN4 -4.67 -5.63 YHR018C∗ ARG4 0.22 0.34

YNL138W SRV2 -0.63 -1.68 YHR097C YHR097C 0.06 0.15

YNL146W YNL146W -0.24 -0.12 YNL039W∗ BDP1 1.82 3.96

YAR035W YAT1 -1.74 -2.79

YAL022C FUN26 -2.89 -4.79

YHL018W YHL018W -0.79 -2.29
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meaningful genes that are associated with yeast growth in the presence of

hydrogen peroxide. We further compare the fitted versus the observed yeast

growth yields for different models (see Figure S3). Overall, we observe that

the proposed IV regression yields a better fit than those based on linear

regressions with gene expressions as the covariates.

6. Discussion

We have developed methods for exploring the association between gene ex-

pressions and phenotypes in an IV regression framework when there are

possible unmeasured confounders. Here, the genetic variants are used as

possible IVs. We have constructed a test statistic using an inverse regres-

sion and derived its asymptotic null distribution. We have also developed

a multiple testing procedure for high-dimensional two-stage least-square

methods. Both our theoretical results and our simulations show the cor-

rectness of our procedure and its improved performance over that of the

standard Lasso regression when the covariates and errors are correlated.

For the yeast genotype and gene expression data, our two-stage regres-

sion method was able to identify three yeast genes whose expressions were

associated with growth in the presence of hydrogen peroxide. In contrast,

using gene expression data alone, and the Lasso regression did not identify
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any growth associated genes. Because growth yield is highly inheritable

(Perlstein et al., 2007), using genotype-predicted gene expressions in our

two-stage estimation can help to identify gene expressions that might be

causal to the phenotype. For model organisms such as yeast, the conditional

independence assumption between the genotypes and the outcome, given

gene expression levels, is expected to hold. However, for human studies,

one should be cautious of such an assumption, because genetic variants can

affect phenotype via other mechanisms such as changing protein structures.

In stage 1 of our method, we used the Lasso to identify the genetic

variants associated with gene expressions. Alternatively, we can use a ridge

regression as suggested by one reviewer. Our simulations, shown in Table

S1 of the Supplementary Material, indicate that such an approach might

lead to a conservative inference. In addition, as shown in Shao and Deng

(2012), sparsity on the regression coefficients is still required in order to have

prediction consistency. Without such a sparsity assumption, the expected

L2 norm ‖Z
(
Γ̂− Γ0

)
‖2F/np may not converge to zero, in which case, it is

not clear how one can develop methods for inferences on β.

Our simulations showed that when some of the IVs have strong direct

effects on the outcome, the proposed test is not valid. One important fu-

ture research direction is to detect and account for the existence of weak
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or invalid IVs in high-dimensional IV regression analysis framework. The

problem of incorporating weak/invalid instruments has been studied exten-

sively (Kang et al., 2016; Guo et al., 2018; Zhao et al., 2019). However,

these studies only consider one or a few covariates, in contrast to our setup.

It would be interesting to extend these recent methods to high-dimensional

covariates and the multiple testing problem.

Supplementary Material

The online Supplemental Material includes proofs of Lemma 1 and The-

orem 1 and 2, as well as additional simulations, real-data analysis results,

and the Matlab code to implement the algorithm. The real data sets used

in this study are available upon request.
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