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Abstract: Sparse learning is central to high-dimensional data analysis, and var-

ious methods have been developed. Ideally, a sparse learning method should

be methodologically flexible, computationally efficient, and provide a theoretical

guarantee. However, most existing methods need to compromise some of these

properties in order to attain the others. We develop a three-step sparse learning

method, involving a kernel-based estimation of the regression function and its

gradient functions, as well as a hard thresholding. Its key advantages are that it

includes no explicit model assumption, admits general predictor effects, allows ef-

ficient computation, and attains desirable asymptotic sparsistency. The proposed

method can be adapted to any reproducing kernel Hilbert space (RKHS) with

different kernel functions, and its computational cost is only linear in the data

dimension. The asymptotic sparsistency of the proposed method is established

for general RKHS under mild conditions. The results of numerical experiments

show that the proposed method compares favorably with its competitors in both
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simulated and real examples.

Key words and phrases: Gradient learning, hard thresholding, ridge regression,

RKHS, nonparametric sparse learning.

1. Introduction

Sparse learning has attracted much interest from both researchers and prac-

titioners, owing to the availability of large numbers of variables in many real

applications. In such scenarios, identifying the truly informative variables

for the objective of analysis has become a key part of facilitating statistical

modeling and analysis. Ideally, a sparse learning method should be flexi-

ble, efficient, and provide a theoretical guarantee. Specifically, the method

should not assume restrictive model assumptions, making it applicable to

data with complex structures. In addition, its implementation should be

computationally efficient, and should take advantage of high performance

computing platforms. Furthermore, it should provide a theoretical guar-

antee on its asymptotic consistency in identifying the truly informative

variables.

In the literature, many sparse learning methods have been developed in

regularization frameworks that assume a certain working model set. Lin-

ear models are the most popular working model sets, where the sparse
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learning task simplifies to identifying nonzero coefficients. Under the linear

model assumption, the regularization framework consists of a least squares

loss function for the linear model, as well as a sparsity-inducing regular-

ization term. Various regularization terms have been considered, including

the least absolute shrinkage and selection operator (Lasso; [34]), smoothly

clipped absolute deviation (SCAD; [7]), adaptive Lasso [44], minimax con-

cave penalty (MCP; [41]), truncated l1-penalty (TLP; [25]), and l0-penalty

[26], among others. These methods have also been extended to the nonpara-

metric models to relax the linear model assumption. For example, under

the additive model assumption, a number of sparse learning methods have

been developed [27, 14], where each component function depends on one

variable only. Furthermore, a component selection and smoothing operator

method (COSSO; [17]) has been proposed to allow higher-order interac-

tion components in the additive model. However, the higher-order additive

models need to enumerate all interaction components, which may be of an

exponential order of the number of variables. These nonparametric sparse

learning methods, although more flexible than the linear model, still require

explicit working model sets.

More recently, attempts have been made to develop nonparametric

sparse learning methods to circumvent the dependency on restrictive model
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assumptions. In particular, sparse learning is formulated in a dimension

reduction framework in Li et al. [16] and Bondell and Li [3] by searching

for the sparse basis of the central dimension reduction space. Fukumizu and

Leng [10] developed a gradient-based dimension-reduction method that can

be extended to nonparametric sparse learning. A novel measurement-error-

model-based sparse learning method is developed in Stefanski et al. [30]

and Wu and Stefanski [38] for nonparametric kernel regression models. In

addition, gradient learning methods [22, 39] have been proposed to conduct

sparse learning in a flexible reproducing kernel Hilbert space (RKHS) [35].

Furthermore, a flexible knock-off filter framework [1] and a recursive feature

elimination method using a kernel ridge regression have been proposed [5]

that show substantial advantages over most existing methods. However,

their lack of selection consistency and computational efficiency remain as

obstacles. Interestingly, most existing gradient-based methods [22, 39] aim

to directly estimate the gradient functions in a regularization framework us-

ing some well-designed penalty terms, and thus may not be applicable for

analyzing high-dimensional data, owing to their expensive computational

cost.

Another popular line of research on high-dimensional data is that on

variable screening, which screens out uninformative variables by examin-
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ing the marginal relationship between the response and each variable. The

marginal relationship can be measured by various criteria, including the

Pearson’s correlation [8], the empirical functional norm [6], the distance

correlation [33], and a quantile-adaptive procedure [13]. These methods

are all computationally very efficient and attain the sure screening prop-

erty, meaning that all the truly informative variables are retained after

screening, with probability tending to one. This is a desirable property,

yet slightly weaker than the asymptotic consistency in sparse learning. An-

other potential weakness of the marginal screening methods is that they

may ignore those marginally unimportant, but jointly important variables

[13]. To remedy this limitation, recent works [12, 37] have conducted sure

screening for variables with interaction effects.

We propose an efficient kernel-based sparse learning method that is

methodologically flexible, computationally efficient, and able to achieve

asymptotic consistency without requiring any explicit model assumptions.

The method consists of three simple steps that include a kernel-based es-

timation of the regression function and its gradient functions, as well as a

hard thresholding. It first fits a kernel ridge regression model in a flexible

RKHS to obtain an estimated regression function. Then, it estimates the

gradient functions along each variable by taking advantage of the deriva-
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tive reproducing property [43]. Finally, it hard-thresholds the empirical

norm of each gradient function to identify the truly informative variables.

This method is flexible in that it can be adapted to any RKHS with dif-

ferent kernel functions to accommodate prior information about the true

regression function. The proposed method also enables an efficient estima-

tion of the gradient functions in two steps using the derivative property

of the RKHS, which significantly reduces the computational cost and al-

lows for a diverging dimension. The computational cost is only linear in

the data dimension. Thus, it is computationally efficient when analyzing

data sets with large dimensions. For example, the simulated examples with

p = 100000 variables can be analyzed efficiently on a standard multi-core

PC. More importantly, the asymptotic consistency can be established for

the proposed method without requiring any explicit model assumptions. It

is clear that the proposed method has advantages over the existing meth-

ods, because it achieves methodological flexibility, numerical efficiency, and

asymptotic consistency. To the best of our knowledge, this method is the

first to achieve these three desirable properties at the same time.

The rest of the paper is organized as follows. In Section 2, we present

the proposed general kernel-based sparse learning method and its compu-

tational scheme. In Section 3, the asymptotic consistency of the proposed
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method is established. Two theoretical examples are provided in In Section

4. In Section 5, the proposed method is extended to select truly informative

interaction terms. Section 6 contains numerical experiments on the simu-

lated and real examples, and Section 7 concludes the paper. All necessary

lemmas and technical proofs are provided in the Appendix and in the online

Supplementary Materials.

2. Proposed method

2.1 Regression in an RKHS

Suppose a random sample Zn = {(xi, yi)}ni=1 comprises independent copies

of Z = (x, y), drawn from some unknown distribution ρx,y, with x =

(x1, ..., xp)T ∈ X supported on a compact metric space and y ∈ R. Consider

a general regression setting,

y = f ∗(x) + ε,

where ε is a random error, with E(ε|x) = 0 and Var(ε|x) = σ2. Thus

f ∗(x) =
∫
ydρy|x, with ρy|x denoting the conditional distribution of y,

given x. We further assume that f ∗ ∈ HK , where HK is an RKHS induced

by some prespecified kernel function K(·, ·). For each x ∈ X , denote Kx =
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2.1 Regression in an RKHS8

K(x, ·) ∈ HK , and the reproducing property of the RKHS implies that

〈f,Kx〉K = f(x), for any f ∈ HK , where 〈·, ·〉K is the inner product in HK .

The RKHS enjoys a number of desirable properties that make it particu-

larly suitable for general nonparametric models, including its approximation

ability, functional complexity, and derivative reproducing property. Specif-

ically, many popular kernels, including the Gaussian and Laplace kernels,

are universal [31], meaning that the RKHS each induces is dense in the con-

tinuous function space under the infinity norm. This universal approxima-

tion property ensures that the kernel-based methods yield nonparametric

estimates with a small approximation error when estimating any contin-

uous target function. On the other hand, to characterize the statistical

properties of nonparametric models, the notion of functional complexity

in an empirical process is widely employed in theoretical analyses. This

includes various covering numbers, the VC dimension, and Rademacher

complexity [2]. The RKHS has a very interesting and surprising property

that for a unit ball B1 of the RKHS, its Rademacher complexity [2] can

be bounded as Rn(B1) ≤ 2n−1/2(E(K(X,X)))1/2, where Rn(·) denotes the

global Rademacher complexity. In other words, the functional complexity of

the bounded ball in the RKHS is less affected by the dimension of the vari-

ables. Thus a small variance estimator can be obtained, without sacrificing
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the approximation ability of the nonparametric estimation, using kernel-

based methods. In addition, in the literature on nonparametric statistics,

estimating the gradient function of the target function is, in general, diffi-

cult. However, the derivative of any function in a smooth RKHS also has

the reproducing property, implying that kernel-based methods have simul-

taneous convergence behavior in both the function and its gradient function,

with the same rate of convergence under the sup norm.

2.2 Gradient-based sparse learning

In sparse modeling, it is generally believed that f ∗(x) depends only on a

small number of variables, while others are uninformative. Unlike model-

based settings, sparse learning for a general regression model is challenging,

owing to the lack of explicit regression parameters. Here, we measure the

importance of variables in a regression function by examining the corre-

sponding gradient functions. It is crucial to observe that if a variable xl is

deemed uninformative, the corresponding gradient function

g∗l (x) = ∂f ∗(x)/∂xl
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should be exactly zero, almost surely. Thus, the true active set can be

defined as

A∗ = {l : ‖g∗l ‖
2
2 > 0},

where ‖g∗l ‖2
2 =

∫
(g∗l (x))2 dρx with the marginal distribution ρx.

The proposed general sparse learning method is presented in Algorithm

1.

Algorithm 1: General sparse learning method

Step 1: Obtain an estimate f̂ in a smooth RKHS based on
the given sample Zn;

Step 2: Compute ĝl(x) = ∂f̂(x)/∂xl for l = 1, . . . , p;
Step 3: Identify the informative variables by checking the
norm of each ĝl.

We now describe each step in Algorithm 1 om greater detail. To obtain

f̂ in Step 1, we employ the kernel ridge regression model,

f̂(x) = argmin
f∈HK

1

n

n∑
i=1

(yi − f(xi))
2 + λn‖f‖2

K , (2.1)

where the first term, denoted as En(f), is an empirical version of E(f) =

E(y−f(x))2, and ‖f‖K = 〈f, f〉1/2K is the associated RKHS-norm of f ∈ HK .
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By the representer theorem [35], the minimizer of (2.1) must have the form

f̂(x) =
n∑
i=1

α̂iK(xi,x) = α̂T
Kn(x),

where α̂ = (α̂1, ..., α̂n)T and Kn(x) = (K(x1,x), ..., K(xn,x))T . Then, the

optimization task in (2.1) can be solved analytically, with

α̂ =
(
K

2 + nλn K
)+

K y, (2.2)

where K =
(
K(xi,xj)

)n
i,j=1

, and + denotes the Moore–Penrose general-

ized inverse of a matrix. When K is invertible, (2.2) simplifies to α̂ =

(K + nλn I)−1 y.

Next, to obtain ĝl in Step 2, it follows from Lemma 1 that for any

f ∈ HK ,

gl(x) =
∂f(x)

∂xl
= 〈f, ∂lKx〉K ≤ ‖∂lKx‖K‖f‖K ,

where ∂lKx = ∂K(x,·)
∂xl

. This implies that the gradient function of any f ∈ HK

can be bounded by its K-norm, up to some constant. In other words, if

we want to estimate g∗l (x) within a smooth RKHS, it suffices to estimate

f ∗ itself, without loss of information. Consequently, if f̂ is obtained in

Step 1, g∗l (x) can be estimated as ĝl(x) = α̂T∂lKn(x), for each l, where
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∂lKn(x) = (∂lKx(x1), ..., ∂lKx(xn))T .

In Step 3, it is difficult to evaluate ‖ĝl‖2
2 directly, because ρx is usually

unknown in practice. We then adopt the empirical norm of ĝl as a practical

measure,

‖ĝl‖2
n =

1

n

n∑
i=1

(
ĝl(xi)

)2
=

1

n

n∑
i=1

(
α̂T∂lKn(xi)

)2
.

The estimated active set can be set as Âvn =
{
l : ‖ĝl‖2

n > vn
}

, for some

prespecified vn. Our method can clearly be regarded as a nonparametric

joint screening method that can correctly identify all truly informative vari-

ables acting on the response with a general effect, including those that are

marginally noninformative, but jointly informative.

The proposed method presented in Algorithm 1 is general in that it can

be adapted to any smooth RKHS with different kernel functions, where the

choice of the kernel function depends on prior knowledge about f ∗. For

instance, if f ∗ is known in advance to be a linear or polynomial function,

the RKHS induced by the linear or polynomial kernel can be used. If no

prior information about f ∗ is available, the RKHS induced by the Gaussian

kernel can be used, which is known to be universal in the sense that any

continuous function can be well approximated by some function in the in-
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duced RKHS under the infinity norm [31]. In practice, unless some reliable

prior information about f ∗ is known, it is recommended to consider the

RKHS induced by the Gaussian kernel owing to its capacity and flexibility.

Remark 1: The proposed method is computationally efficient, with a

computational cost of about O(n3+n2p). The complexity O(n3) comes from

inverting an n× n matrix in (2.2), and the complexity O(n2p) comes from

calculating ‖ĝl‖2
n, for l = 1, . . . , p. This complexity is particularly attrac-

tive in the large-p-small-n scenario, where the computational complexity

becomes linear in p, and parallelization can be employed to further speed

up the computation. In other scenarios with large n, the O(n3) complexity

can be too demanding. Improvements are available to alleviate the com-

putational burden using some low-rank approximation, such as the random

sketch method in Yang et al. [40]. Its computational complexity can be

reduced to O(m3), where m � n is the sketch dimension determined in

[40]. More importantly, the random sketch method has been proved to be

fast and minimax optimal when fitting the kernel ridge regression.

Remark 2: The estimated regression function f̂ is merely an interme-

diate step for estimating the gradient functions. It provides is a consistent

estimate, but converges to the true regression function f ∗ at some rather

slow rate, owing to the inclusion of the noise variables. We also want to
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emphasize that the data are only used once to estimate the representer

coefficients α̂ in (2.2). Then the estimated gradient function ĝl can be esti-

mated directly using the derivative reproducing property of the RKHS, by

Lemma 1.

2.3 Tuning

The proposed method presented in Algorithm 1 consists of two tuning pa-

rameters, the ridge parameter λn and the thresholding parameter vn. Based

on our limited numerical experience, the proposed method performs well

and is stable when the ridge parameter λn is sufficiently small in various

scenarios. A similar observation on the choice of the ridge parameter is

made in [37]. Therefore, we set λn = 0.001, and focus on the choice of vn

in the simulated experiments.

To optimize the selection performance of the proposed method, we em-

ploy the stability-based criterion [32] to select the value of vn. Its key idea is

to measure the stability of sparse learning by randomly splitting the train-

ing sample into two parts, and comparing the disagreement between the

two estimated active sets. Specifically, given a thresholding value vn, we

randomly split the training sample Zn into two parts, Zn1 and Zn2 . Then,

the proposed method is applied to Zn1 and Zn2 to obtain the estimated ac-
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tive sets, Â1,vn and Â2,vn , respectively. The disagreement between Â1,vn

and Â2,vn is measured using Cohen’s kappa coefficient

κ(Â1,vn , Â2,vn) =
Pr(a)− Pr(e)

1− Pr(e)
,

where Pr(a) = n11+n22

p
and Pr(e) = (n11+n12)(n11+n21)

p2
+ (n12+n22)(n21+n22)

p2
,

with n11 = |Â1,vn ∩ Â2,vn|, n12 = |Â1,vn ∩ ÂC2,vn|, n21 = |ÂC1,vn ∩ Â2,vn|, n22 =

|ÂC1,vn ∩ Â
C
2,vn|, and | · | denoting the set cardinality.

The procedure is repeated B times, and the estimated sparse learning

stability is measured as

ŝ(Ψvn) =
1

B

B∑
b=1

κ(Âb1,vn , Â
b
2,vn).

Finally, the thresholding parameter v̂n is set as v̂n = max
{
vn : ŝ(Ψvn )

maxvn ŝ(Ψvn )
≥

q
}

, where q ∈ (0, 1) is some given percentage. In the simulated experiments,

we set q = 0.95, as suggested in [32], and the performance of the resultant

tuning criterion appears to be satisfactory.

3. Asymptotic sparsistency

Now, we establish the asymptotic consistency of the proposed method.

First, we introduce an integral operator LK : L2(X , ρx)→ L2(X , ρx), given
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by

LK(f)(x) =

∫
K(x,u)f(u)dρx(u),

for any f ∈ L2(X , ρx) = {f :
∫
f 2(x)dρx < ∞}. Note that if the corre-

sponding RKHS is separable, by the spectral theorem, we have

LKf =
∑
j

µj〈f, ej〉2ej,

where {ej} is an orthonormal basis of L2(X , ρx), µj is the eigenvalue of

the integral operator LK , and 〈·, ·〉2 is the inner product in L2(X , ρx). By

Mercer’s theorem, under some regularity conditions, the eigen-expansion

of the kernel function is K(·, ·) =
∑

j≥1 µjej(·)ej(·). Therefore, the RKHS-

norm of any f ∈ HK can be written as

‖f‖2
K =

∑
j≥1

〈f, ej〉22
µj

,

which implies that the decay rate of µj fully characterizes the complexity

of the RKHS, and is closely related to various entropy numbers [31].

We denote the cardinality of the true active set A∗ as |A∗| = p0, and

both p0 and p are allowed to diverge with n. The following technical as-
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sumptions are made.

Assumption 1: Suppose that f ∗ is in the range of the rth power of LK ,

denoted as LrK , for some positive constant r ∈ (1/2, 1].

Assumption 2: There exist some constants κ1 and κ2, such that sup
x∈X
‖Kx‖K ≤

κ1 and sup
x∈X
‖∂lKx‖K ≤ κ2, for any l = 1, ..., p.

Assumption 3: The distribution of ε has a q-exponential tail, with some

function q(·); that is, there exists some constant c1 > 0, such that P (|ε| >

t) ≤ c1 exp{−q(t)}, for any t > 0.

In Assumption 1, the operator LK on L2(X , ρx) is self-adjoint and semi-

positive definite, and thus its fractional operator LrK is well defined. Fur-

thermore, the range of LrK is contained in HK if r ≥ 1/2 [29]. Thus As-

sumption 1 implies that there exists some function h ∈ L2(X , ρx) such that

f ∗ = LrKh =
∑

j µ
r
j〈h, ej〉2ej ∈ HK , ensuring strong estimation consistency

under the RKHS-norm. Similar assumptions are imposed in [19]. Assump-

tion 2 assumes the boundedness of the kernel function and its gradient

functions, and is satisfied by many popular kernels, including the Gaus-

sian kernel and the Sobolev kernel [29, 22, 39] with the compact support

condition. Note that the compact support condition is commonly used in

the machine learning literature [19, 22, 5, 18] for mathematical simplicity.

However, it may be relaxed by allowing the support to expand with the
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sample size, which leads to some additional treatment in the asymptotic

analysis. Assumption 3 characterizes the tail behaviour of the error distri-

bution, which relaxes the commonly used bound in the machine learning

literature [29, 22, 18]. It is general and satisfied by a variety of distri-

butions [37, 42]. For example, if ε follows a sub-Gaussian distribution or

any bounded distribution, Assumption 3 is satisfied with q(t) = O(t2);

if ε follows a sub-exponential distribution, Assumption 3 is satisfied with

q(t) = O(min{ t
C
, t

2

C2}), for some constant C.

Theorem 1. Suppose Assumptions 1–3 are satisfied. Then, with probability

at least 1− δn/2, there holds

∥∥f̂ − f ∗∥∥
K

≤ 2 log
8

δn

(
3κ1λ

−1
n n−1/2(κ1‖f ∗‖K + q−1(log

4c1n

δn
)) + λr−1/2

n ‖L−rK f ∗‖2

)
.

(3.1)

Additionally, let λn = n−
1

2r+1 . Then, with probability at least 1 − δn, there

holds

max
1≤l≤p

∣∣‖ĝl‖2
n − ‖g∗l ‖2

2

∣∣ ≤ bn,1 max{κ1‖f ∗‖K , q−1(log
4c1n

δn
)}log

(8p

δn

)
n−

2r−1
2(2r+1) ,

(3.2)
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where bn,1 = 4 max{κ2
2, κ

2
2‖f ∗‖K , ‖f ∗‖2

K}max{3κ1, 2
√

2κ2
2, ‖L−rK f ∗‖2} and

q−1(·) denotes the inverse function of q(·).

Theorem 1 establishes the convergence rate of the difference between

the estimated regression function and the true regression function in terms

of the RKHS-norm. Note that similar results have been established in

the learning theory literature [28, 29]. However, these results assume that

the response is uniformly bounded above, which can be too restrictive in

practice. Theorem 1 relaxes the restrictive boundness condition by charac-

terizing the tail behaviour of the error term. Theorem 1 also shows that

‖ĝl‖2
n converges to ‖g∗l ‖

2
2 with high probability, which is crucial to establish-

ing the asymptotic sparsistency. Note that bn,1 is spelled out precisely for

the subsequent analysis of the asymptotic sparsistency and its dependency

on f ∗. Note that the convergence result still holds, even when p diverges

with n. In addition, the quantities ‖f ∗‖2
K and ‖L−rK f ∗‖2 in (3.1) and (3.2)

may depend on p0 through f ∗, and thus may also diverge with n. However,

such dependencies are, in general, difficult to quantify explicitly in a fully

general case [10].

Remark 3: The rate of convergence in Theorem 1 can be strengthened

to obtain an optimal strong convergence rate in a minimax sense, as in

[9]. However, it requires that the random error ε follows a sub-Gaussian
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distribution, and that the decay rate of the eigenvalues of LK has an upper

bound of polynomial order; that is, µj ≤ Cj−1/τ , for some positive constant

C and τ ∈ (0, 1). Then, the rate of convergence in (3.2) can be further

improved.

Assumption 4: There exists some positive constant ξ1 <
2r−1

2(2r+1)
, such that

minl∈A∗ ‖g∗l ‖
2
2 > bn,1 max{κ1‖f ∗‖K , q−1(log 4c1n

δn
)}n−ξ1 log p.

Assumption 4 requires that the true gradient function contains suffi-

cient information about the truly informative variables. Unlike most non-

parametric models, we measure the significance of each gradient function

to distinguish the informative and uninformative variables without any ex-

plicit model specification. Note that the required minimal signal strength

in Assumption 4 is much tighter than that in many nonparametric sparse

learning methods [14, 39], which often require the signal to be bounded

away from zero.

Now, we establish the asymptotic sparsistency of the proposed sparse

learning method.

Theorem 2. Suppose the assumptions of Theorem 1 and Assumption 4

are satisfied. Let vn = bn,1
2

max{κ1‖f ∗‖K , q−1(log 4c1n
δn

)}n−ξ1 log p. Then,
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we have

P
(
Âvn = A∗

)
→ 1, as n→∞.

Theorem 2 shows that the selected active set can exactly recover the

true active set with probability tending to one. This result is particularly

interesting, given that it is established for any RKHS with different kernel

functions. A direct application of the proposed method and Theorem 2 is to

conduct nonparametric sparse learning with sparsistency [33, 13, 39]. If no

prior knowledge about the true regression function is available, the proposed

method can be applied with an RKHS associated with the Gaussian kernel.

Asymptotic sparsistency can be established following Theorem 2, provided

that f ∗ is contained in the RKHS associated with the Gaussian kernel. This

RKHS is fairly large because the Gaussian kernel is known to be universal

in the sense that any continuous function can be well approximated by

some function in the induced RKHS under the infinity norm [31]. The

above theoretical results can be refined further when f ∗ belongs to a specific

RKHS. Some theoretical examples are provided in Section 4.
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4. Theoretical examples

This section provides theoretical examples to illustrate the proposed method

with the linear and quadratic kernels. Moreover, we discuss possible treat-

ments to improve the theoretical results, with some additional technical

assumptions.

4.1 Linear kernel

Variable selection for linear models is of great interest in the statistical

literature, owing to its simplicity and interpretability. In particular, the true

regression function is assumed to be a linear function, f ∗(x) = β0 + xT β∗,

and the true active set is defined as A∗ = {l : β∗l 6= 0}. We also centralize

the response and each variable, so that β0 can be discarded from the linear

model, for simplicity.

We now apply the general results in Section 3 to establish the sparsis-

tency of the proposed algorithm under the linear model. We first scale the

original data as ỹ = p
−1/2
n y and x̃ = p

−1/2
n x, and let HK be the RKHS

induced by the scaled linear kernel K(x̃, ũ) = x̃T ũ = p−1
n xT u. Then, the

true regression function can be rewritten as f ∗(x̃) = x̃Tβ∗. With the scaled
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data, the ridge regression formula in (2.1) becomes

β̂ = argmin
β

1

n

n∑
i=1

(ỹi − βT x̃i)
2 + p−1

n λn‖β‖2. (4.1)

By the representer theorem, the solution of (4.1) is

β̂ = X
T
(
XX

T + nλnIn
)−1y, (4.2)

where X = (x1, ...,xn)T and y = (y1, ..., yn)T . This is equivalent to the

standard formula for the ridge regression β̂ =
(
XTX + nλn In

)−1
XTy,

according to the Sherman–Morrison–Woodbury formula [37]. If we let λn =

0, the estimate in (4.2) is the same as the HOLP estimate in [37]. In other

words, the HOLP method can be regarded as a special case of our proposed

algorithm, with the RKHS induced by the linear kernel.

Corollary 1 is a direct application of Theorem 1 under the linear kernel.

Corollary 1. Suppose that Assumption S1 in the Supplementary Mate-

rial holds. Let λn = O(p
1/3
n n−(1+τ1)/3(log n)2/3). Then, for any δn ≥

4(σ2 + ‖β∗‖2
2)(log n)−2, there exists some positive constant c3 such that,
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with probability at least 1− δn, there holds

‖β̂ − β∗‖ ≤ c3 log
( 4

δn

)
p1/6
n n−

1−2τ1
6 (log n)1/3.

Additionally, suppose that Assumption S2 in the Supplementary Material

holds. If we let vn = s1
2
p

1/6
n n−

1−2τ1
6 (log n)ξ2, then we have

P
(
Âvn = A∗

)
→ 1, as n→∞,

where s1 and ξ2 are provided in Assumption S2.

Note that Corollary 1 holds when pn diverges at order

o(min{n1−2τ1(log n)−6ξ2 , n1+τ1(log n)−2}).

In, particular, when τ1 is sufficiently small, pn can diverge at the polynomial

rate o(n). This result is comparable with that of Shao and Deng [23] under

the finite second moment error assumption. The strong convergence rate

obtained in Corollary 1 is also comparable with that in Theorem 2 of [23],

and a similar result holds for the required minimal signal strength.

Remark 4: Note that the proposed algorithm requires f ∗ ∈ HK . Thus

‖β∗‖ needs to be bounded, which implies that p0 should be fixed in the lin-
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ear case. Interestingly, if we take λn = 0 and all of the technical assumptions

stated in [37] are met, including that x follows a spherically symmetric dis-

tribution and that the noise ε has a q-exponential tail, we can directly apply

the theoretical results of the HOLP method to establish a similar selection

consistency in Corollary 1. As a direct consequence, pn and p0 are allowed

to diverge at some exponential and polynomial rate of n, respectively.

4.2 Quadratic kernel

Variable selection for quadratic models is of great interest in the statistical

literature [12, 15, 24], where the true regression function is assumed to be

f ∗(x) = β0 +
∑pn

l=1 β
∗
l x

l +
∑

l≤k γ
∗
lkx

lxk, where γ∗lk represents the true inter-

action coefficients, and γ∗lk 6= 0 implies that xl and xk have an interaction

effect. The true active set is defined as

A∗ =
{
l : |β∗l |+

pn∑
k=1

|γ∗lk| > 0
}
,

which contains variables contributing to f ∗ through either the main factors

or the interaction terms. For simplicity, we denote

x = (1,
√

2x1, ...,
√

2xpn , x
2
1,
√

2x1x2, ...,
√

2x1xpn , x
2
2,
√

2x2x3, ...., x
2
pn)T
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and θ∗ = (β∗0 ,β
∗T ,γ∗T )T , with β∗ = (β∗1 , ..., β

∗
pn)T/

√
2 and

γ∗ = (γ∗11, γ
∗
12/
√

2..., γ∗22, γ
∗
23/
√

2, ..., γ∗(pn−1)pn/
√

2, γ∗pnpn).

Then, we scale the original data as y̌ = p−1
n

y and x̌ = p−1
n x, and let HK be

the RKHS induced by a scaled quadratic kernel K(x,u) = (1+xT u)2/p2
n =

x̌T ǔ. The true regression model can be rewritten as f ∗(x̌) = x̌Tθ∗. Note

that the quadratic model can be transformed into a linear form. Then the

established results in Section 4.1 can be applied directly. Specifically, with

the scaled data, the ridge regression formula in (2.1) becomes

θ̂ = argmin
θ

1

n

n∑
i=1

(y̌i − θT x̌i)
2 + p−2

n λn‖θ‖2. (4.3)

Then, the estimated active set is defined as Âvn =
{
l : |β̂l| +

∑pn
k=1 |γ̂lk| >

vn
}

, with some prespecified thresholding value vn.

With a slight modification to the proof of Corollary 1, we obtain the

following convergence results for the scaled quadratic kernel.

Corollary 2. Suppose that Assumption S3 in the Supplementary Mate-

rial holds. Let λn = O(p
2/3
n n−(1+τ2)/3(log n)2/3). Then, for any δn ≥

4(σ2 + ‖θ∗‖2
2)(log n)−2, there exists some positive constant c4 such that,
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with probability at least 1− δn, there holds

‖θ̂ − θ∗‖ ≤ c4 log
( 4

δn

)
p1/3
n n−

1−2τ2
6 (log n)1/3.

Additionally, suppose that Assumption S4 in the Supplementary Material

holds. If we let vn = s2
2
p

1/3
n n−

1−2τ2
6 (log n)ξ3, then we have

P
(
Âvn = A∗

)
→ 1, as n→∞,

where s2 and ξ3 are provided in Assumption S4.

Note that the treatment in this subsection can be extended further to

include the polynomial regression model of degree d by using the scaled

polynomial kernel K(x,u) = (1 + xT u)d/pdn. Similar theoretical results

can be established for the proposed algorithm with the scaled polynomial

kernel.

5. An extension: Interaction selection

We now extend the proposed method to identify the truly informative in-

teraction effects. In the literature, a number of attempts have been made

to identify the true interaction effects in parametric and nonparametric re-
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gression models [17, 4, 20, 12, 11]. However, most existing methods require

some prespecified working models, and some are computationally demand-

ing. For example, the COSSO method [17] and the SpIn method [20] assume

a second-order additive structure, and need to enumerate O(p2) two-way

interaction terms in the model, making their methods feasible only when p

is relatively small. In contrast, our method can be extended directly, and

provides an efficient alternative for interaction selection without requiring

an explicit model assumption.

Following the idea in Section 2, the true interaction effects can be

defined as those with a nonzero second-order gradient function g∗lk(x) =

∂2f ∗(x)/∂xl∂xk. Specifically, given the true active set A∗, we denote

A∗2 =
{
l ∈ A∗ : ‖g∗lk‖2 > 0, for some k ∈ A∗

}
,

which contains the variables that contribute to the interaction effects in f ∗.

Furthermore, let A∗1 = A∗\A∗2, which contains the variables that contribute

to the main effects of f ∗ only.

Therefore, the main goal of interaction selection is to correctly estimate

both A∗1 and A∗2. First, let K(·, ·) be a fourth-order differentiable kernel
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function. Then, it follows from Lemma 1 that, for any f ∈ HK ,

glk(x) =
∂2f(x)

∂xl∂xk
= 〈f, ∂lkKx〉K ≤ ‖∂lkKx‖K‖f‖K ,

where ∂lkKx = ∂2K(x,·)
∂xl∂xk

. Then, given f̂ from (2.1), its second-order gradient

function is

ĝlk(x) =
∂2f̂(x)

∂xl∂xk
= α̂T∂lkKn(x),

where ∂lk Kn(x) = ∂Kn(x)
∂xl∂xk

. Its empirical norm is ‖ĝlk‖2
n = 1

n

∑n
i=1

(
ĝlk(xi)

)2
.

With some predefined thresholding value vintn , the estimated A∗1 and A∗2 are

set as

Â2 =
{
l ∈ Â : ‖ĝlk‖2

n > vintn , for some k ∈ Â
}

and Â1 = Â \ Â2,

respectively. The following technical assumption establishes the interaction

selection consistency for the proposed method.

Assumption 5: There exists some constant κ3, such that supx∈X ‖∂lkKx‖K ≤

κ3, for any l and k.

Assumption 5 can be regarded as an extension of Assumption 2 by

requiring the boundedness of the second-order gradients of Kx.

Theorem 3. Suppose the assumptions of Theorem 2 and Assumption 5
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hold. Let P (Â 6= A∗) = ∆n. Then, with probability at least 1 − δn − ∆n,

there holds

max
l,k∈Â

∣∣‖ĝlk‖2
n−‖g∗lk‖2

2

∣∣ ≤ bn,2 max{κ1‖f ∗‖K , q−1(log
4c1n

δn
)} log

(8p2
0

δn

)
n−

2r−1
2(2r+1) ,

where bn,2 = 4 max{κ2
3, ‖f ∗‖2

K , κ
2
3‖f ∗‖K}max{3κ1, 2

√
2κ2

3, ‖L−rK f ∗‖2}.

Theorem 3 shows that ‖ĝlk‖2
n converges to ‖g∗lk‖

2
2 with high probability,

which is crucial to establishing the interaction selection consistency.

Assumption 6: There exists some positive constant ξ4 <
2r−1

2(2r+1)
, such that

minl,k∈A∗2 ‖g
∗
lk‖2

2 > bn,2 max{κ1‖f ∗‖K , q−1(log 4c1n
δn

)}n−ξ4 log p0.

Assumption 6 can be regarded as an extension of Assumption 3 requir-

ing the true second-order gradient functions to have sufficient information

about the interaction effects.

Theorem 4. Suppose the assumptions of Theorem 3 and Assumption 6

hold. By taking vintn = bn,2
2

max{κ1‖f ∗‖K , q−1(log 4c1n
δn

)}n−ξ4 log p0, we have

P
(
Â2 = A∗2, Â1 = A∗1

)
→ 1, as n→∞.

Theorem 4 shows that the proposed interaction selection method ex-

actly detects the interaction structure with probability tending to one. Note
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that this result is established without requiring the strong heredity assump-

tion, which is often assumed in existing parametric interaction selection

methods [4, 12]. It is also clear that the proposed method can be extended

to detect higher-order interaction effects, which is of particular interest in

real applications [21].

6. Numerical experiments

In this section, we examine the numerical performance of the proposed

method and compare it with that of several existing methods, including

distance correlation learning [33] and the quantile-adaptive screening [13].

As these two methods are designed for screening only, we truncate them

using some thresholding values to conduct sparse learning. For simplicity,

we denote these three methods as GM, DC-t, and QaSIS-t, respectively.

Note that the computational cost of most existing gradient-based methods

[22, 39] can be very expensive. Thus they are not included in the numerical

comparison with large dimension.

In all simulation examples, no prior knowledge about the true regres-

sion function is assumed, and the Gaussian kernel K(u,v) = exp
(
−

‖u−v ‖2/2σ2
n

)
is used to induce the RKHS, where σn is set as the median

of all pairwise distances in the training sample. For the proposed method,
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we set the ridge parameter λn = 0.001 in all simulated examples, and use

the stability criterion in Section 2.3 to conduct a grid search for the optimal

thresholding parameter vn, where the grid is set as {10−3+0.1s : s = 0, ..., 60}.

6.1 Simulated examples

Two simulated examples are examined under various scenarios.

Example 1: We first generate xi = (xi1, ..., xip)
T , with xij =

Wij+ηUi
1+η

, where

Wij and Ui are drawn independently from U(−0.5, 0.5). The response yi is

generated as yi = f(xi) + εi, where f ∗(xi) = 6f1(xi1) + 4f2(xi2)f3(xi3) +

6f4(xi4) + 5f5(xi5), with f1(u) = u, f2(u) = 2u+ 1, f3(u) = 2u− 1, f4(u) =

0.1 sin(πu)+0.2 cos(πu)+0.3(sin(πu))2 +0.4(cos(πu))3 +0.5(sin(πu))3, and

f5(u) = sin(πu)/(2 − sin(πu)), and εi is drawn independently drawn from

N(0, 1). Clearly, the first five variables are truly informative.

Example 2: The generating scheme is similar to that in Example 1, ex-

cept that Wij and Ui are drawn independently from U(0, 1) and f ∗(x) =

20x1x2x3 + 5x2
4 + 5x5. The first five variables are truly informative.

For each example, we consider scenarios with (n, p) = (400, 500), (400, 1000),

(500, 10000), (500, 50000), and (500, 100000). For each scenario, η = 0 and

1 are examined. When η = 0, the variables are completely independent,

whereas when η = 1, a correlation structure is added to the variables. Each
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scenario is replicated 50 times. The average signal-to-noise ratios (SNRs)

of the simulated examples are summarized in Table 1. The average perfor-

mance measures are summarized in Tables 2 and 3, where Size is the average

number of selected informative variables, TP is the number of truly infor-

mative variables selected, FP is the number of truly uninformative variables

selected, and C, U, and O are the times of correct fitting, under-fitting, and

over-fitting, respectively.

Tables 1 – 3 about here

Clearly, the SNRs of the simulated examples are comparable to those in

[17, 14]. GM outperforms the other methods in both examples. In Example

1, GM is able to identify all of the truly informative variables in most

replications. However, the other two methods tend to miss some truly

informative variables, probably because of the interaction effect between

x2 and x3. In Example 2, with a three-way interaction term involved in

f ∗(x), GM is still able to identify all of the truly informative variables with

high accuracy, but the other two methods tend to underfit by missing some

truly informative variables in the interaction term. Note too that GM tends

to overselect the variables in some cases, which is usually less severe than

under-selecting truly informative variables.
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Note that if we do not threshold DC and QaSIS, they tend to overfit

in almost every replication, because both screening methods tend to keep a

substantial number of uninformative variables to attain the sure screening

property. Furthermore, when the correlation structure with η = 1 is consid-

ered, identifying the truly informative variables becomes more difficult, and

both DC-t and QaSIS-t become unstable. However, GM still outperforms

these two competitors, and exactly identifies all of the truly informative

variables in most replications.

6.2 Supermarket data set

We now apply the proposed method to the supermarket data set of Wang

[36]. The data set is collected from a major supermarket located in northern

China, and consists of daily sales records of p = 6398 products on n = 464

days. In this data set, the response is the number of customers on each day,

and the variables are the daily sales volumes of each product. Our primary

interest is to identify those products with sale volumes that are related to

the number of customers. Then, we design sale strategies based on those

products. The data set is pre-processed so that both the response and the

predictors have a zero mean and unit variance.

In addition to GM, DC-t, and QaSIS-t, we include comparisons with
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SCAD [7] and MCP [41]. Because the truly informative variables are un-

known for the supermarket data set, we report the prediction performance

of each method. Specifically, the data set is split randomly into two parts,

with 164 observations for testing, and the remainder used for training. We

first apply each method to the full data set to select the informative vari-

ables. Then, we refit a kernel ridge regression model for the nonparametric

methods and a linear ridge regression for the parametric methods using

the variables selected from the training set. The prediction performance

of each ridge regression model is measured on the testing set. The proce-

dure is replicated 1000 times, and the number of selected variables, average

prediction errors, and out-of-sample R2 are summarized in Table 4.

Table 4 is about here

As Table 4 shows, GM selects 10 variables, DC-t and QaSIS-t select

seven variables, and the SCAD and MCP select 59 and 28 variables, re-

spectively. The average prediction error of GM is smaller than that of the

other four methods. This implies that DC-t and QaSIS-t may miss some

truly informative variables, thus reducing their prediction accuracy, and

that the SCAD and MCP may include too many noise variables. Specifi-

cally, of the 10 variables selected by GM, X14, X18, X42, X56, and X75 are
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missed by both DC-t and QaSIS-t. Scatter plots of the response against

these five variables are presented in Figure 1.

Figure 1 is about here

It is evident that the response and these variables show some clear re-

lationship, which supports the advantage of GM in identifying the truly

informative variables.

7. Conclusion

We have proposed a novel gradient-based sparse learning method that si-

multaneously enjoys methodological flexibility, numerical efficiency, and

asymptotic consistency. It provides a novel and promising way to conduct

sparse learning for nonparametric models. The proposed method is simple

and efficient in that the kernel ridge regression has an analytic solution,

and the estimated gradient functions can be computed directly using the

derivative reproducing property [43]. It can be scaled easily to analyze data

sets with huge dimensions. The theoretical results are established without

requiring restrictive model assumptions, which justifies the robustness of

the proposed method to the underlying data distribution.

One interesting direction for future work is to consider a more general

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0401



Appendix

scenario with f ∗ out of the specified RKHS HK , such as a non-differentiable

f ∗. One possible remedial route is to consider the true active set A∗ = {l :

Dl(f
∗) > 0}, whereDl(f

∗) = maxx−l
∣∣maxxl f

∗(xl,x−l)−minxl f
∗(xl,x−l)

∣∣ >
0 measures the largest possible change of f(x) along xl, and x−l denotes all

variables except for xl. Then, the equivalence between Dl(f
∗) and the gra-

dients of some intermediate function f 0 ∈ HK can be examined to bridge

the gap between f ∗ and HK . We would also like to extend the proposed

method to deal with mixed-type predictors, and Dl(f
∗) can be used to

measure the significance of each variable.

Supplementary Material Proofs of Theorems 3 and 4, some neces-

sary lemmas and their proofs, and a verification of the theoretical examples

are provided in the online Supplementary Material.
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Appendix: technical proof

Proof of Theorem 1. For simplicity, we denote two events

C1 =

{
Zn : ‖f̂ − f∗‖K ≥ 2 log

8

δn

(
3κ1

n1/2λn

(
κ1‖f∗‖K + q−1(log

2c1n

δn
)
)

+ λr−1/2
n ‖L−rK f∗‖2

)}
,

C2 =

{
Zn : max

i=1,...,n
|yi| > κ1‖f∗‖K + q−1(log

2c1n

δn
)

}
,

and Cc2 denotes the complement of C2. Then P (C1) can be decomposed as

P (C1) = P (C1 ∩ C2) + P (C1 ∩ Cc2) ≤ P (C2) + P (C1 | Cc2) = P1 + P2.

For P1, by Assumption 3, we have

P ( max
i=1,...,n

|εi| ≥ t) = P (∪ni=1|εi| ≥ t) ≤ nP (|εi| ≥ t) ≤ c1n exp{−q(t)}. (A.1)

By Assumption 1 and (A.1), for any δn ∈ (0, 1), with probability at least 1− δn
4

, there holds

max
i=1,...,n

|yi| ≤ κ1‖f∗‖K + max
i=1,...,n

|εi| ≤ κ1‖f∗‖K + q−1(log
4c1n

δn
),

implying that P (C2) ≤ δn
4

.
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For P2, note that

‖f̂ − f∗‖K ≤ ‖f̂ − f̃‖K + ‖f̃ − f∗‖K .

We first bound ‖f̃ − f∗‖K following the similar treatment as in Smale and Zhou [28]. Suppose

{µi, ei}i≥1 are the normalized eigenpairs of the integral operator LK : L2(X , ρx)→ L2(X , ρx),

we have

L
1/2
K ei =

∑
j≥1

µ
1/2
j 〈ei, ej〉2ej = µ

1/2
i ei ∈ HK ,

and

‖µ1/2
i ei‖K =

(∑
j≥1

〈µ1/2
i ei, ej〉22
µj

)1/2
= 〈ei, ei〉2 = 1,

when µi > 0. Thus by Assumption 1, there exists some function h =
∑
i≥1〈h, ei〉2ei ∈ L

2(X , ρx)

such that f∗ = LrKh =
∑
i≥1 µ

r
i 〈h, ei〉2ei ∈ HK . Directly calculation yields to

f̃ − f∗ =
(
LK + λnI

)−1
LKf

∗ − f∗ =
(
LK + λnI

)−1(− λnf∗)
= −

∑
i≥1

λn
λn + µi

µri 〈h, ei〉2ei.
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Therefore, the RKHS-norm of f̃ − f∗ can be bounded as

∥∥f̃ − f∗∥∥2
K

=
∑

i≥1

( λn
λn + µi

µ
r−1/2
i 〈h, ei〉2

)2‖µ1/2
i ei‖2K

=
∑

i≥1

( λn
λn + µi

µ
r−1/2
i 〈h, ei〉2

)2
= λ2r−1

n

∑
i≥1

( λn
λn + µi

)3−2r( µi
λn + µi

)2r−1

〈h, ei〉22

≤ λ2r−1
n

∑
i≥1
〈h, ei〉22 = λ2r−1

n ‖h‖22 = λ2r−1
n ‖L−rK f∗‖22. (A.2)

It then follows from Proposition 1 in the supplemental material that

P2 ≤ P
(
‖f̂ − f̃‖K ≥ log

8

δn

6κ1

λnn1/2
(κ1‖f∗‖K + q−1(log

4c1n

δn
)) | Cc2

)
≤ δn/4.

Combining the upper bounds of P1 and P2 yields that P (C1) ≤ δn/4 + δn/4 ≤ δn/2. Thus,

with probability at least 1− δn/2, there holds

‖f̂ − f∗‖K ≤ 2 log
8

δn

(
3κ1

n1/2λn
(κ1‖f∗‖K + q−1(log

4c1n

δn
)) + λr−1/2

n ‖L−rK f∗‖2
)
.

Now we turn to establish the weak convergence rate of ĝl in estimating g∗l . We first

introduce some notations. Define the sample operators for gradients D̂l : HK → Rn and their
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adjoint operators D̂∗l : Rn → HK as

(D̂lf)i =
〈
f, ∂lKxi〉K and D̂∗l c =

1

n

n∑
i=1

∂lKxici,

respectively. And the integral operators for gradientsDl : HK → L2(ρx,X ) andD∗l : L2(ρx,X )→

HK are defined as

Dlf = 〈f, ∂lKx〉K and D∗l f =

∫
∂lKxf(x)dρx.

Note that Dl and D̂l are the Hilbert-Schimdt operators by Propositions 12 and 13 of Rosasco

et al. [22], then we have

D∗lDlf =

∫
∂lKxgl(x)dρx and D̂∗l D̂lf =

1

n

n∑
i=1

∂lKxigl(xi).

Furthermore, we denote HS(K) as a Hilbert space with all the Hilbert-Schmidt operators on

HK , which endows with a norm ‖ · ‖HS such that ‖T‖K ≤ ‖T‖HS for any T ∈ HS(K).
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With these operators, simple algebra yields that

∣∣‖ĝl‖2n − ‖g∗l ‖22∣∣
=
∣∣∣ 1
n

n∑
i=1

(ĝl(xi))
2 −

∫
(g∗l (x))

2
dρx
∣∣∣

=
∣∣∣ 1
n

n∑
i=1

ĝl(xi)
〈
f̂ , ∂lKxi

〉
K
−
∫
g∗l (x) 〈f∗, ∂lKx〉K dρx

∣∣∣
=
∣∣∣〈f̂ , 1

n

n∑
i=1

ĝl(xi)∂lKxi

〉
K
−
〈
f∗,

∫
g∗l (x)∂lKxdρx

〉
K

∣∣∣
=
∣∣∣〈f̂ − f∗, D̂∗l D̂lf̂〉K +

〈
f∗, D̂∗l D̂l(f̂ − f∗)

〉
K

+
〈
f∗, (D̂∗l D̂l −D∗lDl)f∗

〉
K

∣∣∣
=
∣∣∣〈f̂ − f∗, D̂∗l D̂l(f̂ − f∗)〉K +

〈
D̂∗l D̂lf

∗, f̂ − f∗
〉
K

+

〈
f∗, D̂∗l D̂l(f̂ − f∗)

〉
K

+
〈
f∗, (D̂∗l D̂l −D∗lDl)f∗

〉
K

∣∣∣
≤ ‖f̂ − f∗‖2K‖D̂∗l D̂l‖HS + 2‖f̂ − f∗‖K‖f∗‖K‖D̂∗l D̂l‖HS+

‖D̂∗l D̂l −D∗lDl‖HS‖f∗‖2K ,

where the last inequality follows from the Cauthy-Schwartz inequality. It then suffices to bound

the terms in the upper bound of
∣∣‖ĝl‖2n − ‖g∗l ‖22∣∣ separately. Note that ‖f∗‖K is a bounded

quantity, and it follows from Assumption 2 and Rosasco et al. [22] that maxl
∥∥D̂∗l D̂l∥∥HS =

maxl ‖∂lKx‖2K ≤ κ2
2. Hence, we have

max
1≤l≤p

∣∣‖ĝl‖2n − ‖g∗l ‖22∣∣
≤ a1

(
‖f̂ − f∗‖2K + 2‖f̂ − f∗‖K + max

1≤l≤p
‖D̂∗l D̂l −D∗lDl‖HS

)
,
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where a1 = max{κ2
2, κ

2
2‖f∗‖K , ‖f∗‖2K}. When ‖f̂ − f∗‖K is sufficiently small, the upper bound

can be simplified to

max
1≤l≤p

∣∣‖ĝl‖2n − ‖g∗l ‖22∣∣ ≤ a1(3‖f̂ − f∗‖K + max
1≤l≤p

‖D̂∗l D̂l −D∗lDl‖HS
)
,

where ‖f̂ − f∗‖K is bounded in the first half of the proof. Furthermore, for any εn ∈ (0, 1), by

the concentration inequalities for HS(K) [22], we have

P
(∥∥D̂∗l D̂l −D∗lDl∥∥HS ≥ εn) ≤ 2p exp

(
− nε2n

8κ4
2

)
,

for any l = 1, . . . , p. Therefore, with probability at least 1− δn/2, there holds

max
1≤l≤p

∥∥D̂∗l D̂l −D∗lDl∥∥HS ≤ (8κ4
2

n
log

4p

δn

)1/2
.

Combining all the upper bounds above, we have with probability at least 1 − δn, there

holds

max
1≤l≤p

∣∣∣‖ĝl‖2n − ‖g∗l ‖22∣∣∣
≤ 2a1

(
3 log

8

δn

( 3κ1

n1/2λn
(κ1‖f∗‖K + q−1(log

4c1n

δn
)) + λr−1/2

n ‖L−rK f∗‖2
)

+
(2κ4

2

n
log

4p

δn

)1/2)
.

This implies the desired results immediately with λn = n−
1

2r+1 . �
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Proof of Theorem 2. We first show that A∗ ⊂ Â in probability. If not, suppose there exists

some l′ ∈ A∗ but l′ /∈ Â, and thus ‖ĝl′ ‖
2
n ≤ vn. By Assumption 4, we have with probability

1− δn that

∣∣‖ĝl′ ‖2n − ‖g∗l′ ‖22∣∣ ≥ ‖g∗l′ ‖22 − ‖ĝl′ ‖2n > bn,1 max{κ1‖f∗‖K , q−1(log
4c1n

δn
)}n−ξ1 log p− vn

=
bn,1

2
max{κ1‖f∗‖K , q−1(log

4c1n

δn
)}n−ξ1 log p,

which contradicts with Theorem 1. This implies that A∗ ⊂ Â with probability at least 1− δn.

Next, we show that Â ⊂ A∗ in probability. If not, suppose there exists some l′ ∈ Â but

l′ /∈ A∗, which implies ‖ĝl′ ‖
2
n > vn but ‖g∗

l
′ ‖22 = 0, and then with probability at least 1 − δn,

there holds

∣∣‖ĝl′ ‖2n − ‖g∗l′ ‖22∣∣ > vn =
bn,1

2
max{κ1‖f∗‖K , q−1(log

4c1n

δn
)}n−ξ1 log p.

This contradicts with Theorem 1 again, and thus Â ⊂ A∗ with probability at least 1 − δn.

Combining these two results yields the desired sparsistency. �
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Table 1: The averaged SNR of the simulated examples under different sce-
narios.

(n, η) (400, 0) (400, 1) (500, 0) (500, 1)
Example 1 5.00 3.87 5.06 3.87
Example 2 3.58 4.23 3.55 4.20
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Table 2: The averaged performance measures of various methods in Exam-
ple 1.

(n, p, η) Method Size TP FP C U O
(400,500,0) GM 5.00 5.00 0.00 50 0 0

QaSIS-t 4.28 4.28 0.00 22 28 0
DC-t 4.80 4.80 0.00 40 10 0

(400,1000,0) GM 4.98 4.98 0.00 49 1 0
QaSIS-t 4.32 4.32 0.00 21 29 0

DC-t 4.78 4.78 0.00 39 11 0
(500,10000,0) GM 5.00 5.00 0.00 50 0 0

QaSIS-t 4.28 4.28 0.00 24 26 0
DC-t 4.68 4.68 0.00 36 0 14

(500,50000,0) GM 5.06 4.98 0.08 45 1 4
QaSIS-t 4.08 4.08 0.00 18 32 0

DC-t 4.48 4.48 0.00 28 22 0
(500, 100000,0) GM 5.18 5.00 0.18 43 0 7

QaSIS-t 3.98 3.98 0.00 8 42 0
DC-t 4.52 4.52 0.00 28 22 0

(400,500,1) GM 4.98 4.98 0.00 49 1 0
QaSIS-t 2.80 2.72 0.08 0 50 0

DC-t 2.94 2.94 0.00 0 50 0
(400,1000,1) GM 4.96 4.96 0.00 48 2 0

QaSIS-t 2.34 2.26 0.08 0 50 0
DC-t 2.96 2.96 0.00 0 50 0

(500,10000,1) GM 4.94 4.94 0.00 47 3 0
QaSIS-t 2.38 2.28 0.10 0 50 0

DC-t 3.08 3.08 0.00 0 50 0
(500,50000,1) GM 4.96 4.92 0.04 44 4 2

QaSIS-t 2.42 2.36 0.08 0 50 0
DC-t 2.94 2.94 0.00 0 50 0

(500, 100000, 1) GM 4.94 4.92 0.02 46 3 1
QaSIS-t 10.26 2.46 7.80 0 50 0

DC-t 3.12 3.12 0.00 0 50 0
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Table 3: The averaged performance measures of various methods in Exam-
ple 2.

(n, p, η) Method Size TP FP C U O
(400,500,0) GM 5.00 5.00 0.00 50 0 0

QaSIS-t 4.26 4.26 0.00 22 28 0
DC-t 4.92 4.92 0.00 48 2 0

(400,1000,0) GM 5.14 5.00 0.14 44 0 6
QaSIS-t 4.04 4.04 0.00 20 30 0

DC-t 4.96 4.96 0.00 48 2 0
(500,10000,0) GM 5.10 5.00 0.10 45 0 5

QaSIS-t 3.82 3.82 0.00 13 37 0
DC-t 4.92 4.92 0.00 46 4 0

(500,50000,0) GM 5.40 5.00 0.40 37 0 13
QaSIS-t 3.04 3.04 0.00 8 42 0

DC-t 4.66 4.66 0.00 38 12 0
(500, 100000,0) GM 5.32 5.00 0.32 41 0 9

QaSIS-t 3.02 3.02 0.00 5 45 0
DC-t 4.66 4.66 0.00 34 16 0

(400,500,1) GM 5.00 4.98 0.02 48 1 1
QaSIS-t 5.78 2.90 2.88 3 38 9

DC-t 31.30 4.00 27.30 1 0 49
(400,1000,1) GM 5.10 5.00 0.10 45 0 5

QaSIS-t 7.78 2.22 5.56 1 42 7
DC-t 38.74 5.00 33.74 2 0 48

(500,10000,1) GM 5.10 4.96 0.14 42 2 6
QaSIS-t 12.94 2.08 10.86 0 45 5

DC-t 74.98 5.00 69.98 0 0 50
(500,50000,1) GM 5.16 4.98 0.18 43 1 6

QaSIS-t 32.52 2.08 30.44 0 42 8
DC-t 79.62 5.00 74.62 0 1 49

(500, 100000,1) GM 5.10 4.96 0.14 44 2 4
QaSIS-t 42.32 2.54 39.78 0 44 6

DC-t 79.94 4.88 75.06 0 6 44
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Figure 1: Scatter plots of the response against a number of selected variables
by the GM in the supermarket data set. The solid lines are the fitted curve
by local smoothing, and the dashed lines are the fitted means, plus or minus
one standard deviation.

(a) (b)

(c) (d)

(e)
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Table 4: The number of selected variables and the corresponding averaged
prediction errors by various methods in the supermarket data set.

Dataset Method Size Testing error (Std) Out of sample R2

GM 10 0.1369 (0.0005) 0.8631
QaSIS-t 7 0.1674 (0.0006) 0.8326

DC-t 7 0.1713(0.0006) 0.8287
SCAD 59 0.1872 (0.0006) 0.8128
MCP 28 0.2040 (0.0006) 0.7960
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