
 

 

 

 

 

 

 

 

 

Statistica Sinica Preprint No: SS-2019-0265 

Title A stable and more efficient doubly robust estimator 

Manuscript ID SS-2019-0265 

URL http://www.stat.sinica.edu.tw/statistica/ 

DOI 10.5705/ss.202019.0265 

Complete List of Authors Min Zhang and  

Baqun Zhang 

Corresponding Author Min Zhang 

E-mail mzhangst@umich.edu 



Statistica Sinica

A stable and more efficient doubly robust estimator

Min Zhang1 and Baqun Zhang2

1University of Michigan, Ann Arbor, and 2 Shanghai University of Finance and Economics

Abstract:

Under the assumption of missing at random, doubly robust (DR) estimators

are consistent when either the propensity score or the outcome model is correctly

specified. However, despite its appealing theoretic properties, it has been show

that the usual augmented inverse probability weighted (IPW) DR estimator may

exhibit unsatisfying behavior. We propose an alternative DR method for mean

estimation. In this method, we do not directly weight outcomes by the inverse

of the estimated propensity scores. Instead we use a nonparametric kernel re-

gression to model the residuals from an outcome regression model as a function

of propensity scores. The proposed method does not suffer from the instabil-

ity of the usual IPW estimator in the event of small estimated propensities. We

show that, asymptotically, the new estimator has the double robustness property.

Moreover, we show that it is guaranteed to be more efficient than the usual aug-

mented IPW DR estimator when the propensity score model is correct, but the

outcome model is incorrect. Our simulation studies show that its finite-sample

performance improves upon that of existing DR estimators.
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1 Introduction

Contending with missing data is a common problem in many settings.

It is accepted that not properly accounting for missing data can lead to

severely biased estimations and invalid inferences. Missing data problems

have been an area of active research [Rosenbaum and Rubin, 1984, Scharf-

stein et al., 1999, Lunceford and Davidian, 2004]. Much of the literature has

focused on the situation where the missingness can be assumed to be miss-

ing at random (MAR); that is, conditional on the observed variables, the

probability of missingness does not depend on the variables that are miss-

ing [Little and Rubin, 2019]. In general, methods for dealing with missing

data when MAR holds fall into three categories: one models the outcome

as a function of covariates, one models the probability of missingness, that

is, the propensity score, as a function of covariates [Rosenbaum and Rubin,

1984, Rosenbaum, 1987], or both [Lunceford and Davidian, 2004, Bang and

Robins, 2005]. These approaches each have their own advantages and dis-

advantages in terms of bias, efficiency, robustness, and numerical stability.

In general, in methods where only the outcome or the propensity score is

modeled, a valid statistical inference depends on the correct specification
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of the corresponding model, and an incorrect model may lead to inconsis-

tent estimations and invalid inferences. In this sense, these methods are

not robust. The so-called doubly robust (DR) methods, where both the

outcomes and the propensities are modeled, lead to consistent estimations

as long as one of the models, but not necessarily both, is correctly specified

[Bang and Robins, 2005], overcoming the issue of nonrobustness to some

degree. In addition, DR methods usually have good efficiency properties

and achieve the semiparametric efficiency bound if the outcome regression

model is correct. DR methods seem to combine the strengths of methods

that model either outcomes or propensities, at least theoretically based on

asymptotic theory, and are very appealing.

DR estimators have received a lot of attention in the literature, and

many different versions have been proposed. In an attempt to demystify

double robustness, Kang and Schafer [2007] reviewed several versions of DR

estimators and compared them to alternative methods for estimating the

population mean when the outcomes are subject to missingness. They found

that, although theoretically appealing, DR estimators may have “disas-

trous” performance when some estimated propensities are small. Kang and

Schafer [2007] was followed by several discussion papers, including Robins

et al. [2007]. Following the work of Kang and Schafer [2007], there has
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been considerable interest in improving the usual DR estimators [Tan, 2006,

2007, Cao et al., 2009, Imai and Ratkovic, 2014, Zubizarreta, 2015], partic-

ularly, for the setting originally designed by Kang and Schafer [2007]. Most

of these efforts have focused on the problem of estimating the population

mean when some responses are missing. The methods of Tan [2006, 2007]

and Cao et al. [2009] focus on modifying the estimation of the outcome

regression model used in the augmentation term. In contrast, the meth-

ods of Imai and Ratkovic [2014] and Zubizarreta [2015] attempt to improve

performance by seeking a better and more stable way of estimating the

weight used in the augmented inverse probability (or propensity) weighted

(IPW) DR estimator. These methods can be viewed as modified versions

of augmented IPW methods along the line of the original DR estimator.

Approaching the problem from a different perspective, we propose an al-

ternative DR method for mean estimation, where the estimated propensity

scores are not used directly for weighting. In contrast to previous meth-

ods, we do not change how the outcome regression model or the propen-

sity score model/weights are estimated. We show that, asymptotically, the

new estimator has the double robustness property, and it exhibits better

efficiency and finite-sample performance than that of existing DR estima-

tors. Interestingly, although the proposed method is not motivated from
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the perspective of an augmented IPW estimator, we show that the estima-

tor has a close connection with the usual augmented IPW estimator. It

has long been noted in the literature that an IPW estimator, including the

usual DR estimators, may perform unsatisfactorily in the event of small esti-

mated propensity scores and huge weights [Kang and Schafer, 2007]. Efforts

have been made to improve the stability of IPW estimators by trimming or

smoothing using Bayesian methods [Elliott and Little, 2000, Elliott, 2008,

Austin and Stuart, 2015], although not in the context of DR estimators. We

show that the proposed estimator can also be viewed as a principled way

to smooth over the inverse of the estimated propensities, therefore reducing

the impact of huge weights.

In addition to the references discussed earlier, there have been numer-

ous studies on DR estimators and IPW methods in general. For example,

Gruber and van der Laan [2010] studied DR estimators using a targeted

maximum likelihood estimation and, Zhou et al. [2019] used a penalized

spline method to achieve double robustness. For censored data, Chen et al.

[2018] used a kernel-based weighting approach to estimate the survival func-

tion of medical cost data subject to censoring. Moreover, efforts have been

made to improve IPW-based methods by better estimating the propen-

sity scores using machine learning methods. For example, Pirracchio et al.
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[2015] used super learner and other machine learning methods to estimate

the propensity scores, improving the robustness to a model misspecification

of the propensity score.

2. Method

2.1 Notation and background

Consider a study with a random sample of n units from an intended pop-

ulation. Ideally, the full data are (Yi, Xi), i = 1, . . . , n, independent and

identically distributed (i.i.d.) across i, where Yi and Xi are the response

and a vector of auxiliary covariates, respectively, for subject i. Suppose the

outcome is subject to missingness. Let Ri be an indicator for observing Yi,

with Ri = 1 if Yi is observed, and Ri = 0 if missing. Then, the actually ob-

served data are (RiYi, Ri, Xi), i.i.d. across i. Interest focuses on estimating

the population mean, E(Y ) ≡ µ. We assume the missingness is MAR, de-

noted by Y⊥⊥R|X; that is, the missingness is independent of the outcomes

given the observed covariates. When we need to make a causal inference on

the treatment effect from the observational data, then even if the outcome

variable Y is observed for all subjects, it can still be cast as a missing data

problem using the framework of counterfactual outcomes. Hereafter, we

only discuss estimating µ, recognizing that the proposed method can be
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2.1 Notation and background7

applied directly to compare the treatment effects for observational data.

Various methods are available to adjust for missingness, as reviewed by

Kang and Schafer [2007]. In general, these methods involve modeling the

outcome or the missingness given covariates, or both. Specifically, the out-

come regression-based method builds a model for the outcome Y using the

covariates X from the observed data, then estimates µ using the average of

the predicted values across all subjects from the fitted model. The consis-

tency of the outcome regression estimator relies on the correct specification

of the model for E(Y |X) = m(X; β). In contrast, another broad class of

methodologies models the probability of the nonmissingness given the co-

variates, that is, P (R = 1|X), referred to as propensity scores. Propensity

scores can be estimated by positing, for example, a logistic regression model

that specifies P (R = 1|X) = exp(XT θ)/{1 + exp(XT θ)} ≡ π(X; θ). After

obtaining the estimated propensity scores, one can weight the contribution

of each observed outcome by the inverse of the estimated propensity score,

referred to as the IPW estimator. In propensity-score based methods, the

consistency of the estimation requires that the model for the propensity

score be correctly specified.

In a DR estimator, both the outcome and the propensity scores are

modeled, and it remains consistent if either one of the models is correctly
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doi:10.5705/ss.202019.0265
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specified Bang and Robins [2005]. Hence, the DR estimator affords protec-

tion against a misspecification of one of the models, a property referred to

as double robustness. The usual augmented IPW DR estimator is given by

n−1

n∑
i=1

{RiYi

π̂i

− Ri − π̂i

π̂i

m(Xi; β̂)
}
, (2.1)

where π̂i = π(Xi; θ̂), and π(Xi; θ) and m(Xi; β) are the specified models

for the propensity and the outcome, respectively. Hereafter, we use π̂i for

brevity, or π(Xi; θ̂) if we would like to emphasize dependence on Xi and θ̂.

The unknown parameters β and θ are usually estimated using the maximum

likelihood (ML) method. The first term in (2.1) is an IPW estimator, with

the inverse of the propensity serving as the weight, and the second part

is an augmentation term. The DR estimator also enjoys good efficiency

properties. It is usually more efficient than IPW estimators [Lunceford and

Davidian, 2004]. Moreover, if m(Xi; β) is correctly specified, it has the

smallest asymptotic variance among all estimators that are consistent and

asymptotically normal when the propensity model is correct; that is, it is

semiparametric efficient.

Despite the appealing theoretical properties based on asymptotics, em-

pirical studies show that the usual DR estimator may exhibit poor perfor-

mance under some situations in practice [Kang and Schafer, 2007]. They

note that the usual DR estimator may be severely biased when both speci-
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2.1 Notation and background9

fied models are close to the truth but are not completely correct, and may

have “disastrous” performance when some of the estimated propensities are

small, even if the propensity score model is correctly specified. Alterna-

tive DR estimators have been developed, and some are directly targeted

at improving the performance of the usual DR estimator. For example,

Kang and Schafer [2007] identified some alternative DR estimators, and

Tan [2006] studied a likelihood estimator that possesses the DR property

and may alleviate some of the problems associated with the usual DR esti-

mator.

As a follow-up work to Kang and Schafer [2007] and Tan [2007], Cao

et al. [2009], abbreviated as CTD below, studied alternative DR estimators

that aim to improve the efficiency and robustness of existing DR estima-

tors. The main idea of the CTD projection method is based on the novel

observation that when the propensity score model is correct, but the out-

come model is incorrect, then the usual DR estimator coupled with the ML

estimate of β does not achieve the minimal asymptotic variance among all

estimators in (2.1) with an augmentation term m(Xi; β
∗) for any β∗. They

then sought to identify an estimator of β that would lead to an estimator

of µ that is both doubly robust and achieves the minimal asymptotic vari-

ance when the propensity score model is correct, but the outcome model is
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incorrect. As a result, the corresponding estimator would be more efficient

than the usual DR estimator when propensity score model is correct but

outcome model is misspecified. They proposed estimating β by solving

n∑
i=1

[Ri

π̂i

1− π̂i

π̂i

{ mβ(Xi; β)

πθ(Xi;θ̂)
1−π̂i

}{
Yi −m(Xi; β)− cT

πθ(Xi; θ̂)

1− π̂i

}]
= 0, (2.2)

where c is a vector that needs to be solved jointly with β , mβ = ∂/∂β{m(X; β)},

and πθ(X; θ) = ∂/∂θ{π(X; θ)}. Suppose the dimensions of β and θ are p

and q, respectively. Then mβ and πθ(X; θ) are column vectors with dimen-

sions p and q, respectively, and both sides of (2.2) are of dimension (p+ q).

Simulation studies using the scenarios designed by Kang and Schafer [2007]

and Tan [2007] demonstrated that this method does not suffer the difficul-

ties of the usual DR estimators, as observed by Kang and Schafer [2007].

Furthermore, it achieves comparable or improved performance relative to

that of existing methods, including the method of Tan [2006], which is ac-

tually closely related to the CTD method, as discussed by Cao et al. [2009].

Nevertheless, these nice properties are again based on large sample the-

ory, which may not necessarily translate into good performance in practice.

Taking a closer look at (2.2), the estimation of β in the CTD method is

intertwined with the estimated propensities π(Xi; θ̂), and huge weights are

given to subjects with small π(Xi; θ̂) (propensities). Therefore, we conjec-
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ture that the good properties of the CTD estimator when the propensity

model is correct or close to correct, but the outcome model is wrong, might

be achieved at the expense of worse performance when the outcome model

is correct in finite samples.

Other efforts have been made to improve DR estimators by improving

the estimation of the weights. Imai and Ratkovic [2014] exploited the dual

characteristics of the propensity score as a conditional probability and a

covariate balancing score, and proposed estimating the propensity scores

using the generalized method-of-moments or the empirical likelihood, which

they referred to as the covariate balancing propensity score (CBPS) method.

Zubizarreta [2015] proposed a method of directly estimating weights by

finding the weights of the minimum variance that balance the empirical

distribution of the observed covariates, up to prespecified levels, referring

to it as the stable balancing weights (SBW) method. Both methods were

applied to the augmented DR estimator and evaluated using the Kang and

Schafer [2007] scenarios by their respective authors.

2.2 Proposed method

In contrast to previous methods, based on the usual augmented IPW frame-

work, we propose an alternative and improved DR estimator from a different
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perspective. In our method, we directly address the issue of sensitivity to

small estimated propensity scores that result from the inverse propensity

score weighting, and our strategy is to not directly inverse weight by the

propensity scores, at least not explicitly. The proposed estimator for µ is

given by

µ̂ = n−1

n∑
i=1

[∑n
j=1 Rj{Yj −m(Xj; β̂)}K

( π̂j−π̂i

hn

)∑n
j=1RjK

( π̂j−π̂i

hn

) +m(Xi; β̂)
]
, (2.3)

where K(·) is a symmetric kernel function in R, hn is a bandwidth, and β̂

is the usual estimator of β in the outcome regression method, which differs

from that used in CTD.

To offer some intuition and motivation for this estimator, we provide a

heuristic argument as to why the proposed estimator is expected to possess

the double-robustness property. The proposed estimator is motivated from

estimating the following quantity:

E
[
E
{
Y −m(X; β)|R = 1, π(X; θ)

}
+m(X; β)

]
. (2.4)

If π(X; θ) is the true model for the propensity score, Rosenbaum and Rubin

(1983) showed that, conditional on the propensity score, missingness is

independent of the confounders and outcomes; that is, R⊥⊥X|π(X; θ0) and

Y⊥⊥R|π(X; θ0), where θ0 is the truth such that P (R = 1|X) = π(X; θ0). It
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then follows that

(2.4) = E
[
E
{
Y −m(X; β)|π(X; θ0)

}
+m(X; β)

]
= E(Y )− E{m(X; β)}+ E{m(X; β)}

= E(Y ) ≡ µ,

where the first equality follows from R⊥⊥X|π(X; θ0) and Y⊥⊥R|π(X; θ0).

The above result holds regardless of whether m(X; β) is the correct model

for Y . This suggests that if the propensity score can be correctly estimated,

then estimating the quantity (2.4) may lead to a valid estimator for µ, even

if the model for the outcome is wrong.

It is also easy to see that

E
{
Y −m(X; β)|R = 1, π(X; θ)

}
= E

[
E
{
Y −m(X; β)|R = 1, X, π(X; θ)

}
|R = 1, π(X; θ)

]
. (2.5)

If m(X; β) is the correct specification of E(Y |X) = E(Y |R = 1, X), then

we have

(2.5) = E
{
m(X; β)−m(X; β)|R = 1, π(X; θ)} = 0,

and as a result, the targeting quantity satisfies

(2.4) = E
{
0 +m(X; β)

}
= E(Y ) ≡ µ.
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Therefore, (2.4) is equal to the target µ if either one of the models is correct

and, if we can estimate (2.4), then this estimator is expected to be doubly

robust. The proposed estimator (2.3) substitutes unknown parameters β

and θ by their estimates, and replaces the outer expectation in (2.4) by the

sample average, and E
{
Y −m(X; β)|R = 1, π(X; θ)

}
by the nonparametric

Nadaraya–Watson kernel estimator (Fan and Gijbels, 1996). Specifically,

the Nadaraya–Watson kernel estimator for E
{
Y −m(X; β)|R = 1, π(X; θ)

}
is
∑n

j=1Rj{Yj−m(Xj; β)}K
(π(Xj ;θ)−π(Xi;θ)

hn

)
/
∑n

j=1RjK
(π(Xj ;θ)−π(Xi;θ)

hn

)
if β

and θ are known. Under standard conditions usually assumed for K(u), in-

cluding
∫
K(u)du = 1,

∫
uK(u)du = 0, hn → 0, and nhn → ∞, it can be

shown that n−1
∑n

i=1
1
hn
K(x−Xi

hn
)

p−→ fX(x) and n−1
∑n

i=1{Yi
1
hn
K(x−Xi

hn
)}

p−→ E(Y |x)fX(x), where fX(x) is the density of X. Therefore, the Nadaraya–Watson

kernel estimator
∑n

i=1{YiK(
x−Xi
hn

)}∑n
i=1 K(

x−Xi
hn

)
estimates E(Y |x) and, similarly, one can

obtain the Nadaraya–Watson kernel estimator for E
{
Y − m(X; β)|R =

1, π(X; θ)
}

detailed above.

In contrast, the usual augmented IPW DR estimator, as well as the

estimators of CTD and some other alternatives, is based on or equivalent

to directly estimating the following quantity instead:

E
[R{Y −m(X; β)}

π(X; θ)
+m(X; β)

]
, (2.6)

because the usual IPW DR estimator in (2.1) can be written equivalently
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as

n−1

n∑
i=1

[Ri{Yi −m(Xi; β̂)}
π(Xi; θ̂)

+m(Xi; β̂)
]
. (2.7)

Comparing the quantity in (2.6) with that in (2.4), the two quantities differ

in their first terms inside the expectation. The first term inside the expec-

tation of (2.6) weights the residual for subjects with observed outcomes by

the inverse of his/her propensity π(X; θ). In an estimation, even though

π(Xi; θ) is bounded away from zero, the estimated π(Xi; θ) can be close

to zero, putting huge weights on those individuals. This leads to numeric

instability of the estimators based on this quantity. The proposed estima-

tor may alleviate this issue, because propensities are not used directly as

weights. Finally, unlike the CTD method, the estimator does not change

the way β is estimated in the outcome regression model and, therefore,

we anticipate that it will not suffer from degraded performance in finite

samples when the outcome model is correctly specified.

Our discussion above focuses on explaining the difference between the

proposed estimator and the various versions of augmented IPW DR esti-

mators; that is, they are motivated from directly estimating (2.4) or (2.7).

However, taking a closer look at the proposed estimator, we also see a con-

nection with the augmented IPW DR estimators. By interchanging the

order of the summation over i and j, the proposed estimator can be written

Statistica Sinica: Preprint 
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equivalently as

µ̂ = n−1

n∑
j=1

[
Rj{Yj −m(Xj; β̂)}

{ n∑
i=1

K
( π̂j−π̂i

hn

)∑n
j=1RjK

( π̂j−π̂i

hn

)}+m(Xj; β̂)
]
.

Comparing this with the usual augmented IPW DR estimator in (2.7), we

see that the only difference between the two estimators is in the weight

for Rj{Yj − m(Xj; β̂)}. Specifically, in the usual IPW DR estimator, the

weight is directly the inverse of the estimated propensity score 1/π(Xj; θ̂).

In contrast, the weight in the proposed estimator is
∑n

i=1

K
(

π̂j−π̂i
hn

)
∑n

j=1 RjK
(

π̂j−π̂i
hn

) ,

which can be shown to converge in probability to 1/E{R|π(X; θ∗)}, where

θ∗ is the limit of θ̂. When π(X; θ) is the correct model for R|X, then θ∗

is equal to the truth, θ0, and E{R|π(X; θ∗)} is equal to π(X; θ0). In this

sense, the proposed estimator resembles an IPW DR estimator, although

the motivation for this estimator is quite different. It can be viewed as

an IPW estimator in which the propensity is being smoothed to achieve

more stability, because the weight for a particular subject now depends

on all estimated propensities and their absolute difference (or distance)

with the propensity score of the subject, instead of depending only on the

propensity for a single subject. It is easier to intuitively see how the stability

is achieved by comparing (2.3) with (2.7). For the usual DR estimator in

(2.7), each Ri{Yi−m(Xi; β̂)} is weighted by 1/π(Xi; θ̂), and if the estimated

propensity is close to zero, then the huge weight on Ri{Yi−m(Xi; β̂)} leads
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2.2 Proposed method17

to unstable estimate of µ. Ignoring the second term on m(Xi; β̂), we can

view this estimator as a summation of many spikes around each observed

Yi − m(Xi; β̂). For the proposed estimator in (2.3), however, for each i,

the first term is a mountain (all observed Yj −m(Xj; β̂), for j = 1, . . . , n,

receive a positive weight) concentrated around the observed Yi −m(Xi; β̂),

and the closer π(Xj; θ̂) becomes to π(Xi; θ̂), the larger the weight on Yj −

m(Xj; β̂) becomes. Visually, ignoring the second term on m(Xi; β̂), the

proposed estimator is a summation of many mountains and, as a result, is

less sensitive to small estimated propensity scores.

As discussed above, one way to intuitively understand the proposed esti-

mator is that it estimates E
{
Y −m(X; β)|R = 1, π(X; θ)

}
in (2.4) using the

nonparametric Nadaraya–Watson kernel estimator. The Nadraya–Watson

kernel estimator is a special case of a local polynomial estimator, with the

order of the polynomial being zero; that is, the local average kernel estima-

tor. It is well known in the kernel regression literature that a local linear

kernel estimator (or high-order local polynomial regression) can reduce the

asymptotic bias, especially at the boundary, relative to that of the local

average estimator. Then, naturally, one may expect that if we instead esti-

mate E
{
Y −m(X; β)|R = 1, π(X; θ)

}
using more refined estimators, say,

the local linear kernel estimator, it may lead to better performance. How-
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2.3 Asymptotic results18

ever, this conjecture is not true. We implemented a similar estimator to

the proposed estimator, but replaced the Nadaraya–Watson kernel estima-

tor with a local linear estimator. Our simulations (not shown) show that

the performance of the version with the local linear estimator is consider-

ably worse across all scenarios, and the performance is very sensitive to the

choice of the bandwidth, in contrast to the proposed estimator. Therefore,

we did not pursue this estimator further.

2.3 Asymptotic results

We show in the Supplementary Material that under some mild regularity

conditions, if the working model for either the outcome or the propensity

score is correctly specified, but not necessarily both, then µ̂ is consistent

for µ, and
√
n(µ̂ − µ) converges in distribution to a normal distribution.

We assume the standard regularity conditions required for convergence of

β̂ and θ̂ under possibly misspecified models [Tsiatis, 2007] and for con-

sistency and asymptotic normality of the nonparametric kernel estimator

[Fan and Gijbels, 1996]. We show that µ̂ is asymptotically linear, and

derive its influence function. Define P and Pn as a probability measure

and an empirical measure, respectively, that is, Pf(X) =
∫
f(x)P (dx) and

Pnf(X) = n−1
∑n

i=1 f(Xi), and we denote Gn = n
1
2 (Pn−P ). When at least
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doi:10.5705/ss.202019.0265



2.3 Asymptotic results19

one of the working models is correctly specified, we have n
1
2 (µ̂− µ)

= Gn

{E[R{Y −m(X; β∗)}|π(X; θ∗)]

E{R|π(X; θ∗)}
+

R{Y −m(X; β∗)}
E{R|π(X; θ∗)}

− RE[R{Y −m(X; β∗)}|π(X; θ∗)]

E2{R|π(X; θ∗)}
+m(X; β∗)− µ

}
+

d

dθ
|θ=θ∗E

[R{Y −m(X; β∗)}
E{R|π(X; θ)}

]
n

1
2 (θ̂ − θ∗)

+
d

dβ
|β=β∗E

[R{Y −m(X; β)}
E{R|π(X; θ∗)}

+m(X; β)
]
n

1
2 (β̂ − β∗) + op(1),

where β∗ and θ∗ are the limiting values of β̂ and θ̂ respectively. Under

suitable regularity conditions and by standard M-estimation theory, θ̂ and

β̂ are asymptotic normal. Therefore, µ̂ is asymptotically normal with mean

zero. Suppose a working logistic regression model and a linear model are

specified for the outcome and the propensity score, respectively. Then,

n
1
2 (β̂ − β∗) = 1√

nE(XiXT
i )

∑n
i=1Xi(Yi − XT

i β
∗) + op(1), and n

1
2 (θ̂ − θ∗) =

1√
nE[XiXT

i π(Xi,θ∗){1−π(Xi,θ∗)}]
∑n

i=1Xi{Ri − expit(XT
i θ

∗)} + op(1). We obtain

the influence function of µ̂ and have
√
n(µ̂ − µ) = Gnh(R,X, Y ; β∗, θ∗) +

op(1), where the influence function

h(R,X, Y ; β∗, θ∗) =
E[R{Y −m(X; β∗)}|π(X; θ∗)]

E{R|π(X; θ∗)}
+

R{Y −m(X; β∗)}
E{R|π(X; θ∗)}

− RE[R{Y −m(X; β∗)}|π(X; θ∗)]

E2{R|π(X; θ∗)}
+m(X; β∗)− µ

+
d

dθ
|θ=θ∗E

[R{Y −m(X; β∗)}
E{R|π(X; θ)}

] X{R− π(X, θ∗)}
E[XXTπ(X, θ∗){1− π(X, θ∗)}]

+
d

dβ
|β=β∗E

[R{Y −m(X; β)}
E{R|π(X; θ∗)}

+m(X; β)
]X(Y −XTβ∗)

E(XXT )
.
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If one or both working models are correctly specified, the influence

function can be further simplified. Specifically, if the working model for

E(Y |R = 1, X) = m(X; β) is correctly specified, the influence function

h(R,X, Y ; β∗, θ∗) =

RY

E{R|π(X; θ∗)}
− R− E{R|π(X; θ∗)}

E{R|π(X; θ∗)}
m(X; β0)− µ

+
d

dβ
|β=β0E

[R{Y −m(X; β)}
E{R|π(X; θ∗)}

+m(X; β)
]X(Y −XTβ0)

{E(XXT )}
.

If the model for P (R = 1|X) = π(X; θ) is correctly specified, the influence

function h(R,X, Y ; β∗, θ∗) =

{ RY

π(X; θ0)
− R− π(X; θ0)

π(X; θ0)

[
E{Y −m(X; β∗)|π(X; θ0)}+m(X; β∗)

]
− µ

}
+

d

dθ
|θ=θ0E

[R{Y −m(X; β∗)}
E{R|π(X; θ)}

] X{R− π(X, θ0)}
E[XXTπ(X, θ0){1− π(X, θ0)}]

.

When both working models are correct, the influence function is

{ RY

π(X; θ0)
− R− π(X; θ0)

π(X; θ0)
m(X; β0)− µ

}
,

where π(X; θ0) = P (R = 1|X), and it is the semiparametric efficient influ-

ence function. Theorems 1 and 2 summarize the results described above.

The variance of µ̂ can be estimated by n−1 times the sample variance of

ĥ(Ri, Xi, Yi; β̂, θ̂), i = 1, . . . , n, where ĥ(Ri, Xi, Yi; β̂, θ̂) is defined as above,

except that we replace all marginal expectations by the sample averages,

and all conditional expectations by the corresponding Nadaraya–Watson
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kernel estimator. For example, we replace E(XXT ), E{Ri|π(Xi; θ
∗)}, and

E[Ri{Yi − m(Xi; β
∗)}|π(Xi; θ

∗)] by n−1
∑n

j=1XjX
T
j ,

∑n
j=1 RjK

(
π̂j−π̂i

hn

)
∑n

j=1 K
(

π̂j−π̂i
hn

) , and
∑n

j=1 Rj{Yj−m(Xj ;β̂)}K
(

π̂j−π̂i
hn

)
∑n

j=1 K
(

π̂j−π̂i
hn

) , respectively.

Theorem 1. When at least one of the working models for the propensity

score or the outcome is correctly specified, then µ̂ is consistent for µ and is

asymptotically normal with an influence function defined above.

Theorem 2. When both working models for the propensity score and the

outcome are correctly specified, then µ̂ attains the semiparametric efficiency

bound.

Asymptotically, the proposed estimator is equivalent to the usual DR

estimator when the outcome regression is correct, regardless of whether the

propensity score model is correct. As Cao et al. [2009] commented, when

the outcome regression model is correct, it will be fruitless to attempt to

further improve efficiency; see Tsiatis and Davidian [2007] for a detailed ex-

planation. Therefore, we focus on the case when the propensity score model

is correct, but the outcome regression model is incorrect when discussing

efficiency. For simplicity, we first assume the propensity score is known and

is not estimated, denoted by π0(X). The asymptotical variance of an esti-

mator is proportional to the variance of its influence function. Following the
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same argument as in Cao et al. [2009, page 726], the asymptotical variance

of the usual DR estimator is proportional to var
{

RY
π0(X)

− R−π0(X)
π0(X)

m(X; β∗)
}

,

which is equal to E
{

1−π0(X)
π0(X)

{Y − m(X; β∗)}2
}
+ var(Y ), and the asymp-

totical variance of the proposed estimator is proportional to

var
{ RY

π0(X)
− R− π0(X)

π0(X)

[
m(X; β∗) + E{Y −m(X; β∗)|π0(X)}

]}
= E

{1− π0(X)

π0(X)

[
Y −m(X; β∗)− E{Y −m(X; β∗)|π0(X)}

]2}
+ var(Y ).

The first term of the above expression is equal to

E
{1− π0(X)

π0(X)
{Y −m(X; β∗)}2

}
+ E

{1− π0(X)

π0(X)
E2{Y −m(X; β∗)|π0(X)}

}
−2E

{1− π0(X)

π0(X)
{Y −m(X; β∗)}E{Y −m(X; β∗)|π0(X)}

}
.

Using E(·) = E[E{·|π0(X)}], the last term is equal to −2E
{

1−π0(X)
π0(X)

E2{Y −

m(X; β∗)|π0(X)}
}
. Therefore, the asymptotic variance of the proposed esti-

mator is proportional to E
{

1−π0(X)
π0(X)

{Y−m(X; β∗)}2
}
+var(Y )−E

{
1−π0(X)
π0(X)

E2{Y−

m(X; β∗)|π0(X)}
}
, which is always less than the variance of the usual

DR estimator when the outcome regression model is incorrect. When the

propensity scores are not known, but the model is correctly specified, then

the influence functions of both the original DR estimator and the proposed

one have an additional term representing the effect of estimating θ. It is

straightforward to check that these two additional terms are equal. Then,

by the same argument as above, we can show that the asymptotic variance
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of the proposed estimator is that of the original DR estimator, minus a

nonnegative term. We summarize the result below.

Theorem 3. When the model for the propensity score is correct, but the

model for the outcome is misspecified, the asymptotic variance of µ̂ is no

greater than the asymptotic variance of the usual augmented IPW-based DR

estimator.

4. Simulation Studies

We conducted simulation studies to evaluate the performance of the pro-

posed method and compare it with that of the usual augmented IPW DR

estimator, the modified DR method (referred to as the CTD method) pro-

posed by Cao et al. [2009], the CBPS method [Imai and Ratkovic, 2014],

and the SBW method [Zubizarreta, 2015]. For comparison, we also included

the usual outcome regression method, that is, the average of the predictions

from the outcome regression model, fitted using the observed data. For the

proposed method, the bandwidth needs to satisfy hn → 0 and nhn → ∞.

To assess how sensitive the method is to different choices of bandwidth,

we implemented it with bandwidth hn = n−1/3, n−1/4, and n−1/5, where n

is the sample size. Bootstraping with 100 bootstrap samples was used to

obtain the standard errors. We chose to use bootstrapping to obtain the
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standard errors for several reasons. For example, some of the comparison

methods (CBPS and SBW) do not provide standard error estimates in the

original works. Furthermore, bootstrapping allows one to easily account

for variability in estimating propensity scores and fitting outcome regres-

sion models, regardless of the methods used to fit the models. The latter

point is especially important, because flexible nonparametric and machine

learning methods are becoming popular in practice for modeling propensity

scores and outcomes; in this case implementing the usual standard error

estimates by directly estimating the asymptotic variance becomes rather

complicated.

In the first set of simulations, we duplicated the scenario originally

designed by Kang and Schafer [2007], which has become a standard sce-

nario under which to compare DR estimators [Cao et al., 2009, Zubizarreta,

2015, Imai and Ratkovic, 2014]. Under this scenario, Kang and Schafer

[2007] demonstrated that when both the outcome regression model and the

propensity score model are incorrect, but nearly perfect in the sense that

they look trustworthy based on model diagnostics, the usual DR estimator

may be severely biased and unstable. In this scenario, Z = (Z1, . . . , Z4)
T

are generated from independent standard normal distributions, and X =

(X1, . . . , X4)
T are defined as X1 = exp(Z1/2), X2 = Z2/{1 + exp(Z1)} +
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10, X3 = (Z1Z3/25 + 0.6)3, X4 = (Z2 + Z4 + 20)2. That is, Z and X

can be expressed in terms of each other. Outcomes are generated as Y =

210+27.4Z1+13.7Z2+13.7Z3+13.7Z4+ε, where ε is standard normal, and

the nonmissingness indicator R is generated according to the true propen-

sity score P (R = 1|Z) = expit(−Z1 + 0.5Z2 − 0.25Z3 − 0.1Z4). In real

data, the covariates seen by data analysts are X. Naturally, a data ana-

lyst that only sees X would fit a linear regression model for Y given X,

and a logistic regression model for R given X. As illustrated by Kang and

Schafer (2007), although misspecified, these models would appear trustwor-

thy and are nearly as correct. Specifically, the misspecified outcome model

is m(X; β) = βT (1, X), and the misspecified propensity score model is

π(X; θ) = expit{θT (1, X)}. As in the previous work, we considered sample

sizes n = 200 and n = 1000.

The results for the first set of simulations are shown in Tables 1 and 2.

Under this scenario, when both working models are strictly speaking incor-

rect, but are nearly perfect, the usual DR estimator is extremely unstable

and has huge variability, as demonstrated by the Monte Carlo standard

deviation and the root mean squared error. None of the other DR esti-

mators exhibit this type of “disastrous” behavior, with the CTD estimator

performing best. The proposed estimators perform comparably with other
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improved DR estimators, and the performance is not sensitive to different

choices of bandwidth. Note that when the propensity score model is cor-

rect, but the outcome model is incorrect, the SBW method has relatively

larger bias than that of other methods and lower coverage probability. This

is not surprising, because this method controls for bias under the condition

that the covariates are related to the outcome through a generalized addi-

tive form, and this condition is not satisfied under this scenario. For the

CTD projection method, when n = 200 and when both the outcome regres-

sion model and the propensity score model are misspecified, the bootstrap

method cannot reliably estimate the uncertainty, and the average standard

error is much larger than the Monte Carlo standard deviation. This appears

to be a finite-sample problem, and when n = 1000, the bootstrap standard

error performs as expected. This phenomenon was also observed for the

second set of simulations discussed below.

The Kang and Schafer scenario was specifically constructed such that

the usual DR estimator may have “disastrous” performance. Thus, the

results on this scenario may not generalize to other scenarios. For example,

the outcome regression model, when incorrect, is only mildly misspecified

and, as a result, the outcome regression method only results in slight bias.

To supplement the above simulation study, we compared various methods
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under a second set of simulations, in which the model misspecifications are

due to ignoring some important variables. Four covariates were generated,

where X1 was generated as uniform (0, 1), X2 as standard normal, X3

as Bernoulli (0.3), and X4 as lognormal (0,1). Outcomes were generated

according to Y = 2.5+X1/2+X2+X3+X4+ ε, where ε follows a standard

normal distribution, and R was generated with propensity score expit(−1−

X1/2+X2−X3+X4). The proportion of missingness is about 60%. In the

methods considered, the misspecified outcome regression and the propensity

score models are fitted ignoring X4.

The results for the second scenario are shown in Tables 3 and 4. Both

the usual DR estimator and the proposed estimator are consistent when

at least one working model is correctly specified, offering more protection

against model misspefication than the outcome regression method. When

both working models are incorrect, the usual and proposed DR estimators

are all biased, but do not show extreme variability, as observed in the first

scenario. Except for the situation in which the propensity score model is

correct, but the outcome regression model is incorrect, the proposed method

performs very similarly to the usual DR method. Consistent with the results

summarized in Theorem 3, when the propensity score model is correct, but

the outcome regression model is incorrect, the proposed method is more
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efficient than the usual DR estimator. The the relative efficiency (the ratio

of the mean squared error) of the proposed method relative to that of the

usual DR estimator is 1.50 and 1.79 for n = 200 and n = 1000, respectively.

Again, the performance is not sensitive to different choices of bandwidth.

The CTD method exhibits unexpected results. When the sample size

is small (n=200), compared with other methods, it has considerably larger

variability, especially when the model for the outcome regression is correct,

regardless of whether the propensity score model is correct or not. More-

over, the bootstrap method cannot estimate the standard error well for

the CTD method, and the average of the standard error estimates is sig-

nificantly greater than the corresponding Monte Carlo standard deviation.

Some of the surprising results are due to the finite-sample performance.

When the sample size is 1000, we see that the bootstrap standard error

estimates for the projection method work well, and when the outcome re-

gression model is correct, the loss of efficiency of the CTD method relative

to that of the usual DR estimator is less. In addition, consistent with the

asymptotic results, when n=1000, if the propensity score is correct, but

the outcome model is incorrect, the projection estimator is more efficient

than the usual estimator, butis still slightly less efficient than the proposed

method. Note that weighting the estimating equation for the outcome re-
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Table 1: Simulation setting 1 (n=200). BIAS: average Monte Carlo bias;

MCSD: Monte Carlo standard deviation; RMSE: Root mean squared error;

SE: average of standard error; CP: coverage probability of 95% confidence

interval. Correct or incorrect refer to corresponding specified model (OR:

outcome regression; PS: propensity score). Proposed a, b, and c correspond

to bandwidths of n−1/3, n−1/4, and n−1/5, respectively.

METHODS BIAS MCSD RMSE SE CP BIAS MCSD RMSE SE CP

OR correct, PS correct OR correct, PS incorrect

OR -0.054 2.59 2.59 2.55 0.95 -0.054 2.59 2.59 2.55 0.95

Usual DR -0.055 2.59 2.59 2.55 0.95 -0.067 2.58 2.58 2.62 0.95

CTD pj -0.049 2.60 2.60 2.64 0.95 -0.053 2.59 2.58 2.57 0.95

CBPS -0.055 2.59 2.59 2.54 0.94 -0.056 2.59 2.59 2.55 0.94

SBW -0.054 2.59 2.59 2.54 0.95 -0.055 2.59 2.59 2.55 0.95

Proposed a -0.055 2.59 2.59 2.56 0.95 -0.055 2.59 2.59 2.56 0.95

Proposed b -0.055 2.59 2.59 2.56 0.95 -0.056 2.59 2.59 2.56 0.95

Proposed c -0.055 2.59 2.59 2.56 0.95 -0.056 2.59 2.59 2.56 0.95

OR incorrect, PS correct OR incorrect, PS incorrect

OR -0.65 3.42 3.48 3.28 0.92 -0.65 3.42 3.48 3.28 0.92

Usual DR 0.27 3.53 3.54 3.48 0.95 -5.69 19.78 20.57 14.92 0.94

CTD pj -0.028 2.66 2.65 2.78 0.95 -0.85 5.01 5.09 10.71 0.996

CBPS -0.26 3.29 3.30 3.18 0.94 -2.19 3.58 4.20 3.39 0.88

SBW 1.58 3.10 3.48 3.01 0.91 -0.74 3.39 3.47 3.23 0.92

Proposed a 0.49 3.38 3.41 3.32 0.95 -1.79 3.33 3.78 3.26 0.90

Proposed b 0.56 3.29 3.33 3.23 0.94 -1.68 3.30 3.70 3.22 0.90

Proposed c 0.63 3.23 3.28 3.18 0.95 -1.56 3.28 3.63 3.20 0.90
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Table 2: Simulation setting 1 (n=1000). Entries are as in Table 1.

METHODS BIAS MCSD RMSE SE CP BIAS MCSD RMSE SE CP

OR correct, PS correct OR correct, PS incorrect

OR 0.04 1.15 1.15 1.14 0.95 0.04 1.15 1.15 1.14 0.95

Usual DR 0.04 1.15 1.15 1.14 0.95 0.056 1.41 1.41 1.29 0.95

CTD pj 0.04 1.15 1.15 1.15 0.95 0.041 1.15 1.15 1.15 0.95

CBPS 0.04 1.15 1.15 1.14 0.95 0.04 1.15 1.15 0.14 0.95

SBW 0.04 1.15 1.15 1.14 0.95 0.04 1.15 1.15 1.14 0.95

Proposed a 0.042 1.15 1.15 1.14 0.95 0.04 1.15 1.15 1.14 0.95

Proposed b 0.042 1.15 1.15 1.14 0.95 0.04 1.15 1.15 1.14 0.95

Proposed c 0.04 1.15 1.15 1.14 0.95 0.04 1.15 1.15 1.14 0.95

OR incorrect, PS correct OR incorrect, PS incorrect

OR -0.77 1.50 1.68 1.48 0.91 -0.77 1.50 1.68 1.48 0.91

Usual DR 0.11 1.65 1.65 1.55 0.95 -17.92 166.73 167.6 27.04 0.69

CTD pj 0.08 1.15 1.15 1.16 0.95 -1.36 1.28 1.87 1.35 0.83

CBPS 0.14 1.53 1.54 1.46 0.94 -3.61 2.26 4.25 1.74 0.45

SBW 1.58 1.36 2.09 1.34 0.78 -0.80 1.48 1.69 1.47 0.91

Proposed a 0.27 1.50 1.53 1.49 0.94 -2.13 1.42 2.57 1.39 0.66

Proposed b 0.35 1.44 1.48 1.44 0.94 -2.03 1.41 2.47 1.38 0.68

Proposed c 0.45 1.40 1.47 1.41 0.94 -1.89 1.40 2.35 1.38 0.71
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Table 3: Simulation setting 2 (n=200). Entries are as in Table 1.

METHODS BIAS MCSD RMSE SE CP BIAS MCSD RMSE SE CP

OR correct, PS correct OR correct, PS incorrect

OR 0.003 0.18 0.18 0.18 0.94 0.003 0.18 0.18 0.18 0.94

Usual DR 0.003 0.20 0.20 0.20 0.94 0.003 0.19 0.19 0.18 0.94

CTD pj 0.011 0.50 0.50 1.3 0.997 0.006 0.28 0.28 0.45 0.99

CBPS 0.003 0.19 0.19 0.19 0.94 0.003 0.18 0.18 0.18 0.94

SBW 0.003 0.18 0.18 0.18 0.93 0.003 0.18 0.18 0.18 0.94

Proposed a 0.002 0.20 0.20 0.19 0.93 0.003 0.19 0.18 0.18 0.95

Proposed b 0.002 0.19 0.19 0.19 0.93 0.003 0.18 0.18 0.18 0.94

Proposed c 0.002 0.19 0.19 0.18 0.93 0.002 0.18 0.18 0.18 0.94

OR incorrect, PS correct OR incorrect, PS incorrect

OR 0.54 0.23 0.58 0.22 0.33 0.54 0.23 0.58 0.22 0.33

Usual DR 0.023 0.24 0.24 0.27 0.94 0.56 0.25 0.61 0.24 0.36

CTD pj 0.032 0.27 0.27 0.63 0.98 0.56 0.40 0.69 0.69 0.89

CBPS 0.10 0.21 0.23 0.22 0.92 0.55 0.24 0.60 0.24 0.36

SBW 0.004 0.18 0.18 0.18 0.94 0.54 0.23 0.59 0.22 0.35

Proposed a 0.029 0.20 0.20 0.20 0.94 0.55 0.25 0.60 0.24 0.36

Proposed b 0.038 0.20 0.20 0.19 0.94 0.55 0.24 0.60 0.23 0.35

Proposed c 0.048 0.19 0.20 0.19 0.94 0.55 0.24 0.60 0.23 0.33
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Table 4: Simulation setting 2 (n=1000). Entries are as in Table 1.

METHODS BIAS MCSD RMSE SE CP BIAS MCSD RMSE SE CP

OR correct, PS correct OR correct, PS incorrect

OR -0.002 0.080 0.080 0.078 0.95 -0.002 0.080 0.080 0.078 0.95

Usual DR -0.001 0.09 0.09 0.086 0.93 -0.001 0.083 0.082 0.080 0.94

CTD pj 0.0002 0.10 0.10 0.11 0.96 -0.001 0.10 0.10 0.097 0.93

CBPS -0.001 0.087 0.087 0.083 0.94 -0.001 0.082 0.082 0.079 0.95

SBW -0.002 0.080 0.080 0.078 0.94 -0.002 0.080 0.080 0.078 0.95

Proposed a -0.002 0.087 0.087 0.082 0.94 -0.001 0.083 0.083 0.080 0.94

Proposed b -0.002 0.085 0.085 0.081 0.94 -0.001 0.082 0.081 0.079 0.94

Proposed c -0.002 0.084 0.084 0.081 0.94 -0.001 0.081 0.081 0.079 0.94

OR incorrect, PS correct OR incorrect, PS incorrect

OR 0.54 0.10 0.55 0.10 0 0.54 0.10 0.55 0.10 0

Usual DR -0.0004 0.12 0.12 0.11 0.93 0.56 0.11 0.75 0.11 0.00

CTD pj 0.009 0.096 0.096 0.095 0.94 0.56 0.12 0.57 0.12 0.002

CBPS 0.036 0.103 0.109 0.095 0.91 0.56 0.11 0.57 0.10 0.001

SBW -0.0003 0.080 0.080 0.078 0.95 0.55 0.10 0.55 0.10 0.001

Proposed a 0.006 0.088 0.089 0.086 0.94 0.56 0.11 0.57 0.11 0

Proposed b 0.013 0.086 0.087 0.084 0.94 0.56 0.11 0.57 0.10 0

Proposed c 0.021 0.085 0.088 0.083 0.93 0.56 0.11 0.57 0.10 0
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gression model using the inverse of the square of the propensity score, as

shown in (2.2), may lead to quite unstable estimates of the parameters in

the outcome regression model, which may explain the unsatisfactory finite-

sample performance of the CTD method. Unlike scenario 1, where the SBW

method shows relatively larger bias, the SBW method seems to have the

best performance under scenario 2. This is expected from proposition 4.1

in (Zubizarreta, 2015), because in scenario 2, the covariates have an addi-

tive effect on the outcomes. Compared with other methods, CBPS exhibits

relatively larger bias and a lower coverage probability when the propensity

score model is correct, but the outcome regression model is incorrect. Over-

all, the proposed methods have comparable or superior performance in all

cases.

Finally, we also implemented the usual augmented IPW DR estimator

after trimming the estimated propensity score at and smaller than 0.1. The

results and a discussion are given in the Supplementary Material.

5. Discussion

Our work follows those of Tan [2006, 2007], Robins et al. [2007], Cao et al.

[2009], Imai and Ratkovic [2014], Zubizarreta [2015], and others, in an effort

to improve the original DR estimators so that they do not exhibit the
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“disastrous” behaviors observed by Kang and Schafer [2007], but do enjoy

the appealing double-robustness property.

As is clear from (4), the proposed estimator is motivated from the

usual outcome regression approach. However, instead of averaging the pre-

dictors from the fitted outcome regression model alone, we further model

the expectation of the residuals from the outcome regression model, con-

ditional on the propensity scores, and take an average of the predictions

from the residual model. In contrast to the usual augmented IPW DR es-

timator, where the inverses of the propensity scores are used as weights,

in the proposed approach, the propensity score is viewed as a predictor

and is conditioned on. Because of this, the proposed method does not

suffer from the instability problem in the presence of some very small es-

timated propensity scores. In terms of stability and bias, our simulation

studies show that the proposed estimator behaves similarly to the outcome

regression method, an estimator that is typically thought to be stable. In

the Kang and Schafer [2007] setting, the usual DR estimator exhibits ex-

treme variability when both working models are only mildly misspecified.

However, unlike the outcome regression method, the proposed estimator

enjoys the double-robustness property, as shown by asymptotic theory and

simulation studies. Interestingly, although the proposed estimator is not
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developed within the framework of augmented inverse propensity weighted

estimators, asymptotically, it has an influence function that belongs to the

class of augmented IPW estimators. To the best of our knowledge, this

is the first time such a connection has been established explicitly. Be-

cause of the connection with augmented IPW estimators, an alternative

way to understand the proposed method is to view it as an augmented

IPW estimator with smoothed weights. Although this perspective offers

an intuitive way to understand the proposed estimator, such a connection

is not obvious, and it would be difficult to directly come up with ways to

smooth over weights. Quite interestingly, although the proposed estimator

is not developed from the the perspective of improving efficiency, it enjoys

a nice property similar to that of Cao et al. [2009]. Specifically, we show

by asymptotic theory and simulations that the proposed estimator is more

efficient than the usual DR estimator when the outcome regression model is

incorrect, but the propensity score model is correct, and the improvement

in efficiency can be considerable, as demonstrated by our simulations. In

terms of performance in finite samples, our simulation studies show that,

overall, it has quite nice and stable performance under different sample

sizes and across scenarios, whereas other existing modified DR estimators

may exhibit relatively large bias and/or less satisfactory finite-sample per-
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formance. Finally, we comment that the proposed method is very easy

to implement; example code for implementing the method is available at

https://github.com/MinZhangUMBiostat/DoubleRobust.

Supplementary Material

In the online Supplementary Material, we provide proofs for the asymp-

totic results described in Section 2.3, and briefly summarize the simulation

results using the trimming method.
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