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Abstract: There is an urgent need to evaluate new therapies in a time-sensitive

and cost-effective manner. We propose the adaptive seamless phase II/III clinical

trials with covariate adaptive randomization (CAR) to satisfy this need. CAR

is one of the most popular designs in randomized controlled trials, enhancing

covariance balance and ensuring valid treatment comparisons. However, it has

several challenges: (1) the type I error rate of the commonly used Student’s

t-test following CAR can be inflated because of the seamless trials, but can

also be decreased using CAR; (2) the complicated allocation mechanism induced

by CAR causes extra difficulties to derive the asymptotic properties of a test

procedure; and (3) previous theoretical studies of seamless trials rely mainly on

the assumption of complete randomization, a procedure rarely used in real trials.

We establish a theoretical foundation for adaptive seamless phase II/III trials

with CAR. We also propose an approach that is easy to implement in order to

control the type I error rate and improve the power when using Student’s t-test.

This important step will promote the application of this procedure.

Key words and phrases: Adaptive design, Type I error, Power.
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SEAMLESS TRIALS WITH CAR 2

1. Introduction

In 2006, the US Food and Drug Administration (FDA) emphasized the

importance of streamlining clinical trials (US FDA, 2006). Since then, there

has been an urgent need to evaluate new therapies in a time-sensitive and

cost-effective manner without compromising the integrity and validity of

the development process. In this paper, we propose the adaptive seamless

phase II/III clinical trials with covariate adaptive randomization (CAR) to

satisfy this need. Recently, the FDA drafted guidance on seamless clinical

trials, aiming to broaden acceptance of the design (US FDA, 2018). CAR

is one of the most popular clinical trial designs. It ensures valid treatment

comparisons by balancing potentially confounding patient characteristics

across the treatment arms. We establish a theoretical foundation for adap-

tive seamless phase II/III trials with CAR in order to facilitate the appli-

cation of this design in practice. We address three major challenges: the

theoretical properties of this complicated allocation and analysis procedure;

control of the type I error rate; and improvement of the power.

In a typical seamless phase II/III clinical trial (Thall et al., 1988; Jenni-

son and Turnbull, 2007; Hampson and Jennison, 2015), multiple experimen-

tal treatments or drug doses are simultaneously compared against a control

in the phase II trial; the candidates with the best performance are then
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SEAMLESS TRIALS WITH CAR 3

selected for the phase III trial; and an analysis based on data from both

phases is performed at the end of the trial. By using a single protocol for

the two phases, the seamless design avoids the lead time between conven-

tional phase II and phase III trials, which is likely to be six months or more.

It also reduces the number of trials required to compare multiple drugs, de-

creases the sample size, and allows longer monitoring of the patients from

phase II (Bretz et al., 2009). These advantages increase the profits of phar-

maceutical companies and have received much attention from industry. By

2016, more than 40 active, first-in-human cancer trials had used the seam-

less strategy (Prowell et al., 2016). An example highlighted by Bhatt and

Mehta (2016) is the Indacaterol to Help Achieve New COPD Treatment

Excellence (INHANCE) trial Barnes et al. (2010), a seamless phase II/III

clinical trial of inhaled indacaterol for the treatment of chronic obstructive

pulmonary disease (COPD) using an equal allocation with stratification for

smoker status.

For seamless clinical trials, it is critical to control the possibly inflated

type I error rate under the dual influence of multiplicity and selection (Bauer

et al., 2010). Following the approach of Bauer and Kieser (1999), Bretz

et al. (2006) and Schmidli et al. (2006) used the closure principle (Marcus

et al., 1976), combination tests (Bauer and Köhne, 1994; Lehmacher and
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Wassmer, 1999), and multiple testing procedures (Simes, 1986; Dunnett,

1955) to control the familywise type I error rate. Liu et al. (2002) provided a

solid theoretical foundation for general two-stage adaptive designs. Koenig

et al. (2008) proposed the adaptive Dunnett test based on the conditional

error rate (Müller and Schäfer, 2001). However, the theory of most of these

studies assume complete randomization with independent responses, which

is rarely applied in clinical trials, and these approaches may not be valid

under other randomization schemes.

It is well known that an imbalance of the confounding covariates across

treatments may bias the study results. This imbalance can be mitigated

by CAR that sequentially assigns the next patient based on the previous

treatment assignments and covariates, as well as on the current covariate

profile. CAR can also reduce the selection bias, minimize the accidental

bias, and improve the statistical efficiency (Shao et al., 2010). The most

commonly used CAR in randomized controlled trials is the stratified per-

muted block (SPB) design. Other CAR designs and clinical trials adopting

CAR include those of Pocock and Simon (1975), Antognini and Zagoraiou

(2011), Iacono et al. (2006), Jakob et al. (2012), and Krueger et al. (2007),

as well as Barnes et al. (2010) mentioned above, a seamless phase II/III

trial with CAR.
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In practice, unadjusted analyses, such as Student’s t-test, are commonly

used in clinical trials (Kahan et al., 2014; Sverdlov, 2015). This simple ap-

proach avoids a model misspecification, but results in a conservative type I

error rate under CAR (Shao et al., 2010). Hypothesis testing and sequen-

tial monitoring in clinical trials with CAR have recently been studied by

Shao et al. (2010), Ma et al. (2015), Bugni et al. (2018), and Zhu and Hu

(2019). However, none of these studies investigated the application of CAR

in seamless phase II/III trials.

Seamless phase II/III designs and CAR with Student’s t-test both lead

to difficulties in controlling the type I error rate. It is challenging to perform

the theoretical investigation and propose approaches to control the type I

error rate for seamless phase II/III trials with CAR, for several reasons:

(1) the correlation structure of the within-stratum imbalances is complex;

(2) the relationships among the treatment assignments, covariates, and re-

sponses are complicated; (3) the allocation functions are discrete; and (4)

the data used in the treatment selection are also used for inference at the

end of the trial. Therefore, seamless phase II/III clinical trials with CAR

currently lack a theoretical foundation, and control of the type I error rate

is based on the assumption of complete randomization.

In this paper, we provide a theoretical foundation for seamless phase
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II/III clinical trials with CAR. We also propose ways to adjust the Stu-

dent’s t-test statistics and use the test procedures available for complete

randomization to control the type I error rate and improve the power. This

provides clinical trial practitioners with valid tests and treatment compar-

isons in seamless clinical trials with CAR. We also investigate estimation

and hypothesis testing for CAR with multiple treatments, which has a cru-

cial implication for a single phase with multiple treatments. Our numerical

studies show that, compared with traditional methods, our procedure con-

trols the type I error rate well and increases the power significantly.

2. Seamless phase II/III clinical trials with CAR

2.1 Framework of seamless phase II/III clinical trials

We consider a seamless phase II/III trial and refer to the two phases as

Stage 1 and Stage 2, respectively. Assume the planned sample size for

Stage 1 is N , and the planned sample size for Stage 2 is N ′, so the total

sample size is N +N ′. The design procedure is described below.

Stage 1. The first N patients are sequentially assigned to K experimental

treatments and the control arm with CAR. One treatment, say treatment

k?, is then chosen for Stage 2 based on certain criteria, for example, the one

with the largest estimated treatment effect and an acceptable safety profile.
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2.1 Framework of seamless phase II/III clinical trials7

Stage 2. The remaining N ′ patients are sequentially assigned to treatment

k? and the control arm with CAR. A final analysis comparing treatment k?

and the control arm is performed using the data from both stages.

We next describe the analysis procedure with a flowchart in Figure 1.

Let µ = (µ0, µ1, . . . , µK)T denote the vector of treatment effects, with µ0

corresponding to the control arm, and µk, for k = 1, . . . , K, corresponding

to K experimental treatments. At the end of the trial, without loss of

generality, we test H0,k? : µk? = µ0 versus H1,k? : µk? > µ0 based on

the combined data from the two stages, using the closure principle (Marcus

et al., 1976) to control the familywise type I error rate. The closure principle

rejects H0,k? at level α if each intersection hypothesis H0,I , with k? ∈ I, I ⊆

{1, . . . , K}, is rejected at level α, where H0,I = ∩k∈IH0,k, with H0,k : µk =

µ0.

To test each intersection hypothesis H0,I using the data from the two

stages, we use a combination test such as the inverse χ2 method (Bauer and

Köhne, 1994). Let P1,I and P2,I denote the p-values for H0,I based on the

data from Stage 1 and Stage 2, respectively. Then the inverse χ2 method

rejects H0,I if − log(P1,IP2,I) > χ2
4(1−α)/2, where χ2

4(1−α) is the (1−α)th

quantile of the χ2 distribution with four degrees of freedom. An alternative

approach is the weighted inverse normal method (Lehmacher and Wassmer,
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2.1 Framework of seamless phase II/III clinical trials8

1999).

To perform the combination test, we calculate the adjusted p-values for

each stage, P1,I and P2,I , using either the Simes test or the Dunnett test.

Note that both tests reduce to the usual Student’s t-test if there is only

one treatment and one control arm, as in Stage 2. We now briefly review

the Simes test and the Dunnett test when they are used under complete

randomization, deferring the justification and modification of these methods

under CAR to Section 2.3. We illustrate the test procedures for Stage 1

using multiple treatments because the Stage 2 comparison between two

arms is straightforward.

Suppose the intersection hypothesis H0,I is composed of m elemen-

tary hypotheses H0,k, with the associated p-values denoted by P1,k. Let

P1,(j), for j = 1, . . . ,m, be the p-values in ascending order. Using the Simes

test, we have the adjusted p-value P1,I = min1≤j≤m
(
mP1,(j)/j

)
for the in-

tersection hypothesis H0,I .

For the Dunnett test, without loss of generality, consider H0,I with

I = {1, . . . , K}. Let

tk = (Ȳk − Ȳ0)
/{
s(1/Nk + 1/N0)

1/2
}
, k = 1, . . . , K, (2.1)

where Nk is the number of patients assigned to treatment k; Ȳk and S2
k are

the sample mean and sample variance, respectively, under treatment k; and
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2.1 Framework of seamless phase II/III clinical trials9

s2 =
∑K

k=0(Nk − 1)S2
k/ν, with ν = N − K − 1. Under complete random-

ization, the null distribution of (t1, . . . , tK)T is the K-variate t-distribution

with ν degrees of freedom and correlations

ρk,k′ =

(
Nk

Nk +N0

)1/2(
Nk′

Nk′ +N0

)1/2

, k, k′ = 1, . . . , K.

Then, the conventional Dunnett test rejects the intersection hypothesis H0,I

at level α if

max
1≤k≤K

tk ≥ c,

where c is determined by pr(ζ1 < c, , . . . , ζK < c) = 1−α, and (ζ1, . . . , ζK)T

follows the K-variate t-distribution with ν degrees of freedom and correla-

tions ρk,k′ .

In the literature, the above analysis procedure is used in seamless tri-

als to control the familywise type I error rate, with the assumption that

patients are allocated using complete randomization and the responses of

the patients are independent of each other. However, the responses and

treatment assignments are no longer independent under CAR, because of

the complicated randomization mechanism that balances the covariates over

different arms. When there are two arms in a phase III clinical trial, the

conventional tests are too conservative with a small type I error rate because

of CAR (Shao et al., 2010; Ma et al., 2015). It is unclear whether CAR will
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Start

Identify all intersection hypotheses H0,I with k? ∈ I

For each H0,I , calculate adjusted p-values P1,I and P2,I

Determine if each H0,I is rejected at level α

Reject H0,k? at level α if each H0,I is rejected

Stop

Simes/Dunnett Test

Combination Test

Closure Principle

Figure 1: Flowchart of the analysis procedure of testing H0,k? .

lead to a conservative type I error rate in seamless clinical trials, and it is

worth investigating the underlying theory. Based on the closure principle

(Marcus et al., 1976) and the conditional invariance principle (Brannath

et al., 2007, 2012), for a valid treatment comparison, it suffices to validate

the Simes test and the Dunnett test under CAR for each stage of the above

design and analysis procedure.

2.2 Estimation following CAR with multiple treatments

In this section, we study the estimation for CAR with multiple treatments, a

key element for an adaptive seamless II/III trial and an important problem
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2.2 Estimation following CAR with multiple treatments11

in its own right, with implications for a traditional single-phase clinical trial

with CAR and multiple treatments.

Suppose a CAR procedure is implemented to assign the patients to (K+

1) arms, and the total sample size is N . Let Zi, for i = 1, . . . , N, represent

the covariate information for the ith patient. We allow Zi to be either

discrete or continuous covariates and assume that the covariates are all

independent and identically distributed (i.i.d.). To incorporate continuous

covariates into the randomization procedure, we discretize Zi using D(Zi), a

discrete function of Zi taking values in a finite set D. We can set D(Zi) = Zi

for discrete covariates, so both types of covariates can be treated using

the same notation. For simplicity, we introduce our methods using the

univariate covariate Zi with variance σ2
z ; the conclusions can be extended

easily to multivariate cases.

Let Ti = (Ti0, Ti1, . . . , TiK)T indicate the treatment assignment for

the ith patient, where treatment 0 represents the control arm. We have

Tik = 1, for k = 0, 1, . . . , K, if the ith patient is assigned to treatment k,

and Tik = 0 otherwise. Then, Nk =
∑N

i=1 Tik, for k = 0, 1, . . . , K, is the

number of patients in treatment k after N patients have been assigned. Let

Yi = (Yi0, Yi1, . . . , YiK)T, for i = 1, . . . , N, be a random vector of response

variables, where Yik, for k = 0, 1, . . . , K, is the response of the ith patient
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2.2 Estimation following CAR with multiple treatments12

under treatment k. Only one element of Yi, say Yik, can be observed if

Tik = 1. Assume the response of the ith patient under treatment k follows

Yik = µk + βZi + εik, i = 1, . . . , N,

where β represents the covariate effect, and εiks are i.i.d random errors with

mean zero and constant variance σ2
ε and are independent of the covariates.

In practice, to avoid unnecessary or incorrect model assumptions, a natural

treatment effect estimator for treatment k, for k = 0, 1, . . . , K, is Ȳk =∑N
i=1 TikYik/Nk.

We first introduce two conditions for the balancing properties under

CAR with multiple treatments. For any k = 1, . . . , K:

Condition A. Nk −N0 = Op(1).

Condition B.
∑N

i=1(Tik − Ti0)I{D(Zi) = d} = Op(1) for any d ∈ D.

These two conditions ensure that good balancing properties are attained

under a CAR procedure. Condition (A) indicates that the number of pa-

tients in each treatment group is approximately equal, and Condition (B)

implies a balance of treatment assignments within each covariate stratum

formed by D(Zi). Both conditions are satisfied by the stratified permuted

block design with multiple treatments. Note that Condition (B) implies

Statistica Sinica: Preprint 
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Condition (A) when the number of stratum is finite. We list both condi-

tions to emphasize the balancing properties with respect to different levels

(overall and within-stratum), similarly to Ma et al. (2015).

Remark 1. The two conditions can be considered a generalization of those

used in Shao et al. (2010) and Ma et al. (2015), where only two arms (one

treatment and one control) are considered.

Now, we present our theorem on the treatment effect estimation. We

write 1 for a column vector of ones, with a subscript denoting its dimension.

Theorem 1. Under Conditions (A) and (B), as N →∞,

( N

K + 1

)1/2{(
Ȳ0, Ȳ1, . . . , ȲK

)T − (µ0, µ1, . . . , µK

)T}
converges in distribution to a normal distribution with mean zero and co-

variance matrix V, where V = diag{σ2
d1K+1} + (K + 1)−1β2Var[E{Zi |

D(Zi)}]1K+11
T
K+1 and σ2

d = σ2
ε + β2E[Var{Zi | D(Zi)}].

The theorem gives the asymptotic distribution of the average responses

of different treatment groups. It is clear that these treatment effect esti-

mators are no longer independent and are positively correlated, which is

a key difference compared with complete randomization. The dependence

structure arises from the randomization procedure that adaptively assigns

patients to the treatment arms to enhance the covariate balance.
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Remark 2. Under complete randomization, the asymptotic covariance ma-

trix of {N/(K+1)}1/2(Ȳ0, Ȳ1, . . . , ȲK)T is a diagonal matrix with the diago-

nal entries equal to σ2
ε+β2σ2

Z , which is larger than σ2
d+(K+1)−1β2Var[E{Zi |

D(Zi)}] under CAR. Thus, CAR can increase the precision of the estimation

of the mean response of each treatment group by balancing the covariates.

The theorem can be used to study the properties of any linear trans-

formation of (Ȳ0, Ȳ1, . . . , ȲK)T. However, our main interest is in comparing

the treatment effects between the experimental treatments and the control.

The next corollary is a direct consequence of Theorem 1 and provides the

asymptotic joint distribution of Ȳk − Ȳ0, for k = 1, . . . , K.

Corollary 1. Under Conditions (A) and (B), as N →∞,

( N

K + 1

)1/2{(
Ȳ1 − Ȳ0, . . . , ȲK − Ȳ0

)T − (µ1 − µ0, . . . , µK − µ0)
T

}
converges in distribution to a normal distribution with mean zero and co-

variance matrix Σ, where Σ = diag{σ2
d1K}+ σ2

d1K1T
K.

Corollary 1 reveals that the asymptotic variance of Ȳk− Ȳ0 under CAR

is smaller than that under complete randomization. In particular, when Zi

are discrete covariates, the asymptotic variance of {N/(K+ 1)}1/2(Ȳk− Ȳ0)

is 2σ2
ε , compared to 2(σ2

ε + β2σ2
z) under complete randomization. This can

be interpreted to mean that the covariates are balanced so well that the
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2.3 Control of type I error rate in seamless clinical trials with CAR15

variability of the difference in means between the two groups is due only

to the random errors. The corollary provides a theoretical foundation for

deriving a valid test with a correct type I error rate.

2.3 Control of type I error rate in seamless clinical trials with

CAR

The commonly used test statistic for H0,k : µk = µ0 is based on a form

of Ȳk − Ȳ0 that is normalized to have a unit variance. The next theorem

follows Theorem 1 and shows how to construct such test statistics.

Theorem 2. Assume that Conditions (A) and (B) hold. Let

Xk = (Ȳk − Ȳ0)
/{
σd(1/Nk + 1/N0)

1/2
}
, k = 1, . . . , K.

If the null hypotheses H0,k : µk = µ0 are true for all k = 1, . . . , K, then, as

N → ∞, (X1, . . . , XK)T converges in distribution to a normal distribution

with mean zero and covariance matrix R, where R = diag{1K/2}+1K1T
K/2.

Based on Theorem 2, Xk following a standard normal distribution

can be used as the test statistic to test the individual null hypothesis

H0,k : µk = µ0, and the critical value can be selected accordingly. Note

that the asymptotic distribution remains unchanged if σd is replaced by its

consistent estimator σ̂d, which is usually obtained in practice using either
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2.3 Control of type I error rate in seamless clinical trials with CAR16

the model-based method or the bootstrap method. We propose fitting a

linear regression using all of the stratification covariates in the model to

obtain consistent estimators for the parameters in the expression of σd in

Theorem 1 and to calculate the estimate of σd accordingly. By the contin-

uous mapping theorem, σ̂d obtained in this way is a consistent estimator of

σd. We illustrate these methods in Section 3.

Remark 3. Compared with tk defined in (2.1) that is valid under complete

randomization, we find that σd or its consistent estimator must be used

instead of s to construct the test statistics under CAR. Otherwise, the

asymptotic distribution is more concentrated around zero than the standard

normal distribution, and the actual type I error rates are smaller than the

nominal levels.

As argued previously, to control the type I error rate for seamless phase

II/III clinical trials, it is critical and sufficient to prove that the Simes test

or the Dunnett test is still valid with the test statistics Xk under CAR.

In Theorem 2, we have successfully detected that the joint distribution

of (X1, ..., XK)T is an equicorrelated multivariate normal distribution with

a nonnegative correlation. The following theorem is an immediate conse-

quence of Result 1 in Sarkar and Chang (1997).
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2.3 Control of type I error rate in seamless clinical trials with CAR17

Theorem 3. Under Conditions (A) and (B), the type I error rate is con-

trolled for the Simes test with the test statistics Xk, for k = 1, . . . , K, under

CAR.

We next consider the Dunnett test. In Theorem 2, we proved that

the vector of test statistics (X1, . . . , XK)T asymptotically follows a K-

dimensional normal distribution with unit variances and constant correla-

tions equal to 1/2. To obtain a valid test, we can reject the null hypotheses

if

max
1≤k≤K

Xk ≥ c′, (2.2)

where c′ is determined by pr(ξ1 < c′, . . . , ξK < c′) = 1−α, and (ξ1, . . . , ξK)T

follows the normal distribution N (0,R). Note that the test considered here

is based on Xk defined in Theorem 2 instead of the conventional tk used

under complete randomization. In addition, the original Dunnett test is

based on the multivariate t distribution, whereas the test presented here

uses the normal distribution, which relies on the asymptotic normality given

in Theorem 2. For these reasons, we refer to the test based on Xk and

rejection region (2.2) as the modified Dunnett test, although we call it the

Dunnett test for simplicity when there is no confusion.

An application of Theorem 2 yields the following theorem.
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Theorem 4. Under Conditions (A) and (B), the type I error rate is asymp-

totically α for the Dunnett test with test statistics Xk, for k = 1, . . . , K,

under CAR.

Theorems 3 and 4 show that the widely used Simes and Dunnett tests

can also be applied under CAR, provided an appropriate adjustment is

made to the test statistics. Combined with the results from the last section,

the design and analysis procedures for seamless phase II/III clinical trials

with CAR (described in Section 2.1) can lead to higher precision and valid

inferences for treatment effects, showing the advantages of balancing the

covariates over complete randomization.

3. Numerical studies

We have obtained the asymptotic results for the proposed procedure. We

next study its finite-sample properties regarding the type I error rate, the

power, and the probability that the best treatment is selected for Stage 2 at

the interim look. Three scenarios are considered: (1) three treatments and

two stratification covariates; (2) four treatments and three stratification

covariates; and (3) five treatments and two stratification covariates. We

study both discrete and continuous stratification covariates. In this section,

we discuss the simulation setting and results for Scenario 1. The results for

Statistica Sinica: Preprint 
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Scenarios 2 and 3 and additional results showing the robustness of the

proposed method to various model misspecifications are reported in the

Supplementary material.

We first consider the case of discrete stratification covariates. In Sce-

nario 1, two experimental treatments (i.e., treatment 1 and treatment 2) are

compared with one control (i.e., treatment 0) in Stage 1, and discrete strat-

ification covariates are considered. The following linear model with two co-

variates Z1 and Z2 is used to simulate the response Yi, for i = 1, . . . , N+N ′,

Yi = α0 + α1Ti1 + α2Ti2 + β1Zi1 + β2Zi2 + εi,

where (α0, α1, α2, β1, β2)
T are unknown parameters; Z1 and Z2 follow Bernoulli

distributions with success rates p1 and p2, respectively; εi follows the nor-

mal distribution N (0, σ2); and Tik = 1, for k = 1, 2, if the ith patient is

assigned to experimental treatment k, and Tik = 0 otherwise.

In Stage 1, 120 patients sequentially enter the trial. We implement and

compare the stratified permuted block design with respect to both Z1 and

Z2 with a block size of six and complete randomization. Let

Wk = (Ȳk − Ȳ0)/(S2
k/Nk + S2

0/N0)
1/2, k = 1, . . . , K.

The experimental treatment with a larger Wk, denoted as treatment k?, is

considered more effective, and is selected to continue to Stage 2. In Stage 2,
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500 patients sequentially enter the trial and are randomly allocated to the

control arm and treatment k? using either a stratified permuted block design

or complete randomization. At the end of the trial, we test H0,k? : µk? = µ0

versus H1,k? : µk? > µ0.

We compare four analysis approaches: (1) the traditional two-sample

t-test without adjustment; (2) a linear regression with both covariates Z1

and Z2 in the model; (3) the bootstrap t-test proposed by Shao et al.

(2010); and (4) our t-test with adjustment. Here, we show the boot-

strap t-test for Stage 1, and it can be done similarly for Stage 2. We

generate B bootstrap samples (Y ?b
1 , Z?b

1,1, Z
?b
1,2), . . . , (Y

?b
N , Z?b

N,1, Z
?b
N,2), for b =

1, 2, . . . , B, independently by random sampling with replacement from

(Y1, Z1,1, Z1,2), . . . , (YN , ZN,1, ZN,2). We implement stratified permuted

block design randomization with respect to (Z?b
1,1, Z

?b
1,2), . . . , (Z

?b
N,1, Z

?b
N,2) to

obtain the bootstrap analogs of treatment allocations (T ?b
1k , . . . , T

?b
Nk), where

T ?b
ik = 1, for k = 0, 1, 2, if the ith patient is assigned to treatment k, and

T ?b
ik = 0 otherwise. Define

Ȳ ?b
k − Ȳ ?b

0 =
1

N?b
k

N∑
i=1

T ?b
ik Y

?b
i −

1

N?
0

N∑
i=1

T ?b
i0 Y

?b
i ,

N?b
0 =

N∑
i=1

T ?b
i0 , N?b

k =
N∑
i=1

T ?b
ik , k = 1, 2.

The bootstrap estimator of the variance of Ȳk − Ȳ0 is the sample variance
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of Ȳ ?b
k − Ȳ ?b

0 , for b = 1, 2, . . . , B, denoted ν̂Bj. The bootstrap t-test has the

test statistic TB = (Ȳk − Ȳ0)/ν̂1/2Bj . We set B = 200 in the simulations. For

the proposed t-test with adjustment, based on our theorems, the value of

σd is estimated using Theorem 1, and the values of σε and β are obtained

by fitting a linear model with both covariates. The closure principle and a

combination test with either the Simes or the Dunnett test are applied to

control the familywise type I error rate. The significance level α is 0.05 for

all the tests. All results are based on 10, 000 replications.

In Table 1, we report the type I error rate for different parameter values

of (p1, p2, σ), while fixing α0 = β1 = β2 = 1. Under complete randomization,

the type I error rate is close to the nominal level 0.05 for both the two-sample

t-test (t-test) and the full linear model (lm). Under the SPB design with

either the Dunnett or Simes test, the type I error rate of the two-sample

t-test is far below 0.05, whereas our t-test with adjustment (Adjusted-t)

successfully controls the error rate. The error is also well controlled when

we use the full linear model or the bootstrap t-test (BS-t).

In Table 2, we compare the power of the different designs and analysis

approaches. We report the results for different values of (α1, α2) while fixing

(p1, p2, σ) = (0.5, 0.5, 1) and α0 = β1 = β2 = 1. Our t-test with adjustment

and the bootstrap t-test under CAR have significantly higher power than
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Table 1: Type I error rate (percentage) in a seamless trial with three treat-

ments and two discrete covariates.

(p1, p2, σ) Allocation t-test lm BS-t Adjusted-t

Simes (0.5, 0.5, 1.0) SPB 1.73 5.26 5.14 5.20

CR 5.00 4.73 - -

(0.4, 0.6, 1.0) SPB 1.78 4.84 5.35 5.41

CR 4.73 4.80 - -

(0.4, 0.6, 1.5) SPB 3.00 4.78 5.46 5.36

CR 4.61 4.65 - -

Dunnett (0.5, 0.5, 1.0) SPB 1.98 5.75 5.09 5.46

CR 5.20 5.30 - -

(0.4, 0.6, 1.0) SPB 1.91 5.38 5.23 5.36

CR 5.05 5.23 - -

(0.4, 0.6, 1.5) SPB 3.38 5.27 5.17 5.40

CR 5.09 5.08 - -

the t-test without adjustment under either CAR or complete randomiza-

tion. In addition, our design performs better than complete randomization

in terms of the number of replications (M) in which the better treatment is

selected for Stage 2. To save space, we present additional results for Tables

2 and 4 in the Supplementary Material.
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Table 2: Power (percentage) and number (M) of replications in which the

better treatment is selected for Stage 2 in a seamless trial with three treat-

ments and two discrete covariates.

(α1, α2) Allocation t-test lm BS-t Adjusted-t M

Simes (0.26, 0.16) SPB 65.11 79.88 80.48 80.55 6667

CR 64.83 79.25 - - 6420

(0.24, 0.16) SPB 58.96 75.35 76.49 76.42 6374

CR 60.27 74.76 - - 6139

(0.22, 0.16) SPB 52.69 70.23 71.61 71.33 6042

CR 55.07 69.79 - - 5837

Dunnett (0.26, 0.16) SPB 65.74 80.61 80.86 80.97 6667

CR 65.98 80.13 - - 6420

(0.24, 0.16) SPB 60.08 76.30 77.20 77.00 6374

CR 61.44 75.82 - - 6139

(0.22, 0.16) SPB 53.57 71.18 72.39 72.10 6042

CR 56.28 71.09 - - 5837

We also performed numerical studies in which some of the covariates are

continuous. To save space, we report the results for three treatments and

two stratification covariates only. The setting is as in Scenario 1, except that

we assume Z2 follows a standard normal distribution. When implementing
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the stratified permuted block design, we discretize Z2 into the Bernoulli

variable D(Z2) as follows: D(Z2) = 1 if Z2 < zq, and D(Z2) = 0 otherwise,

where zq is the qth quantile of the standard normal distribution. The con-

tinuous covariate is used in the statistical inference procedures. Our t-test

with adjustment controls the type I error at around 0.05, while the two-

sample t-test is too conservative under the SPB design design with either

the Dunnett or the Simes test (Table 3). At the same time, the t-test with

adjustment is much more powerful than the two-sample t-test under both

the stratified permuted block design and complete randomization (Table

4).

4. Redesign of a clinical trial evaluating treatments for chronic

obstructive pulmonary disease

COPD is a chronic lung inflammation disease that causes poor airflow from

the lungs and long-term breathing problems. A double-blinded two-stage

seamless clinical trial, known as the INHANCE trial, has been conducted

to evaluate the efficacy and safety of indacaterol in the treatment of COPD.

The trial used equal allocation with stratification for smoking status (Barnes

et al., 2010; Donohue et al., 2010). In Stage 1, 770 patients were enrolled

and four doses of indacaterol were compared with a placebo and with two
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Table 3: Type I error rate (percentage) in a seamless trial with three treat-

ments, one discrete covariate, and one continuous covariate.

(p1, q, σ
2) Allocation t-test lm BS-t Adjusted-t

Simes (0.5, 0.5, 1.0) SPB 1.10 4.53 5.45 5.16

CR 4.47 4.56 - -

(0.4, 0.6, 1.0) SPB 1.08 4.63 5.14 5.20

CR 4.57 4.60 - -

(0.4, 0.6, 1.5) SPB 2.16 4.89 5.31 4.96

CR 4.55 4.58 - -

Dunnett (0.5, 0.5, 1.0) SPB 1.23 4.89 5.78 5.41

CR 5.02 4.97 - -

(0.4, 0.6, 1.0) SPB 1.27 4.94 5.46 5.19

CR 5.13 4.87 - -

(0.4, 0.6, 1.5) SPB 2.31 5.09 5.66 5.31

CR 4.89 5.10 - -

active controls, formoterol and tiotropium. In Stage 2, two doses of inda-

caterol were selected for comparisons with a placebo and tiotropium in 1683

patients.

Here, we redesign the INHANCE trial and evaluate the differences of

trough forced expiratory volume in one second (FEV1) between multiple
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Table 4: Power (percentage) and number (M) of replications in which the

better treatment is selected for Stage 2 in a seamless trial with three treat-

ments, one discrete covariate, and one continuous covariate.

(α1, α2) Allocation t-test lm BS-t Adjusted-t M

Simes (0.26, 0.16) SPB 46.76 79.90 69.52 69.61 6547

CR 49.92 79.16 - - 6154

(0.24, 0.16) SPB 40.55 75.70 64.68 64.97 6243

CR 45.60 74.73 - - 5970

(0.22, 0.16) SPB 35.35 70.98 60.07 59.83 5944

CR 41.69 70.32 - - 5709

Dunnett (0.26, 0.16) SPB 48.14 80.49 70.19 70.18 6547

CR 51.38 79.77 - - 6154

(0.24, 0.16) SPB 41.79 76.43 65.67 65.87 6243

CR 46.87 75.79 - - 5970

(0.22, 0.16) SPB 36.79 72.06 60.77 60.68 5944

CR 43.15 71.29 - - 5709

doses of indacaterol and the placebo. Trough FEV1 is a standard measure-

ment of lung capacity, where a lower FEV1 indicates more severe COPD.

We simplify the treatment arms into the placebo and four dose levels of in-

dacaterol in Stage 1, and select only one dose level along with the placebo
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to go forward to Stage 2, following the selection rule described in the pre-

vious section. We use summary statistics for the patients and the effect

sizes of the dosages in the study to create a synthetic data set of patients.

To do so, we simulate the outcome FEV1 and the covariate in 112 patients

in Stage 1 and 167 patients in Stage 2 using the following linear regression

model:

Yi = 0.15 + 0.15Ti1 + 0.18Ti2 + 0.22Ti3 + 0.19Ti4 + β1Zi1 + εi.

Here, (Ti1, Ti2, Ti3, Ti4) are indicator variables indicating the dosage assign-

ment of the ith patient: Tik = 1, for k = 1, ..., 4, if the ith patient is

assigned to dosage k, and Tik = 0 otherwise. The binary covariate Zi1 indi-

cates smoking status, with a success rate of 0.41: Zi1 = 1 if the ith patient

is a current smoker, and Zi1 = 0 if the patient is an ex-smoker. Lastly, εi

follows the normal distribution N (0, σ2).

In both stages, a stratified permuted block design with respect to smok-

ing status is implemented with block sizes of 10 and 6, respectively, to assign

patients to different arms. In Table 5, we compare the power of the two-

sample t-test and our t-test with adjustment using different values of β1 and

σ. We find that an increase in the value of the smoking status coefficient

increases the power advantage of our t-test with adjustment, indicating that

our t-test with adjustment is especially useful when the outcome has large
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Table 5: Power (percentage) in redesigned INHANCE trial

(β1, σ) t-test Adjusted-t (β1, σ) t-test Adjusted-t

Simes (0.2, 0.5) 83.33 85.68 Dunnett (0.2, 0.5) 85.20 86.92

(0.6, 0.5) 73.22 85.72 (0.6, 0.5) 76.13 86.87

(1.0, 0.5) 53.11 85.76 (1.0, 0.5) 56.21 86.86

(0.2, 0.6) 69.57 72.66 (0.2, 0.6) 72.34 74.64

(0.3, 0.6) 68.34 72.59 (0.3, 0.6) 70.97 74.49

(0.2, 0.7) 58.07 61.22 (0.2, 0.7) 61.66 63.15

(0.3, 0.7) 56.80 61.22 (0.3, 0.7) 60.59 63.19

differences among strata that are generated by dividing the study popula-

tion using stratification covariates. We also find that a larger σ leads to a

lower power for all of the tests.

5. Conclusion

Several future research directions are of interest. First, we assumed a lin-

ear model for data generation and equal allocation probabilities in order to

investigate the treatment effect estimators based on the differences in the

sample means under CAR. Some recent studies, however, indicate that the

linearity and equal allocation assumptions may be relaxed. When there are

only two arms (one treatment and one control), Ma et al. (2020) showed that
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the difference-in-means estimator is unbiased and as efficient as regression-

based estimators under the stratified permuted block design, even if the

linear model is arbitrarily misspecified and the allocation probabilities are

unequal for different arms. For the case of multiple treatments, which is

more relevant to seamless trials, the theoretical properties of difference-in-

means estimators have not been established, though some regression-based

estimators have been studied (Bugni et al., 2019). Moreover, robust vari-

ance estimators are required for valid tests under these relaxed assumptions.

The usual ordinary least squares variance estimator and Huber–White sand-

wich estimator are valid in a two-arm trial with equal allocation. However,

in general, especially for unequal allocation, model-based variance estima-

tors tend to fail, and consistent nonparametric estimators are preferred

(Bugni et al., 2018; Ma et al., 2020).

Second, estimation is often an important, but secondary target for

seamless phase II/III trials (Posch et al., 2005; Bowden and Glimm, 2014).

We have focused on hypothesis testing, the primary concern in seamless

trials and another element of statistical inference. It would be interesting

to explore the bias in the estimation following our design.

Third, Stallard and Friede (2008) investigated scenarios where more

than one experimental treatment continues beyond the interim analysis,
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and sequential monitoring is implemented in Stage 2. Magirr et al. (2012)

proposed methods for any number of treatment arms, stages, and patients

per treatment per stage in such trials. Investigating these scenarios, espe-

cially group sequential monitoring at phase III, will be of particular interest

to practitioners.

Fourth, works on seamless phase II/III designs and adaptive random-

ization under the Bayesian framework include, but are not limited to those

of Huang et al. (2009), Yuan et al. (2011), Inoue et al. (2002), Berry (2012),

and Zang and Lee (2014). These designs provided insight into our study.

Fifth, seamless phase II/III designs with different study endpoints in the

two stages have been investigated (Huang et al., 2009). These have profound

implications for real trials with a primary endpoint that is observed only

after a long-term follow-up. It is necessary to select the treatment at the

interim look based on correlated short-term endpoint data. Implementing

our design in this scenario will broaden its application in practice. We leave

these topics to future work.

Supplementary Material

The online Supplementary Material contains the proof of the main

theorem and additional simulation results.
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