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Abstract: Testing the independence or block independence of high-dimensional

random vectors is important in multivariate statistical analysis. Recent works on

high-dimensional block-independence tests aim to extend their validity beyond

specific distributions (e.g., Gaussian) or restrictive block sizes. In this paper,

we propose a new and powerful test for the block-structured correlation of high-

dimensional random vectors, for sparse or nonsparse alternatives, without strict

distributional assumptions. The statistical properties of the proposed test are

developed under the asymptotic regime that the dimension grows proportionally

with the sample size. Empirically, we find that the proposed test outperforms

existing tests for a variety of alternatives, and works quite well when there are

few existing tests at our disposal.

Key words and phrases: Testing block-independence, high-dimension, multivari-

ate statistical analysis, sparse alternatives, non-sparse alternatives.

1. Introduction

Driven by a wide range of scientific applications, testing the indepen-
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Hypothesis Testing for Block-structured Correlation 2

dence of random vectors is of great importance in multivariate statistical

analysis. In the conventional low-dimensional setting with p/n→ 0, where

p is the dimension of the random vector and n is the sample size, complete

and block independence tests are well established. For complete indepen-

dence, ? proposed a likelihood ratio test (LRT) for Gaussian populations.

For block independence, ? and ? developed effective LRTs for Gaussian

populations and derived their asymptotic distributions under regularity con-

ditions.

In the high-dimensional setting, the classical LRT is invalid or cannot be

defined as the dimension p becomes greater than the sample size n. In recent

years, researchers have made great advances related to high-dimensional

independence tests. For complete independence, ? proposed a corrected

LRT when p/n → y ∈ (0, 1). ? studied the LRT when p/n → y ∈ (0, 1].

? developed a test based on the Frobenius norm of the sample correlation

matrix for p > n. ? and ? extended the results of ? to obtain the extreme

distribution of coherence of the sample correlation matrices. ? proposed

a quadratic-type statistic and an extreme-value-type statistic. For high-

dimensional block independence, ? developed a corrected LRT and trace

test when p/n → y ∈ (0, 1). ? studied the LRT for Gaussian populations

when p/n→ (0, 1]. ? proposed a Schott-type statistic when the dimension
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of every block of random variables is less than the sample size. ? allowed a

more general setting by using the Frobenius norm of the sample covariance

matrix. ? proposed a high-dimensional sign test for the block-structured

correlation between the random variables of two blocks under appropriate

symmetry assumptions.

This study develops a new and powerful test for the block-structured

correlation of a high-dimensional random vector, for sparse or nonsparse al-

ternatives and with no strict distributional assumptions, under the asymp-

totic regime of p/n → y ∈ (0,∞). To this end, we propose a two-term

test statistic. The first term is Tn1 = tr[Sn − diag(S11, . . . ,SKK)]2, where

the sample covariance matrix Sn is a natural estimator of the population

covariance matrix, and the block-diagonal matrix diag(S11, . . . ,SKK) is a

population covariance matrix estimator under a block-structured correla-

tion. The statistic Tn1 does not impose any conditions on the dimension

because it does not involve a matrix inversion. The statistic Tn1 is the sum

of the squared entries of Sn − diag(S11, . . . ,SKK), and captures the overall

difference between Sn and diag(S11, . . . ,SKK), even if the individual en-

tries of Sn − diag(S11, . . . ,SKK) are small. That is, Tn1, similarly to the

test of ?, has good power for nonsparse alternatives. The second term is

a screening term, Tn0, which is added to Tn1 to enhance the power under
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sparse alternatives. Thus, the proposed test statistic Tn1 + Tn0 is effective

for both nonsparse and sparse alternatives. To examine the performance

of the proposed test statistic, the limiting null distribution is derived as

p/n → y ∈ (0,∞), allowing y to be greater than one. Simulation studies

show that the type-I errors of the proposed test can be well maintained.

Moreover, under the alternative hypothesis, the limiting distribution of the

proposed test is discussed, and the asymptotic unbiasedness of the proposed

test is proved. When the dimension is smaller than the sample size, simula-

tion studies are conducted to compare our proposed test with existing tests

for Gaussian populations. In the empirical power comparison, our proposed

test outperforms other tests designed for high dimensions. Even when the

population is nonGaussian and the dimension is greater than the sample

size, our proposed test performs well.

The remainder of the paper is organized as follows. In Section 2, we

propose the test statistic, derive its limiting distribution under the null and

alternative hypotheses, and present the asymptotic power function to show

that the proposed test is asymptotically unbiased. In Section 3, we conduct

simulation studies to compare the proposed test with several existing tests.

A real data set is analyzed in Section 4 for illustration. Section 5 concludes

the paper.
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2. Test on block-structured correlation

Let {x1, . . . ,xn} be a random sample from the p-dimensional population

random vector x = (x1, . . . , xp)
> with mean vector µ and covariance ma-

trix Σ. Let x̄ = n−1
∑n

i=1 xi and Sn = (n − 1)−1
∑n

i=1(xi − x̄)(xi − x̄)>

be the sample mean and sample covariance matrix, respectively. Without

loss of generality, the random vector x = (x1, . . . , xp)
T can be formulat-

ed using K random variable blocks: {x1, . . . , xp1}, {xp1+1, . . . , xp1+p2}, . . .,

{xp1+p2+···+pK−1+1, . . . , xp}, where p = p1 + · · · + pK , and K is permitted

to increase with n at some rate. Let Σij be the covariance matrix of the

ith and jth random variable blocks. The population and sample covariance

matrices can be partitioned into Σ = (Σij)
K
i,j=1 and Sn = (Sij)

K
i,j=1, respec-

tively. Testing the block-structured correlation of x can be formulated as

testing

H0 : Σ = diag(Σ11, . . . ,ΣKK), (2.1)

where diag(Σ11, . . . ,ΣKK) is the block-diagonal matrix fromK blocks {Σkk, k =

1, . . . , K}. A natural estimator of Σ is Sn. Under the null hypothesis, a

natural estimator of Σ is diag(S11, . . . ,SKK). For a Gaussian population,

the LRT statistic is ?

log |Sn| − log |diag(S11, . . . ,SKK)|,
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which is the entropy loss of Sn and diag(S11, . . . ,SKK). The entropy loss

for the covariance matrix estimation can be found in ? and ?. ? proposed

the following trace test statistic for the case of K = 2:

tr

[(
S
−1/2
11 S12S

−1/2
22

)(
S
−1/2
11 S12S

−1/2
22

)>]
,

which is the quadratic loss of Sn and diag(S11,S22). The quadratic loss

for the covariance matrix estimation can be found in ?, ?, and ?. For the

block-structured correlation, regardless of the entropy loss or quadratic loss

for the covariance matrix estimation, the inversion of a sample covariance

matrix or log-determinant of Skk is involved; as a result, the block dimension

cannot be larger than the sample size.

We propose a test statistic with two terms, where one term is the dis-

tance between Sn and diag(S11, . . . ,SKK), and the other term is a screening

term. Motivated by the Frobenius distance between matrices, we propose

the following statistic:

Tn1 = tr[Sn − diag(S11, . . . ,SKK)]2.

Note that the statistic Tn1 as used in ? is the sum of the squared en-

tries of Sn− diag(S11, . . . ,SKK), which captures the overall difference even

when the individual entries of Sn − diag(S11 ,. . ., SKK) are small nonzero

numbers. Therefore, the statistic Tn1 is not only suitable for low and high
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dimensions, but is also expected to perform well for nonsparse alternatives.

Furthermore, to enhance the power of Tn1 when Σ−diag(Σ11, . . . ,ΣKK) is

very sparse, a screening term Tn0 is added to Tn1. A similar idea is used in

?. Let the screening term be

Tn0 = p2δ{max(`1,`2)∈A0
n(s`1`2 )2(θ̂`1`2 )−1>s∗(n,p)},

where δ{·} is an indicator function, s∗(n, p) is a threshold depending on

(n, p), Sn = (s`1`2)
p
`1,`2=1, θ̂`1`2 = n−1

∑n
i=1[(x`1i − x̄`1)(x`2i − x̄`2) − s`1`2 ]2,

and the set

A0 = {(`1, `2) : `1 ∈ {p̃i−1+1, . . . , p̃i}, `2 ∈ {p̃j−1+1, . . . , p̃j}, 1 ≤ i < j ≤ K},

(2.2)

with p̃i = p1 + . . . + pi, xi = (x1i, . . . , xpi)
>, x̄`1 = n−1

∑n
i=1 x`1i, and

x̄`2 = n−1
∑n

i=1 x`2i. The screening term Tn0 shows that if some s`1,`2 is

sufficiently large, then Tn0 is at least of order p2. Thus, the screening term

Tn0 captures the difference between Sn and diag(S11, . . . ,SKK), even when

Σ − diag(Σ11, . . . ,ΣKK) is very sparse. Our proposed test statistic is the

sum of the two terms; that is,

Tn = Tn1 + Tn0 (2.3)

= tr[Sn − diag(S11, . . . ,SKK)]2 + p2δ{max(`1,`2)∈A0
n(s`1`2 )2(θ̂`1`2 )−1>s∗(n,p)}.

This is expected to perform well for both nonsparse and sparse alternatives.
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2.1 Limiting null distribution of Tn8

The conditions needed on the threshold s∗ are given later.

2.1 Limiting null distribution of Tn

To facilitate the formulation, we use the following independent component

structure model for the data.

Assumption [A]. Let {xi}ni=1 satisfy the independent component structure

xi = (x1i, . . . , xpi)
T = µ + Σ1/2wi, where wi = (w1i, . . . , wpi)

>, and all

elements {wji : j = 1, . . . , p, i = 1, . . . , n} are independent and identically

distributed (i.i.d.) with E(wji) = 0, E(w2
ji) = 1, and finite fourth moments.

Remark 1. In fact, by (1.8) of ?, the existence of the finite fourth moment

of wji implies that there exists a sequence {ηn} satisfying ηn → 0, ηnn
1/4 →

+∞, and η−4
n Ew4

jiδ(|wji|>ηn
√
n) → 0.

Assumption [B]. Assume that the number of blocks satisfies Kη2
n = o(1).

Moreover, the spectral norm of Σ is bounded uniformly in p. The conver-

gence regime p/n→ y ∈ (0,∞), for some constant y, is satisfied.

In Assumption [A], moment conditions are imposed that are distribu-

tion free. For example, the Gaussian distribution and many other distribu-

tions readily satisfy the independent component structure. In Assumption

[B], Kη2
n = o(1) allows K to increase with n at some rate. In particular,

Statistica Sinica: Preprint 
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2.1 Limiting null distribution of Tn9

for the Gaussian distribution, we have

η−4
n Ew4

jiδ(|wji|>ηn
√
n) ≤ η−(4+m)

n n−m/2Ew4+m
ji δ(|wji|>ηn

√
n)

= o(η−(4+m)
n n−m/2) = o(1),

for any even m, if η−2
n = O(nm/(m+4)). Then, K can be of order o(n1−ε), for

any ε > 0.

Lemma 1. Under Assumptions [A] and [B], and under H0 specified by

(??), we have

Tn1 − µ
σ

→ N(0, 1) and
Tn1 − µ̂
σ0

→ N(0, 1),

where

µ =
(n2 − n− 1)[(trΣ)2 −

∑K
k=1(trΣkk)

2]

n(n− 1)2
,

µ̂ =
(n2 − n− 1)[(trSn)2 −

∑K
k=1(trSkk)

2]

n(n− 1)2
, (2.4)

σ2
0 = 4(n−1trΣ2)2 − 4

K∑
k=1

(n−1trΣ2
kk)

2,

σ2 = σ2
0 + 4n−3

K∑
k=1

(trΣkk − trΣ)2

[
2 trΣ2

kk + βw

pk∑
`=1

(e>`kΣkke`k)
2

]
,

βw = E(w4
ji)− 3.

Here, e` is a p-dimensional vector with the `th element equal to one and all

other elements equal to zero, and e`k is a pk-dimensional vector with the `th

element equal to one and all other elements equal to zero.

Statistica Sinica: Preprint 
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2.1 Limiting null distribution of Tn10

Note that we have suppressed the subscript n in many of the quan-

tities we use, such as µ and σ2. The proof of Lemma ?? is provided in

supplementary file 1. The asymptotic variance σ2
0 depends on the unknown

parameters tr(Σ2) and tr(Σ2
kk), for k = 1, . . . , K. However,

(n− 2)−1[tr(S2
kk)− (n+ 2)−1(trSkk)

2]− n−1tr(Σ2
kk) = op(1), k = 1, . . . , K,

which can be used to estimate σ2
0; see the proof in supplementary file 1.

Moreover, under H0, we have tr(Σ2) =
∑K

k=1 tr(Σ2
kk); thus,

(n− 2)−1

K∑
k=1

[tr(S2
kk)− (n+ 2)−1(trSkk)

2]− n−1tr(Σ2) = op(1).

Therefore, σ2
0 can be consistently estimated by

σ̂2
0 = 4(n− 2)−2{

K∑
k=1

[tr(S2
kk)− (n+ 2)−1(trSkk)

2]}2

−4(n− 2)−2

K∑
k=1

[tr(S2
kk)− (n+ 2)−1(trSkk)

2]2.

? suggested a uniformly minimum variance unbiased estimator of tr(Σ2)

under the normality assumption, but we have used an asymptotic approxi-

mation with a finite-sample correction factor to better control type-I errors.

Let

p2
0 = p2 − p2

1 − . . .− p2
K . (2.5)

The following result provides the asymptotic justification for the proposed

test.

Statistica Sinica: Preprint 
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2.1 Limiting null distribution of Tn11

Theorem 1. Under Assumptions [A] and [B], and under H0 specified by

(??), if lim inf
n→∞

inf
(i,j)∈A0

var[(x1i − Ex1i)(x1j − Ex1j)][var(x1i)var(x1j)]
−1/2 >

0, s∗(n, p)− 4 log p0 → +∞, and sup1≤`≤p E exp(t0|x`1|m0) < ∞, for some

constants t0 > 0 and 0 < m0 ≤ 2, then we have

σ̂−1
0 (Tn − µ̂)→ N(0, 1).

Note that Tn has the same null distribution as Tn1 in the asymptotic

sense, and the second term Tn0 plays a role mainly when the alternative

hypothesis is true. The one-sided rejection region for H0 at the nominal

level α is

{x1, . . . ,xn : Tn − µ̂ > σ̂0q1−α}, (2.6)

where qα is the αth quantile of the standard normal distribution.

Remark 2. To apply the proposed test in practice, we need to choose

the threshold s∗(n, p). There are many choices for the threshold, as long

as it satisfies s∗(n, p) − 4 log p0 → +∞. For simplicity, in this paper, the

threshold is taken to be

s∗(n, p) = [4 + (log log n− 1)2](log p0 − 0.25 log log p0) + q, (2.7)

where q satisfies exp[−(8π)−1/2 exp(−q/2)] = 0.99. The threshold ensures

that even if n and p0 are small, the probability of the event Tn0 = 0 is bound-

ed by 0.01 under H0, because max(`1,`2)∈A0 n(s`1`2)
2 θ̂−1

`1`2
−4 log p0+log log p0

Statistica Sinica: Preprint 
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2.1 Limiting null distribution of Tn12

converges to a type-I extreme value distribution, exp[−(8π)−1/2 exp(−t/2)],

under the null hypothesis (see ?). The probability of the event Tn0 = 0

becomes negligible under H0 when either n or p0 is moderately large. For

example, if n = 200 and p0 = 250, the relevant probability is only 0.002.

Remark 3. Our proposed hypothesis test (??) is a global test on corre-

lations between different blocks. If the null hypothesis is rejected, under

the sparsity assumption, we may use the multiple testing method of ? to

identify individual nonzero correlations in two steps. Let

Tij =

∑n
`=1(xi` − x̄i)(xj` − x̄j)√

nθ̂ij

, (2.8)

where θ̂ij = n−1
∑n

`=1[(xi` − x̄i)(xj` − x̄j)− sij]2.

Step 1: bootstrap procedure. Let {x∗j1, ..., x∗jn} be a sample drawn

randomly with replacement from {xj1, ..., xjn}, for every j ∈ {1, ..., p}. Let

x∗` = (x∗1`, ..., x
∗
p`)

T , for ` = 1, ..., n, and compute the bootstrap test statistic

T ∗ij from x∗1, ...,x
∗
n, as in (??). When the above bootstrap procedure is

repeated N times, we have N bootstrap test statistics T ∗ij1, ..., T
∗
ijN . Let

G∗n,N(t) =
2

Np2
0

N∑
`=1

∑
(i,j)∈A0

I{|T ∗ij`| ≥ t},

where A0 is given in (??).

Step 2: Large-scale correlation tests with bootstrap given in ?.

Statistica Sinica: Preprint 
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2.2 Limiting distribution of Tn under the alternative hypothesis13

Let

t̂ = inf{0 ≤ t ≤
√

4 log p0 − 2 log(log p0) :

G∗n,N(t)(p2
0)/2

max{
∑

(i,j)∈A0
I{|Tij| ≥ t}, 1}

≤ α}.

If t̂ does not exist, then let t̂ =
√

4 log p0. We reject H0ij : σij = 0 whenever

|Tij| ≥ t̂, for (i, j) ∈ A0.

Remark 4. On the surface, it seems that we need the eighth moment of xi

to calculate the variance of Tn1. In fact, ? require a finite eighth moment

condition. However, our Lemma ?? and Theorem ?? require only the fourth

moment of xi.

2.2 Limiting distribution of Tn under the alternative hypothesis

Next, we study the theoretical property of the proposed statistic Tn under

the alternative hypothesis. Let the difference between the null hypothesis

and the alternative hypothesis be A = Σ2 − diag(Σ2
11, . . . ,Σ

2
KK).

Theorem 2. Under Assumptions [A] and [B], we have

σ−1
1 (Tn1 − µ̂− µ1)→ N(0, 1),

where µ1 = (n2 − n+ 2)trA/(n− 1)2 and

σ2
1 = σ2

0 + 4[2n−1trA2 + βwn
−1

p∑
`=1

.(e>`Ae`)
2].
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2.2 Limiting distribution of Tn under the alternative hypothesis14

Here, e` is a p-dimensional vector with the `th element equal to one and all

other elements equal to zero, and βw = Ew4
ij − 3.

The asymptotic power function of Tn is βTn(A) = P (Tn − µ̂ > σ̂0q1−α).

We have P (Tn − µ̂ > σ̂0q1−α)− [1− Φ(σ−1
1 (σ0q1−α − µ1))] = o(1). Because

trA = trΣ2−
∑K

k=1 trΣ2
kk =

∑
1≤k1 6=k2≤K trΣk1k2Σk2k1 ≥ 0, it is easy to see

that σ2
1 ≥ σ2

0 and µ1 ≥ 0. If the population covariance matrix departs from

the null hypothesis (in the sense that trA > ε0 > 0, for any positive constant

ε0), then σ2
1 > σ2

0 and µ1 > 0. Under such an alternative hypothesis, we

have (σ0q1−α − µ1)/σ1 < q1−α; that is,

βTn(A) > α.

Thus, the proposed test Tn is asymptotically unbiased. In fact, when n

is sufficiently large, βTn(A) is an increasing function of trA, where trA

measures the departure from the null hypothesis.

Theorem 3. Under Assumptions [A] and [B] and Σ2 = diag(Σ2
11, . . . ,Σ

2
KK)+

A,

(1) we have βTn(A) ≥ α when n is sufficiently large; in particular, when

trA > ε0 > 0, for any positive constant ε0, we have βTn(A) > α for suffi-

ciently large n; and

(2) if trA tends to infinity or P (max(`1,`2)∈A0 n(s`1`2)
2(θ̂`1`2)

−1 > s∗(n, p))

Statistica Sinica: Preprint 
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2.2 Limiting distribution of Tn under the alternative hypothesis15

converges to one, then we have βTn(A)→ 1 as n→∞.

Theorem ?? shows that the proposed test Tn is asymptotically un-

biased. If the absolute value of at least one entry of A is greater than√
(log p0 log n)/n, then there exists (`1, `2) ∈ A0 such that n(s`1`2)

2(θ̂`1`2)
−1

(s∗(n, p))−1 ≈ c log n/ log log n converges to infinity in probability under

the conditions of Theorem ??. Thus, P (max(`1,`2)∈A0 n(s`1`2)
2(θ̂`1`2)

−1 >

s∗(n, p))→ 1 holds by Remark ??, and the power converges to one.

Remark 5. Support recovery of Σ: Following the proof of Theorem 5

in ?, under the conditions

p/n→ y ∈ (0,+∞), min
(i,j)∈A0

θij(σiiσjj)
−1/2 > τ,

E|(xj1 − Exj1)(σjj)
−1/2|8+ε ≤ c0, ∀ 1 ≤ j ≤ p,

for some c0 > 0, ε > 0, τ > 0, with the set A0 defined in (??), we have

lim inf
Σ∈W0

P (Ψ̂ = Ψ)→ 1,

where

Ψ = {(i, j) : σij 6= 0, (i, j) ∈ A0},

Ψ̂ = {(i, j) : n(sij − σij)2(θ̂ij)
−1 ≥ 4 log p0, (i, j) ∈ A0},

W0 = {Σ : min
(i,j)∈Ψ

n1/2|σij|(θij)−1/2 ≥ 4
√

log p0, (i, j) ∈ A0},

with Σ = (σij)
p
i,j=1 and p2

0 = p2 − p2
1 − ...− p2

K given in (??).
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3. Simulation studies

In this section, we evaluate the finite-sample performance of the proposed

test in terms of its type-I error rates and power. Because the proposed test

uses the Frobenius distance between the covariance matrices, we denote it

as FDS. The test proposed by ? was developed for variables with mean zero.

When applied to the centered variables (by removing the sample mean) in

high dimensions, the test has seriously inflated type-I errors; therefore, we

exclude it from the comparisons. The test used by ? is the same as the

test of ? when K = 2, but has slightly poorer performance when K = 3;

thus, we include the latter test only. The following three competing tests

are used in our comparisons:

• “CLRT”: the test of ?;

• “BHPZ”: the test of ?;

• “YHN”: the test of ?;

We generate samples of size n from xi = 1p + Σ1/2wi, for i = 1, . . . , n,

where 1p is a p-dimensional vector with all elements equal to one, wi =

(w1i, . . . , wpi)
>, and {wji, i = 1, . . . , n, j = 1, . . . , p} are i.i.d. as N(0, 1).

To consider different structures of Σ, we use Σ = 0.2Ip +
∑3

i=1 θiΣi for

some values (θ1, θ2, θ3), where Σ1 = (0.5|i−j|)pi,j=1 is approximately sparse

Statistica Sinica: Preprint 
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in structure, Σ2 = Ip + 0.5(δ{|i−j|=1})
p
i,j=1 is sparse, and Σ3 = 0.98Ip +

0.021p1
T
p is a dense structure. For each setting, we conduct 5000 Monte

Carlo simulations. For the type-I error estimates, the standard errors are

approximately 0.006.

At the sample size n = 200, we consider the dimension p = 60, 120, 180,

and the number of blocks K = 2, 3, with block sizes p1 = . . . = pK = p/K.

The ROC curves for the competing tests are plotted in Figure ?? under the

null hypothesis Σ = 0.2Ip and the alternative hypotheses Σ = 0.2Ip + Σi,

for i = 1, 2, 3, at n = 200 and p1 = p2 = p3 = 20. Clearly, the FDS test

performs best for the non-dense Σ. When Σ is dense, FDS and YHN are

similar, but YHN is the worst performer for the sparse alterative. Moreover,

the empirical size and power of each test are listed in Table ?? for a variety

of settings. All methods maintain type-I errors well. The proposed FDS

test outperforms the other tests in terms of power. In particular, when

(p1, p2, p3) = (20, 20, 20) and Σ = 0.2Ip + Σ1, the empirical power of the

FDS test is about 98%, and that of the other tests is between 36% and 53%.

For (p1, p2, p3) = (60, 60, 60) and Σ = 0.2Ip + Σ2, the empirical power of

the FDS test is about 88%, whereas that of the other tests ranges between

at most 10% and 14%. Overall, the proposed FDS test is more powerful

than its competitors. When Σ is dense, FDS and YHN are similar, and
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both lead the comparison.

When the dimension is much greater than the sample size, we examine

the performance of FDS, BHPZ, and YHN only, because CLRT cannot

handle such cases. In the simulation, the null hypothesis is Σ = 0.2Ip and

the alternative hypothesis is Σ = 0.2Ip + θ1Σ1 + θ2Σ
∗
2 + θ3Σ3, where Σ∗2 =

Ip + ρ0(δ{|i−j|=1})
p
i,j=1, with ρ0 = 0.3 + 0.3 exp(0.009p)/(0.15 + exp(0.009p))

and θi = 0 or 1, for i = 1, 2, 3. The distribution of wji is taken to be N(0, 1)

or Gamma(4, 2)-2. In this study, we consider the sample sizes n = 150, 300,

dimensions p = 180, 360, 900, and number of blocks K = 2, 3, with block

sizes p1 = . . . = pK = p/K. The empirical size and power of each test are

listed in Tables ?? and 3. The type-I errors are all close to the nominal

level of 0.05. Moreover, as the dimension increases, the empirical power of

the tests increases with n. For example, when Σ = 0.2Ip +Σ∗2, p = 180 and

K = 2, the power of FDS increases from 71.24% to 99.96% quickly as the

sample size increases from n = 150 to 300, whereas that of other tests rises

much less. To save space, Table 3 is given in supplementary file 1.

Note that the proposed FDS test does not always dominate the other-

s when p is small. We refer to the ROC curve in Figure ?? under the

null hypothesis Σ = 0.2Ip and the alternative hypotheses Σ = Σ4 =

1.2Ip + 0.18(δ{|i−j|=1})
p
i,j=1 + 0.1(δ{|i−j|=3})

p
i,j=1, with a sample size n = 200,
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dimension p = 6, and K = 3 blocks of equal sizes, p1 = p2 = p3 = 2. In this

case, the population is Gaussian and the likelihood is correctly specified,

so it is not surprising that CLRT shows slightly better performance than

FDS.

To check the sensitivity of the threshold s∗(n, p) and any scaled version

of Tn0, we consider the rejection region

{x1, . . . ,xn : Tn(c1, c2)− µ̂ > σ̂0q1−α}, (3.1)

which is similar to (??), where µ̂ and σ̂0 are in (??), and

Tn(c1, c2) = Tn1 + c1 · Tn0(c2),

with Tn1 = tr[Sn − diag(S11, . . . ,SKK)]2 and

Tn0(c2) = p2δ{max(`1,`2)∈A0
n(s`1`2 )2(θ̂`1`2 )−1>s∗(n,p,c2)},

s∗(n, p, c2) = c2 · [4 + (log log n− 1)2](log p0 − 0.25 log log p0) + q.

We have s∗(n, p) = s∗(n, p, 1), Tn0 = Tn0(1), and Tn = Tn(1, 1). We consider

the sample size n=200, dimension p = 60, 120, 180, and number of blocks

K = 2, 3, with block sizes p1 = . . . = pK = p/K. The parameters c1

and c2 are taken as c1 = 0.001, 0.5, 2 and c2 = 0.5, 1, 2. The empirical

test sizes and power for different values of c1 and c2 are listed in Tables

4 and 5. The simulation results in Table 4 show that when c1 is small or
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Figure 1: The first three ROC curves are the results from three simulation

settings given in Section 3 with different specifications Σ1 (upper left panel),

Σ2 (upper right), Σ3 (lower left), with wij being i.i.d from N(0, 1), (n, p) =

(200, 60), and p1 = p2 = p3 = 20. The ROC curve in the lower-right panel

refers to the case of (n, p) = (200, 6) with K = 3 equal block sizes. The

curves for FDS and YHN are nearly identical in the lower-left panel and

lower-right panel.
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large, the empirical test sizes and empirical power values are similar for the

different values of c1. The simulation results in Table 5 show that when c2 is

small, the empirical test size cannot be controlled. Furthermore, when c2 is

large, although the empirical test size can be controlled, the empirical power

decreases. Thus, the penalty Tn0 is somewhat sensitive for the threshold

s∗(n, p), but is not sensitive for the scaled version of Tn0. Moreover, to show

that our test is valid for p/n → y = 0, Table 6 presents simulation results

with n = 500, 750, 1000 and p = 6, 12, 18. To save the space, Tables 4–6 are

given in supplementary file 1.

4. Demonstration with a real-data example

To further demonstrate the power of the proposed test, we use data from a

major supermarket in northern China (see ?). In the data set, each record

contains the daily sales volume of individual products over a 463-day period.

We are interested in understanding the correlation between vegetable sale

volumes and dairy sale volumes. We have 26 major vegetables and 58 dairy

products in the study; that is, (p1, p2) = (26, 58).

To evaluate the power of various tests at small sample sizes, we random-

ly draw the sale volumes of vegetables and dairy products using p1 + p2 + 2

days; that is, the sample size is n = p1 + p2 + 2. Based on 10,000 ran-
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Table 1: Empirical test sizes and power (in percentage) for comparison of

four methods with n = 200, (p1, . . . , pK) = (p/K, . . . , p/K), and K = 2, 3

for Gaussian variables. The vector (θ1, θ2, θ3) specifies the Σ matrix. The

rejection region is given in (??).

(θ1, θ2, θ3) Methods p = 60 120 180 60 120 180

K = 2 K = 3

Empirical test sizes

(0, 0, 0) FDS 4.50 4.95 4.94 5.10 4.85 4.88

CLRT 4.74 5.52 4.86 5.02 5.30 5.12

BHPZ 4.58 5.12 4.52 4.88 5.09 4.68

YHN 4.64 5.07 5.07 5.18 4.94 4.88

Empirical powers

(1, 0, 0) FDS 87.86 76.52 69.28 98.06 93.20 88.42

CLRT 19.52 9.40 6.98 38.74 14.28 8.38

BHPZ 17.46 8.80 6.64 36.08 14.72 9.55

YHN 27.28 13.22 9.72 52.48 22.78 14.83

(0, 1, 0) FDS 86.70 75.52 68.62 97.50 92.68 88.02

CLRT 38.28 13.26 7.86 75.42 24.86 10.92

BHPZ 30.86 11.82 7.82 66.78 23.62 13.26

YHN 15.68 92.50 7.60 26.12 14.18 10.02

(0, 0, 1) FDS 32.46 69.86 90.90 38.48 78.90 95.32

CLRT 12.82 12.38 8.78 15.62 15.90 11.70

BHPZ 11.92 11.32 9.00 18.10 20.20 17.62

YHN 32.62 70.20 91.02 38.96 79.16 95.42
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Table 2: Empirical test sizes and power (in percentage) for comparison of

three methods with (p1, . . . , pK) = (p/K, . . . , p/K) and K = 2, 3 for Gaus-

sian variables. The vector (θ1, θ2, θ3) specifies the Σ matrix. The rejection

region is given in (??). When a test is not applicable, the corresponding

entries are marked −.

(θ1, θ2, θ3) n Methods p=180 360 900 180 360 900
K = 2 K = 3

Empirical test sizes
(0, 0, 0) 150 FDS 5.11 4.72 4.22 4.86 4.78 4.48

BHPZ 4.62 — — 5.08 4.76 —
YHN 5.50 4.94 5.06 5.26 4.86 5.24

300 FDS 5.08 4.92 4.93 5.08 5.08 5.02
BHPZ 5.08 4.70 — 5.26 5.30 —
YHN 5.04 5.08 5.33 5.42 5.32 5.12

Empirical powers
(1, 0, 0) 150 FDS 38.22 25.78 14.06 57.02 38.85 21.80

BHPZ 6.14 — — 7.84 5.26 —
YHN 8.74 6.22 5.44 12.41 7.66 5.66

300 FDS 97.74 94.16 87.52 99.95 99.51 97.74
BHPZ 8.74 5.92 — 13.76 7.48 —
YHN 12.42 8.14 6.60 22.86 11.36 7.72

(0, 1, 0) 150 FDS 71.24 59.54 41.78 89.52 80.20 61.92
BHPZ 9.32 — — 20.72 7.10 —
YHN 7.68 5.86 5.32 10.22 7.18 5.24

300 FDS 99.96 99.88 99.74 100 100 100
BHPZ 32.22 10.50 — 74.24 27.82 —
YHN 10.42 7.2 6.70 16.02 9.85 7.00

(0, 0, 1) 150 FDS 76.18 98.48 100 84.28 99.38 100
BHPZ 7.24 — — 11.20 6.48 —
YHN 76.87 98.52 100 84.56 99.46 100

300 FDS 99.36 100 100 99.82 100 100
BHPZ 14.84 9.16 — 34.16 21.02 —
YHN 99.34 100 100 99.82 100 100
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dom draws at this sample size, FDS and YHN reject the null hypothesis

that the sale volumes of vegetables and dairy products are uncorrelated

100% of the time. The tests CLRT and BHPZ reject the null hypothesis

58.71% and 84.22% of the time, respectively. For the sensitivity analysis

with (c1, c2) = (0.001, 1), (5, 1), (1, 0.5), (1, 2), the proposed FDS test still

rejects the null hypothesis 100% of the time.

When we take a small number of days randomly from the data set,

autocorrelation is negligible. To use the whole sample to understand or

confirm the correlation between the prices of these two products, we use an

autoregressive AR(1) model to fit the data, and then examine the residuals.

In this case, all the tests we considered reject the null hypothesis of no

correlation at the level 0.001. The fact that the proposed test is able to

detect the correlation with high power, even when the sample size is slightly

above the total dimension, indicates that the test is valuable in the analysis

of moderately high-dimensional problems.

5. Discussion

We have proposed a test for detecting block-structured correlation in high-

dimensional variables. The validity of the test is established under a frame-

work where the dimension of the variables grows linearly with the sample

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0319



25

size. For an explanation of why the framework of p/n tending to a constant

is useful for high-dimensional data analysis, refer to ? and ?. The test can

be used in a wide range of problems for Gaussian or nonGaussian variables,

and attains good power for sparse or nonsparse alternatives. Our simula-

tions show that the proposed test performs very well in terms of both the

type-I error rate and power relative to existing tests, when the latter are

applicable. Unlike the other tests, the proposed method does not invert

any covariance matrices and requires only finite fourth moments of the ran-

dom variables. More importantly, the proposed test performs quite well,

even when the dimension exceeds the sample size. When p is small and

n is large, and the data are Gaussian, the proposed test loses some power

against the LRT, but the loss of power is limited even in these situations

in our empirical studies.

Supplementary Material

The first online Supplementary Material file contains proofs of Lemma ??

and Theorems ??–??. The second file contains three lemmas and detailed

proofs of (S2.6)–(S2.8) in the first file. These proofs are conducted under

Assumptions [A]–[B]. The sample covariance matrix Sn of 84 major vegeta-
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bles and 58 dairy products in Section ?? is available at

https : //math127.nenu.edu.cn/shuxue/HData/webpage/covariancematrix.zip.
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