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Abstract: In this manuscript, we propose a spline-based sieve nonparametric

maximum likelihood estimation method for a joint distribution function with

bivariate interval-censored data. We study the asymptotic behavior of the pro-

posed estimator by proving the consistency and deriving the rate of convergence.

Based on the sieve estimate of the joint distribution, we also develop an ef-

ficient nonparametric test for making inferences about the dependence between

two interval-censored event times and establish its asymptotic normality. We con-

duct simulation studies to examine the finite-sample performance of the proposed

methodology. Finally, we apply the method to assess the association between two
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subtypes of mild cognitive impairment (MCI), amnestic MCI and non-amnestic

MCI, for Huntington’s disease (HD) using data from a 12-year observational co-

hort study on premanifest HD individuals, PREDICT-HD.

Key words and phrases: Empirical process, Generalized gradient projection algo-

rithm, Sieve Estimation.

1. Introduction

Interval-censored time-to-event data occur very often in clinical and other

biomedical studies. Interval censoring means that one only knows that the

event time of interest lies in a time interval normally derived from consec-

utive observation time points. A special case of interval censoring is called

current status data, for which only left or right censoring happens; that is,

either the left end point of each observation interval is zero or the right end

point of that observation interval is infinity. The importance of studying

interval-censored time-to-event data has been well recognized. Research

on statistical inferences for interval-censored data has been an active area

in nonparametric and semiparametric statistical modeling, which includes

Turnbull (1976) and Groeneboom and Wellner (1992) for nonparametric

maximum likelihood estimation (NPMLE); Sun (1996), Fay (1999), and

Zhang et al. (2001) for comparing survival functions among different expo-
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sure groups; and Huang (1996), Zhang et al. (2010), and Wang et al. (2016)

for semiparametric regression analysis.

Research using multivariate interval-censored time-to-event data, par-

ticularly bivariate interval-censored data, is important, but very challeng-

ing. Betensky and Finkelstein (1999) and Wong and Yu (1999) were among

the earliest to study the conventional NPMLE of the joint survival func-

tion with bivariate interval-censored data. Maathuis (2005) proposed a fast

and stable algorithm to compute the NPMLE. In an unpublished disser-

tation, Song (2001) described the consistency and convergence rate of the

NPMLE with bivariate interval-censored data. Despite these efforts, the

conventional NPMLE of the joint survival function with interval-censored

data is not uniquely determined and its asymptotic behavior has not been

completely justified. Wu and Zhang (2012) proposed a spline-based sieve

NPMLE of the joint distribution function with bivariate current status data.

Under some mild regularity conditions, they proved the consistence and de-

rived a rate of convergence that is better than the rate given by Song (2001)

for the conventional NPMLE.

Semiparametric regression analyses under copula or frailty models were

recently adopted for bivariate interval-censored data. Wen and Chen (2013)

proposed using a frailty model approach for semiparametric bivariate interval-
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censored data, with the marginal hazards for the time-to-event data mod-

eled using the Cox proportional hazards (PH) model. Zeng et al. (2017) and

Zhou et al. (2017) both extended Wen and Chen’s (2013) work to allow more

general semiparametric models for the marginal time-to-event data: Zeng

et al. (2017) included random effects for the covariates; Zhou et al. (2017)

adopted the spline-based sieve estimation. Hu et al. (2017) proposed using

a copula model to analyze bivariate current status data. Specifically, they

used the Bernstein polynomial-based copula to construct the joint distribu-

tion function, along with the Cox PH model for the marginal time-to-event

data.

Testing for dependence between bivariate time-to-event data has been a

common practice in statistical applications. It is particularly important in

biomedical research that people may experience two or more adverse clini-

cal events, and understanding the associations between the events will help

study the risk factors for the events. For example, epidemiologists may want

to study the risk factors for a rare disease, and know this disease is strongly

associated with another clinical event, that is more commonly observed.

Then, choosing this event as the surrogate endpoint of the rare disease to

ascertain the risk factors may improve the study efficiency. Wang and Ding

(2000) adopted the idea for bivariate right-censored data of Shih and Louis
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(1995), proposing a two-stage approach to test the association parameter

based on a copula model with bivariate current status data. In particu-

lar, in the first stage, Wang and Ding (2000) computed the conventional

NPMLEs for both marginal distributions of the event times. In the second

stage, they developed a pseudo-MLE method for the association parame-

ter by plugging the NPMLEs from the first stage into the likelihood based

on the bivariate copula model. Sun et al. (2006) extended the Wang-Ding

method to analyze bivariate interval-censored data. Following the same

idea of Shih and Louis (1996) for testing the association of the two event

times under the right-censoring mechanism, Ding and Wang (2004) devel-

oped a nonparametric test for the independence between two event times

with bivariate current status data, which can be viewed as a generalization

of the Mantel–Haenszel test. Jewell et al. (2005) considered a special case of

bivariate current status data in which the observation time for both events

is the same. For this case, the dependence test statistic can be constructed

based on a functional of the NPMLEs for the marginal distribution func-

tions. Kim et al. (2015) adopted the approach for bivariate right censoring

of Brown et al. (1974) and developed an association test based on estimating

Kendall′s τ for bivariate interval-censored data. However, the asymptotic

normality of the test statistic given by Kim et al. (2015) seems difficult to
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justify theoretically when the majority of the censoring rectangles overlap.

Note that all aforementioned inferences for interval-censored data are under

a specific model structure for the joint distribution (Wen and Chen, 2013;

Zeng et al., 2017; Zhou et al., 2017; Hu et al., 2017; Wang and Ding, 2000;

Sun et al., 2006), deal with special cases of interval-censored data (Ding and

Wang, 2004; Jewell et al., 2005), or are quite ad-hoc (Kim et al., 2015). To

the best of our knowledge, there is no rigorously justified model-free non-

parametric method in the literature for the inference of association between

bivariate interval-censored time-to-event data.

This work is motivated by a 12-year international multi-site observa-

tional study of premanifest Huntington’s disease (HD) patients to identify

the neurobiological predictors of HD onset, PREDICT-HD. A predomi-

nantly motor-impaired neurodegenerative disease, HD also leads to cogni-

tive impairments, possibly in multiple domains. As an early sign of disease

progression, mild cognitive impairment (MCI) is commonly studied in neu-

rodegenerative diseases, and may be chosen as a study endpoint for clinical

trials to treat HD patients. There is great interest in the HD research com-

munity in studying the age of MCI onset in premanifest HD patients and

the correlations among the ages of onset in different subtypes of MCI. For

a detailed description of the PREDICT-HD study, refer to the section on
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the real-data analysis. In this study, we aim to develop a spline-based sieve

NPMLE method for bivariate interval-censored data and to construct an ef-

ficient statistical test for the association between two event times under the

bivariate interval-censored data model. The test is based on a functional

of the sieve NPMLEs of the joint and marginal distribution functions. We

apply the proposed method to the PREDICT-HD data.

The remainder of this paper is organized as follows. Section 2 proposes

the spline-based sieve NPMLEs for the distribution functions and constructs

a test statistic for the association. Section 3 establishes three theorems that

describe the asymptotic behavior of the spline-based sieve NPMLEs and the

asymptotic normality of the proposed test statistic. Section 4 outlines the

algorithm to compute the sieve NPMLEs. Section 5 conducts simulation

studies to justify the sieve NPMLE of the joint distribution function and

the test statistic. Section 6 applies the proposed method to the PREDICT-

HD data to ascertain a possible association of ages of onset in two MCI

subtypes, namely, amnestic MCI and non-amnestic MCI. Finally, Section

7 discusses some existing issues and future work. The technical details,

including the lemmas and their proofs, are presented in the Supplementary

Material.
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2. Method

We first propose a spline-based sieve NPMLE method for the joint and

marginal distribution functions, and then develop a nonparametric associ-

ation test for the dependence between the bivariate event times based on a

functional of the sieve NPMLEs.

2.1 Spline-based Sieve NPMLEs for the Distribution Functions

Assume bivariate event times T1 and T2 are interval censored by (U1, V1)

and (U2, V2), respectively. Suppose a sample of size n for the censoring

times, with their relationship to event times given by

[{
u1,k, v1,k, u2,k, v2,k,

(
δ
(j)
1,k, δ

(j)
2,k

)3
j=1

}]n
k=1

,

where {(u1,k, v1,k, u2,k, v2,k)}nk=1 is the sample for (U1, V1, U2, V2), δ
(1)
i,k =

1[ti,k≤ui,k], δ
(2)
i,k = 1[ui,k<ti,k≤vi,k], and δ

(3)
i,k = 1[ti,k>vi,k] respectively indicate

left censoring, interval censoring, and right censoring, and {ti,k}nk=1 is the

sample of unobserved Ti, for i = 1, 2. Suppose that event times are inde-

pendent of the censoring times. Let θ = (F0(·, ·), F1(·), F2(·)) with F0, F1,

and F2 denoting the joint distribution function of event times T1 and T2,

the marginal distribution functions of T1 and T2. Then, the log likelihood
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of the model parameter θ based on the n observations can be written as

ln(θ;data)

=
n∑
k=1

{δ(1)1,kδ
(1)
2,k logF0(u1,k, u2,k)

+ δ
(1)
1,kδ

(2)
2,k log[F0(u1,k, v2,k)− F0(u1,k, u2,k)]

+ δ
(1)
1,kδ

(3)
2,k log[F1(u1,k)− F0(u1,k, v2,k)]

+ δ
(2)
1,kδ

(1)
2,k log[F0(v1,k, u2,k)− F0(u1,k, u2,k)]

+ δ
(2)
1,kδ

(2)
2,k log[F0(v1,k, v2,k)− F0(u1,k, v2,k)− F0(v1,k, u2,k) + F0(u1,k, u2,k)]

+ δ
(2)
1,kδ

(3)
2,k log[F1(v1,k)− F0(v1,k, v2,k)− F1(u1,k) + F0(u1,k, v2,k)]

+ δ
(3)
1,kδ

(1)
2,k log[F2(u2,k)− F0(v1,k, u2,k)]

+ δ
(3)
1,kδ

(2)
2,k log[F2(v2,k)− F2(u2,k)− F0(v1,k, v2,k) + F0(v1,k, u2,k)]

+ δ
(3)
1,kδ

(3)
2,k log[1− F1(v1,k)− F2(v2,k) + F0(v1,k, v2,k)]}.

(2.1)

Please refer to Section S1 of the online Supplementary Material for a de-

tailed derivation of the log likelihood. The conventional NPMLE method for

estimating θ is a challenging task, both computationally and theoretically.

We propose adopting the spline-based sieve NPMLE method, as originally

proposed by Wu and Zhang (2012) for bivariate current status data, to es-

timate θ nonparametrically for (2.1). Suppose T1 ∈ [0, τ1] and T2 ∈ [0, τ2].

Denote two sets of B-spline basis functions of order l (Schumaker, 1981):
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{B(1),l
i (t)}pni=1 with knot sequence ξ as

ξ = {(ξi)pn+li=1 :

0 = ξ1 = · · · = ξl < ξl+1 < · · · < ξpn < ξpn+1 = ξpn+l = τ1},
(2.2)

and {B(2),l
j (t)}qnj=1 with the knot sequence η as

η = {(ηj)qn+lj=1 :

0 = η1 = · · · = ηl < ηl+1 < · · · < ηqn < ηqn+1 = ηqn+l = τ2},
(2.3)

where pn and qn are both positive integers related to n.

Let

Fn,0(·, ·) =

pn∑
i=1

qn∑
j=1

αi,jB
(1),l
i (·)B(2),l

j (·), (2.4)

Fn,1(·) =

pn∑
i=1

βiB
(1),l
i (·), (2.5)

and

Fn,2(·) =

qn∑
j=1

γjB
(2),l
j (·) (2.6)

be the corresponding B-spline-based joint and marginal distribution func-

tions (Bollaerts et al., 2006). First, we need to ensure that these functions

satisfy the requirements for being the distribution functions, as discussed

in Wu and Zhang (2012). For θn = (Fn,0, Fn,1, Fn,2), we also need to ensure

that ln(θn; data) is bounded for the existence of sieve NPMLEs. Thus, we
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assume that there exist τ1,l > 0, τ1,h < τ1, τ2,l > 0, τ2,h < τ2, and τd > 0,

such that the domain for censoring times (U1, V1, U2, V2) is given by

D = {(u1, v1, u2, v2) : u1 ∈ [τ1,l, τ1,h], v1 ∈ [τ1,l, τ1,h],

u2 ∈ [τ2,l, τ2,h], v2 ∈ [τ2,l, τ2,h], u1 + τd ≤ v1, u2 + τd ≤ v2} ,
(2.7)

and for (u1, v1, u2, v2) ∈ D, the following constraints are imposed for (2.4),

(2.5), and (2.6):

0 < Fn,0(u1, u2),

Fn,0(u1, u2) < Fn,0(v1, u2),

Fn,0(u1, u2) < Fn,0(u1, v2),

{Fn,0(v1, v2)− Fn,0(u1, v2)} − {Fn,0(v1, u2)− Fn,0(u1, u2)} > 0,

Fn,1(u1)− Fn,0(u1, v2) > 0,

Fn,2(u2)− Fn,0(v1, u2) > 0,

{Fn,1(v1)− Fn,1(u1)} − {Fn,0(v1, v2)− Fn,0(u1, v2)} > 0,

{Fn,2(v2)− Fn,2(u2)} − {Fn,0(v1, v2)− Fn,0(v1, u2)} > 0,

{1− Fn,1(v1)} − {Fn,2(v2)− Fn,0(v1, v2)} > 0.

(2.8)

Now, we define the parameter space for spline-based distribution func-
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tions as

Ψn =

{
θn = (Fn,0, Fn,1, Fn,2) : Fn,0(·, ·) =

pn∑
i=1

qn∑
j=1

αi,jB
(1),l
i (·)B(2),l

j (·),

Fn,1(·) =

pn∑
i=1

βiB
(1),l
i (·), Fn,2(·) =

qn∑
j=1

γjB
(2),l
j (·),

(2.8) holds for (u1, v1, u2, v2) ∈ D with D defined by (2.7),

knot sequences are as (2.2) and (2.3)} .

(2.9)

Then, the proposed spline-based Sieve NPMLE of θ0 is the maximizer

θ̂n of ln(θn; data) over Ψn given by (2.9).

2.2 A Nonparametric Association Test

Suppose that F0,0(t1, t2) is the underlying joint distribution function of T1

and T2, and F0,1(t1) and F0,2(t2) are the underlying marginal distribution

functions for T1 and T2, respectively. Note that

F0,0(t1, t2) = F0,1(t1)F0,2(t2) for any (t1, t2) ∈ [τ1,l, τ1,h]× [τ2,l, τ2,u]

if T1 and T2 are independent. This leads naturally to considering a func-

tional of the distribution functions θ0 = (F0,0(·, ·), F0,1(·), F0,2(·)),

ρ(θ0) =

∫ τ1,h

τ1,l

∫ τ2,h

τ2,l

{F0,0(t1, t2)− F0,1(t1)F0,2(t2)} dt2dt1,
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as the basis for constructing the statistic for testing the association between

T1 and T2. We propose studying the test statistic,

ρ(θ̂n) =

∫ τ1,h

τ1,l

∫ τ2,h

τ2,l

{
F̂n,0(t1, t2)− F̂n,1(t1)F̂n,2(t2)

}
dt2dt1, (2.10)

computed using a two-stage approach, where θ̂n is the spline-based sieve

NPMLE described above.

Under H0: T1 and T2 are independent, ρ(θ0) = 0, and hence it is antici-

pated that ρ(θ̂n) is asymptotically close to zero. Moreover, the forthcoming

Theorem 2 justifies that
√
n(ρ(θ̂n) − ρ(θ0)) converges in distribution to a

normal variable with mean zero. This leads to the construction of the stan-

dard normal test statistic Tn = ρ(θ̂n)/SE(ρ(θ̂n)) for H0, where SE(ρ(θ̂n))

can be estimated using the bootstrap method.

3. Asymptotic Theorems

In this section, we develop the consistency and the rate of convergence

theorem for the proposed sieve NPMLE. Furthermore, we establish the

asymptotic normality theorem for the proposed nonparametric functional

test statistics for the association and demonstrate its efficiency. Studying

the asymptotic properties needs empirical process theory and requires some

regularity conditions for the event and observation times. For the theoret-

ical development throughout this paper, let c be a positive constant that
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may take different values, depending on the context. The following condi-

tions sufficiently guarantee the results in the forthcoming theorem for the

consistency and the rate of convergence for the proposed sieve NPMLEs,

and are used to establish the asymptotic normality for the proposed asso-

ciation test statistic and to demonstrate its efficiency. For ease of notation,

let Dα = ∂[α]

∂t
α1
1 ∂t

α2
2

, with [α] = α1 + α2, for nonnegative integers α1 and α2.

Regularity Conditions:

C1 For every α with [α] < p, DαF0,0(t1, t2) is continuous at any (t1, t2) in

[0, τ1]× [0, τ2]. Moreover, for [α] = p, DαF0,0(t1, t2) exists and satisfies

|DαF0,0(t1, t2)−DαF0,0(t
′
1, t
′
2)| ≤ c(|t1 − t′1|r + |t2 − t′2|r), for r > 0.

C2 F0,1(t1) and F0,2(t2) both have up to (p − 1)th continuous derivatives

on [0, τ1] and [0, τ2], respectively. In addition, their pth derivatives

also exist and satisfy |dpF0,1(t1)/dt
p
1 − dpF0,1(t

′
1)/dt

p
1| ≤ c|t1 − t′1|r and

|dpF0,2(t2)/dt
p
2−dpF0,1(t

′
2)/dt

p
2| ≤ c|t2−t′2|r, where p and r are the same

as in C1.

C3 ∂2F0,0(t1,t2)

∂t1∂t2
have a positive lower bound in [0, τ1]× [0, τ2].

C4 The joint density of (U1, V1, U2, V2) is continuous and has a positive

lower bound in its domain D, with D defined by (2.7).
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Let θ1 = (F1,0(·, ·), F1,1(·), F1,2(·)) and θ2 = (F2,0(·, ·), F2,1(·), F2,2(·)).

Define d(θ1,θ2) as

d2(θ1,θ2) =‖F1,0 − F2,0‖2L2(PU1,U2
) + ‖F1,0 − F2,0‖2L2(PU1,V2

)

+ ‖F1,0 − F2,0‖2L2(PV1,U2
) + ‖F1,0 − F2,0‖2L2(PV1,V2 )

+ ‖F1,1 − F2,1‖2L2(PU1
) + ‖F1,1 − F2,1‖2L2(PV1 )

+ ‖F1,2 − F2,2‖2L2(PU2
) + ‖F1,2 − F2,2‖2L2(PV2 )

,

(3.1)

where each of the L2-norms is associated with a specific probability mea-

sure. For example, ‖ · ‖L2(PU1,U2
) is the L2-norm associated with the true

probability measure PU1,U2 of (U1, U2).

Theorem 1. Suppose that C1–C4 hold, pn = O (nκ), and qn = O (nκ),

for pn and qn used in (2.2) and (2.3). Then, there exists a subset Θn ⊂

Ψn for Ψn defined by (2.9), such that for ln(·; data) defined by (2.1), the

maximizer θ̂n of ln(θn; data) over Θn is a consistent estimator of the vector

of underlying distribution functions θ0 = (F0,0, F0,1, F0,2) and

d
(
θ̂n,θ0

)
= OP

(
n−min{(p+r)κ,(1−2κ)/2}) .

Theorem 1 implies that the optimal rate of convergence for θ̂n is n
p+r

2(p+r+1) ,

achieved when κ is chosen as 1
2(p+r+1)

. This rate is known as the optimal rate

for the bivariate nonparametric regression problem (Stone, 1982), though

it is slower than n1/2, even for large p+ r.
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Although the proposed sieve NPMLE does not achieve the convergence

rate of n1/2, it can be shown that the proposed test statistic ρ(θ̂n) as a

functional of the NPMLEs can still be asymptotically normal, with an or-

dinary convergence rate of n1/2, using the Riesz representation theorem for

a Hilbert space (Halmos, 1982). Note that similar ideas were adopted by

Shen (1997) and Chen et al. (2006) for relatively simple estimation prob-

lems. However, our proof for the normality (Theorem 2) is more technically

challenging because of the complicated nature of estimating the joint dis-

tribution function.

Define

W = {w = (w0(·, ·), w1(·), w2(·)) : w being a vector of piecewise continuous

functions with bounded derivatives for
∂2w0(t1, t2)

∂t1∂t2
,
dw1(t1)

dt1
and

dw2(t2)

dt2

}
.

Because continuity implies piecewise continuity, the vector of the target

distribution function θ0 belongs to W. LetX =

{
U1, V1, U2, V2,

(
∆

(j)
1 ,∆

(j)
2

)3
j=1

}
,

a random observation for bivariate interval-censored event times. For the

model parameter θ = {F0(·, ·), F1(·), F2(·)}, the log-likelihood function of θ
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given a single observation X is

l(θ;X) =∆
(1)
1 ∆

(1)
2 logF0(U1, U2) + ∆

(1)
1 ∆

(2)
2 log{F0(U1, V2)− F0(U1, U2)}

+ ∆
(1)
1 ∆

(3)
2 log{F1(U1)− F0(U1, V2)}

+ ∆
(2)
1 ∆

(1)
2 log{F0(V1, U2)− F0(U1, U2)}

+ ∆
(2)
1 ∆

(2)
2 log{F0(V1, V2)− F0(V1, U2)− F0(U1, V2) + F0(U1, U2)}

+ ∆
(2)
1 ∆

(3)
2 log{F1(V1)− F0(V1, V2)− F1(U1) + F0(U1, V2)}

+ ∆
(3)
1 ∆

(1)
2 log{F2(U2)− F0(V1, U2)}

+ ∆
(3)
1 ∆

(2)
2 log{F2(V2)− F2(U2)− F0(V1, V2) + F0(V1, U2)}

+ ∆
(3)
1 ∆

(3)
2 log{1− F2(V2)− F1(V1) + F0(V1, V2)}.

Then, for w, w̃ ∈ W, the first directional derivative along w and the

second directional derivative along w and w̃ of l(θ;X) evaluated at θ0 are,

respectively, given by

dl(θ0;X)

dθ
[w] ≡ dl(θ0 + sw;X)

ds
|s=0 (3.2)

and

d2l(θ0;X)

dθ2
[w][w̃] ≡

d
{
dl(θ0+sw̃;X)

dθ
[w]
}

ds
|s=0 . (3.3)

Note that by the regularity conditions C1–C3 and the construction of

W, for any w ∈ W, there exists a small neighborhood of zero, such that

for each s in this neighborhood, θ0 + sw is also a vector of distribution
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functions formed by a joint distribution function and its two corresponding

marginal distribution functions, and that l(θ0+sw;X) is bounded. Hence,

the directional derivatives (3.2) and (3.3) are both well defined.

Let P be the probability measure of X with the underlying model

parameter θ0. Based on the directional derivative, the Fisher information

inner product for w and w̃ is defined as

〈w, w̃〉 = P

{(
dl(θ0;X)

dθ
[w]

)(
dl(θ0;X)

dθ
[w̃]

)}
,

and the Fisher information norm for w is given by

‖w‖2 = 〈w,w〉. (3.4)

For any w ∈W, we write

dρ(θ0)

dθ
[w] ≡ dρ(θ0 + sw)

ds
|s=0 . (3.5)

Then, it immediately follows that

dρ(θ0)

dθ
[w] = lim

s→0

ρ(θ0 + sw)− ρ(θ0)

s

=

∫ τ1,h

τ1,l

∫ τ2,h

τ2,l

{w0(t1, t2)− F0,1(t1)w2(t2)− w1(t1)F0,2(t2)} dt2dt1.

(3.6)

Theorem 2. Given that C1–C4 hold and p+ r > 3 in C1 and C2,

√
n
{
ρ(θ̂n)− ρ(θ0)

}
→d N

(
0,

∥∥∥∥dρ(θ0)

dθ

∥∥∥∥2
∗,∞

)
,

where
∥∥∥dρ(θ0)dθ

∥∥∥
∗,∞

= supw∈W,‖w‖>0

∣∣∣ dρ(θ0)dθ
[w]

∣∣∣
‖w‖ .
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Based on Theorem 2, we know
√
n{ρ(θ̂n)−ρ(θ0)}∥∥∥ dρ(θ0)dθ

∥∥∥
∗,∞

converges in distribution

to the standard normal distribution. However, in view of (3.6), the direct

estimation of
∥∥∥dρ(θ0)dθ

∥∥∥
∗,∞

is not straightforward. Therefore, the nonpara-

metric bootstrap method is recommended to estimate the standard error

for the test statistic described in Section 2.2.

Next, we investigate the efficiency of the proposed estimator ρ
(
θ̂n

)
.

First, we define the path-wise regular estimator for ρ (θ0) according to the

concept originally proposed by Wong (1992). An estimator Tn for ρ(θ0) is

called path-wise regular if
√
n{Tn − ρ(θ0)} converges in distribution to a

normal distribution, and if for any h > 0 and any w ∈ W with ‖w‖ > 0

and sn → 1, we have

lim sup Prθn,h {Tn < ρ (θn,h)} ≤ lim inf Prθn,−h {Tn < ρ (θn,−h)} ,

where θn,h = θ0 + snh√
n
w and θn,−h = θ0 − snh√

n
w, and Prθn,h and Prθn,−h

denote the probabilities under the probability measures Pθn,h and Pθn,−h ,

respectively.

Note that for each h > 0, both θn,h and θn,−h are well defined vectors

of distribution functions when n is sufficiently large, so both probability

measures are also well defined for a large sample.

Theorem 3. Given that C1–C4 hold and p + r > 3 in C1 and C2, the
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proposed plug-in estimator ρ
(
θ̂n

)
is the optimal path-wise regular estimator

for ρ(θ0). That is, the asymptotic variance for ρ
(
θ̂n

)
reaches the lower

bound for all path-wise regular estimators for ρ(θ0).

Theorem 3 implies that our proposed association test is the most pow-

erful test based on ρ
(
θ̂n

)
among all path-wise regular estimators for ρ(θ0).

4. Computation of the Sieve NPMLE

The proposed sieve NPMLE is restricted to Ψn defined in (2.9), Section 2.1.

For a given set of spline knots, it leads to determining the coefficients of

the spline estimate, with the resulting spline-based sieve estimate θ̂n maxi-

mizing the log likelihood of (2.1) over Ψn. It is, however, still a numerically

daunting task. Note that restricting θn inside Ψn, it is sufficient that the
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spline coefficients for (2.4), (2.5) and (2.6) satisfy

αi,1 = 0 for i = 1, . . . , pn,

α1,j = 0 for j = 2, . . . , qn,

(αi+1,j+1 − αi+1,j)− (αi,j+1 − αi,j) ≥ 0

for i = 1, . . . , pn − 1, j = 1, . . . , qn − 1,

β1 = 0, γ1 = 0,

(βi+1 − βi)− (αi+1,qn − αi,qn) ≥ 0 for i = 1, . . . , pn − 1,

(γj+1 − γj)− (αpn,j+1 − αpn,j) ≥ 0 for j = 1, . . . , qn − 1,

βpn + γqn − αpn,qn ≤ 1.

(4.1)

Therefore, we suggest computing the spline-based sieve NPMLE inside a

subset of Ψn, Ψ′n given by

Ψ′n =

{
θn = (Fn,0, Fn,1, Fn,2) : Fn,0(·, ·) =

pn∑
i=1

qn∑
j=1

αi,jB
(1),l
i (·)B(2),l

j (·),

Fn,1(·) =

pn∑
i=1

βiB
(1),l
i (·), Fn,2(·) =

qn∑
j=1

γjB
(2),l
j (·),

(4.1) holds, knot sequences are as (2.2) and (2.3)} .

Because (4.1) requires a complicated numerical implementation, we

used I-splines instead of B-splines for the computation, following the same

approach as in Wu and Zhang (2012). Let I li denote the I-spline of degree

l associated with the ith knot defined by Ramsay (1988). It is known that
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I li(t) =
∑pn+1

h=i+1B
l+1
h (t). Then, some straightforward algebra yields that

Fn(·, ·), Fn,1(·) and Fn,2(·) given by (2.4), (2.5) and (2.6), respectively, with

constraints (4.1) are equivalent to

Fn(·, ·) =

pn−1∑
i=1

qn−1∑
j=1

µi,jI
(1),l−1
i (·)I(2),l−1j (·), (4.2)

Fn,1(·) =

pn−1∑
i=1

{
qn−1∑
j=1

µi,j + ωi

}
I
(1),l−1
i (·), (4.3)

and

Fn,2(·) =

qn−1∑
j=1

{
pn−1∑
i=1

µi,j + πj

}
I
(2),l−1
j (·), (4.4)

respectively, with constraints

µi,j ≥ 0 for i = 1, · · · , pn − 1, j = 1, · · · , qn − 1,

ωi ≥ 0, i = 1, · · · , pn − 1,

πj ≥ 0, j = 1, · · · , qn − 1,

pn−1∑
i=1

qn−1∑
j=1

µi,j +

pn−1∑
i=1

ωi +

qn−1∑
j=1

πj ≤ 1.

(4.5)
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That is, Ψ′n can be written as

Ψ′n =

{
θn = (Fn,0, Fn,1, Fn,2) : Fn,0(·, ·) =

pn−1∑
i=1

qn−1∑
j=1

µi,jI
(1),l−1
i (·)I(2),l−1j (·),

Fn,1(·) =

pn−1∑
i=1

{
qn−1∑
j=1

µi,j + ωi

}
I
(1),l−1
i (·),

Fn,2(·) =

qn−1∑
j=1

{
pn−1∑
i=1

µi,j + πj

}
I
(2),l−1
j (·),

(4.5) holds, knot sequences are as (2.2) and (2.3)} .

(4.6)

Let µ = {µi,j}i=1,··· ,pn−1,j=1,··· ,qn−1, ω = {ωi}i=1,··· ,pn−1, and π = {πj}j=1,··· ,qn−1.

The log-likelihood (2.1) in the sieved space Ψ′n, ln(θn; data) can be written

as l (µ,ω,π; data) and treated as a function of (µ,ω,π). Then, the sieve

NPMLE can be obtained by finding the maximizer (µ̂, ω̂, π̂) of l (µ,ω,π; data),

subject to the constraints (4.5). The generalized gradient projection method

(Jamshidian, 2004) can be used for this constrained maximization problem.

The detailed algorithm can also be found in Wu and Zhang (2012) and

Zhang et al. (2010).

The knot selection is an important step when implementing the spline-

based sieve estimation. In this work, the spline knot sequence in the

T1 direction was chosen based on the quantile of observation times O =

{(u1,k, v1,k)}nk=1. We selected the number of the interior knots to be [n1/3]

(the closest integer to n1/3), and put interior knots at quantiles of O. The
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same knot sequence selection procedure was applied to the T2 direction.

5. Simulation Studies

We conducted simulations studies for bivariate event-time data generated

from the following Clayton copula model (Clayton, 1978):

F0,0(t1, t2) =
{
F−α0,1 (t1) + F−α0,2 (t2)− 1

}− 1
α ,

in which α indicates the association between T1 and T2, because the as-

sociation measure Kendall′s τ for the Clayton copula is related to α by

Kendall′s τ = α/(α + 2). For the simulation studies, we let the marginal

distributions of both event times follow the exponential distribution with

hazard 0.5, which results in the cumulative distribution function F0,i(t) =

1− exp(−0.5t) (i = 1, 2). We consider four scenarios of correlated bivariate

event times, with α = 0.222, 0.667, 2, and 6 corresponding to Kendall′s τ =

0.1, 0.25, 0.5, and 0.75, in addition to the scenario of uncorrelated bivari-

ate event times. For interval censoring, we let Ui and Vi, for i = 1, 2, all

follow a uniform distribution over interval [0.0201, 4.7698], which yields a

small probability of the event time falling outside this range (Pr(0 < Ti <

0.0201) = Pr(4.7698 < Ti < 5) = 0.01 for i = 1, 2.). We also restricted the

censoring interval satisfying Vi − Ui > 0.05 (i = 1, 2).

We generated interval-censored bivariate event time data for each of
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the five scenarios described above with sample sizes of 100 and 200. For

each data sample, we used cubic I-splines (l = 3) to compute the sieve

NPMLEs, with the interior knots selected as in Section 4, and the boundary

knots chosen as zero and max{O} + 0.5, 0.5 to the right of the largest

observation time. For each scenario, we repeated the experiment 1,000

times to evaluate the estimation performance. For all these simulation

scenarios, the percentages of left-, interval-, and right-censored observations

are roughly 48%, 28%, and 24%, respectively, for both event times T1 and

T2.

We plot the bias of the sieve NPMLE of the joint distribution function

F0,0 for uncorrelated bivariate event times and correlated bivariate event

times with Kendall′s τ = 0.75, with a sample size 200, in Figure 1. It ap-

pears from the plots that the sieve NPMLE of the joint distribution based

on 200 observations had virtually ignorable estimation bias, having maxi-

mum point-wise biases of 0.0074 and 0.0412, respectively. The results for

the other three scenarios (not shown here) are similar, with the maximum

point-wise estimation bias between the two values.

For the association test, we computed the plug-in estimate

ρ(θ̂n) =

∫ 4.0

0.1

∫ 4.0

0.1

{
F̂n,0(t1, t2)− F̂n,1(t1)F̂n,2(t2)

}
dt2dt1,
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the efficient path-wise regular estimator of

ρ(θ0) =

∫ 4.0

0.1

∫ 4.0

0.1

{F0,0(t1, t2)− F0,1(t1)F0,2(t2)} dt2dt1,

by Theorem 3. Table 1 presents the simulation results for the association

test based on the plug-in estimate of ρ(θ0), including the mean of ρ
(
θ̂n

)
,

Monte Carlo standard deviation (MCSD), mean of the estimated standard

errors (BSE) based on 100 bootstrap samples, 95% coverage probability

(CP) with 95% Wald confidence interval, and rejection probability (RP)

for testing the null hypothesis H0: two event times are independent, at a

significance level of 0.05, based on 1, 000 repetitions. The results show that

the finite-sample performance of the proposed test statistic based on the

asymptotic normality theorem established in Theorem 2 is quite satisfac-

tory. The estimation bias is ignorable, the BSE is valid because the mean

of the BSEs is quite close to the MCSD, and the CP is around its nominal

value of 0.95 for all scenarios, even with a sample size of 100. Moreover,

the proposed association test has the right size of 0.05 for the independent

bivariate event time case and decent power in terms of detecting the as-

sociation between the correlated bivariate event times. For the bivariate

event times with Kendall′s τ = 0.25, the test has 86% power in terms

of rejecting H0 with a sample size of 100, and has almost 100% power in

terms of rejecting H0 when Kendall′s τ is 0.5 or larger under this simula-
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Figure 1: The average sieve estimation bias for F(0,0) for sample size 200

with uncorrelated (left panel) and Kendall′s τ = 0.75 (right panel)

tion setting, even with a sample size of 100. We found that CP decreases a

little as Kendall’s τ increases. This is likely because a Kendall’s τ tends to

result in a relatively large finite-sample estimation bias for the joint distri-

bution. With that being said, the empirical power seemingly increases as τ

increases, from the simulation studies for the objective of association test.

These results for empirical power are expected because smaller Kendall’s

τ means a weaker association and a smaller effect size, which gives lower

power for our association test.

Note that the computing time for this spline-based nonparametric anal-

ysis is very manageable, with the major effort spent on the computation

of the sieve NPMLE. Though the numerical algorithm appears to be very

complicated because of the constraints, it took, on average, about 5.3 sec-

onds to complete the computation for data with a sample size of 200 using

a Lenovo ThinkPad with Intel Core I5-5300U CPU. The computing algo-
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Table 1: The results for the simulation studies on the association test for

all scenarios, with sample sizes 100 and 200

Sample Size ρ(θ0) ρ(θ̂n) MCSD BSE CP RP

Scenario 1: Uncorrelated

100 0 0.016 0.239 0.242 0.944 0.056

200 0 0.005 0.168 0.171 0.955 0.045

Scenario 2: Kendall′s τ = 0.10

100 0.209 0.219 0.250 0.240 0.934 0.158

200 0.209 0.203 0.173 0.170 0.950 0.228

Scenario 3: Kendall′s τ = 0.25

100 0.525 0.508 0.243 0.235 0.944 0.570

200 0.525 0.511 0.165 0.166 0.944 0.860

Scenario 4: Kendall′s τ = 0.50

100 1.042 1.015 0.233 0.227 0.934 0.994

200 1.042 1.006 0.158 0.157 0.937 1.000

Scenario 5: Kendall′s τ = 0.75

100 1.506 1.424 0.208 0.208 0.928 1.000

200 1.506 1.460 0.144 0.147 0.930 1.000
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rithm was implemented in R and is available from the first author upon

request. In addition, the test results appear not to be impacted much by

the selection of integral limits. We have tried other integral limits for the

definition of ρ(θ). Although the estimate of ρ(θ̂n) depends on the choice of

the limits, the Wald test statistic seems insensitive to the selection of the

limits, resulting in a very similar rejection probability.

6. Real-data Analysis

HD is an autosomal dominant neurodegenerative disease caused by an ex-

pansion of the trinucleotide cytosine-adenine-guanine (CAG) in the Hunt-

ington gene (Walker, 2007). The Neurobiological Predictors of Huntington’s

Disease (PREDICT-HD) project was a 12-year prospective observational

cohort study from 2002 to 2014 on premanifest-HD individuals for HD pro-

gression with a goal of identifying useful clinical and biological markers

that are predictive of the landmark event, namely, clinical motor diagnosis

of HD (Paulsen et al., 2014). Cognitive impairment as one of the “triad” of

clinical symptoms (motor, cognitive, psychiatric) has often been the study

of interest in HD. Mild cognitive impairment (MCI), as a clinically diag-

nostic entity, has been recognized as a translational phase between normal

aging and dementia, and has become increasingly significant as a study
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endpoint in clinical trials on treating neurodegenerative diseases; see, for

example Petersen (2004), Caviness et al. (2007), and Duff et al. (2010). For

HD, Harrington et al. (2012) identified six cognitive domains: speed and

inhibition, verbal working memory, motor planning, attention and informa-

tion integration, sensory and perceptual, and verbal learning and memory.

The cognitive impairment in verbal working memory or verbal learning

and memory is regarded as amnestic, and the impairment on the other do-

mains is non-amnestic (Duff et al., 2010). We denote the MCI diagnosed

in amnestic and non-amnestic areas as MCI-A and MCI-NA, respectively.

We applied the proposed method to test the association between the ages

of onset for MCI-A and MCI-NA in premanifest-HD individuals using data

from the PREDICT-HD study.

There are 799 premanifest-HD individuals available for ascertaining

cognitive impairment in both the amnestic and the non-amnestic domains

using periodic assessments in a battery of neuropsychological tests in the

PREDICT-HD study. These tests provide bivariate interval-censored obser-

vations of the ages of onset for both MCI subtypes. Table 2 summarizes the

bivariate interval-censored MCI events in both subtypes. It appears that

the non-amnestic MCI was more frequently diagnosed than the amnestic

MCI during the study period, which is consistent with the observation by
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Duff et al. (2010).

Table 2: Summary of interval-censored MCI events in the PREDICT-HD

study

Cognitive Domains Left-Censored Interval-Censored Right-Censored Total

Amnestic 201 98 500 799

Non-Amnestic 365 208 226 799

Figure 2 plots the proposed spline-based sieve NPMLEs of the distribu-

tion functions of the ages of onset, and reports the first quantile, median,

and the third quantile for the ages of onset for both MCI subtypes. As

expected, the non-amnestic MCI can occur much earlier than the amnestic

MCI, with the estimated median onset ages being 39.2 and 58.8, respec-

tively, which explains why MCI-NA was more frequently diagnosed than

MCI-A in the PREDICT-HD study.

We applied the proposed association test to examine the association

between the two MCI subtypes using the estimated functional

ρ(θ̂n) =

∫ 80

20

∫ 80

20

{
F̂n,0(t1, t2)− F̂n,1(t1)F̂n,2(t2)

}
dt2dt1.

The test statistic Tn = ρ(θ̂n)/BSE, with BSE given by 100 bootstrap re-

samples, was 9.26, yielding a p-value < 0.00001. This implies that both

MCI subtypes are strongly correlated. For the estimated functional, the in-
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Figure 2: The spline-based sieve NPMLEs of the joint and marginal distri-

bution functions of the ages of onset for both MCI subtypes

tegral limits were selected according to the age span in the PREDICT-HD

study to ensure that some portion of the censoring time points lie below the

lower integral limit and above the upper integral limit. In general, a small

portion between 1% and 10% will suffice. As observed in the simulation

studies, the test results are quite robust to the choice of integral limits.

The test statistics T ′ns are all around nine when the limits are chosen as

(30,70) and (40,60).
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7. Conclusion

Analyzing bivariate interval-censored data is a challenging problem, both

computationally and theoretically. To the best of our knowledge, the pro-

posed spline-based nonparametric method is the first complete and theoreti-

cally justified approach in the literature without any distributional structure

assumed for bivariate event times. The spline-based sieve NPMLEs for both

joint and marginal distribution functions enjoy estimation consistency and

an optimal rate of convergence in bivariate nonparametric regression. Fur-

thermore, the proposed model-free association test is shown to be powerful

having the ordinary asymptotic normality property. Our simulation stud-

ies show the superior finite-sample performance of the proposed method, as

well as its numerical advantage for such a challenging problem.

Though the proposed association test works very well for the simulation

settings in our numerical experiments, it is worth investigating whether a

weighted test based on the functional

ρw(θ) =

∫ τ1,h

τ1,l

∫ τ2,h

τ2,l

w(t1, t2){F0(t1, t2)− F1(t1)F2(t2)}dt2dt1

could improve the power of the test with the optimal choice of the weight

function w(t1, t2) for a given situation. While testing the association be-

tween the two event times is important in many applications, it is also desir-
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able to be able to evaluate the global association quantitatively. Having the

superior estimation properties in the spline-based sieved NPMLEs and the

asymptotic normality of the functionals of θ̂n = (F̂n,0(·, ·), F̂n,1(·), F̂n,2(·)),

one may consider exploring a direct estimation of the correlation coefficient

τ(T1, T2) =
Cov(T1, T2)√
V ar(T1)V ar(T2)

,

in which both the numerator and the denominator can be expressed as some

smooth functionals of θ = (F0(·, ·), F1(·), F2(·)). However, the asymptotic

properties for such a plug-in functional estimator are not easy to study,

leaving an interesting inference problem for future research. Another area

for assessing the association between bivariate event times is to study the

time-dependent cross ratio. Nan et al. (2006) and Hu et al. (2011) de-

veloped nonparametric procedures to estimate the time-independent cross-

ratio function with bivariate right-censored event-time data.

Supplementary Material

The online Supplementary Material contains the technical details, in-

cluding the lemmas and their proofs, necessary for the main paper.
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