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Abstract: We propose a regularized projection score method for estimating the treatment effects in

a quantile regression in the presence of high-dimensional confounding covariates. We show that the

proposed estimator of the treatment effects is consistent and asymptotically normal, with a root-n rate

of convergence. We also provide an efficient algorithm for the proposed estimator. This algorithm

can be implemented easily using existing software. Furthermore, we propose and validate a refitted

wild bootstrapping approach for variance estimation. This enables us to construct confidence intervals

for the treatment effects in high-dimensional settings. Simulation studies are carried out to evaluate the

finite-sample performance of the proposed estimator. A GDP growth rate data set is used to demonstrate

an application of the method.
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1. Introduction

A quantile regression (Koenker and Bassett 1978) is an important tool for analyzing the

relationship between a response variable and a set of covariates. It has a wide range of

applications in the analysis of nonGaussian data, which arise frequently in applied eco-

nomic research. Unlike a least squares regression, which models the conditional mean of

a response given the covariates, a quantile regression focuses on the conditional quantiles.

Thus, it is able to describe the conditional distribution of the response, given the covariates.

There is an extensive body of literature on the theoretical properties and computational al-

gorithms for a quantile regression when the number of regressors is fixed or increases at

a lower rate than the sample size; see, for example, Koenker (2005) and the references

therein. In this study, we estimate low-dimensional treatment effects in the presence of a

high-dimensional nuisance parameter vector.

There is now a substantial body of work on penalized methods for variable selection

in high-dimensional models. Several important penalty functions have been introduced,

including the least absolute shrinkage and selection operator (Lasso) or `1 penalty (Tib-

shirani 1996), smoothly clipped absolute deviation (SCAD) penalty (Fan and Li 2001),

and minimax concave penalty (MCP) (Zhang 2010). A common feature of these penalties

is that they are capable of producing exact zero solutions, which automatically leads to

variable selection. The penalized methods also have many attractive theoretical proper-

ties related to selection, estimation, and prediction in a sparse setting (p � n), including
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the asymptotic oracle property under certain conditions. However, these methods provide

no computable error assessment of the selection results in finite-sample situations. The

literature on this topic has grown too vast to be adequately summarized here. Therefore,

for results on convex selection, see Bühlmann and van de Geer (2011), and the references

therein, and for concave selection, see Fan and Li (2001), Zhang (2010), and Zhang and

Zhang (2012).

Recently, many authors have studied the problem of statistical inference for low-

dimensional parameters in high-dimensional regression models. Zhang and Zhang (2014)

proposed a semiparametric efficient score approach for constructing confidence intervals

of low-dimensional coefficients in high-dimensional linear models. Van de Geer et al.

(2014) considered the same problem using an approach that inverts the optimization con-

ditions for the Lasso solution, extending the work of Zhang and Zhang (2014) to include

generalized linear models and problems with convex loss functions. Javanmard and Mon-

tanari (2014) considered the problem of hypothesis testing in a high-dimensional regres-

sion using a method similar to that of Zhang and Zhang (2014). Fang et al. (2016) stud-

ied hypothesis testing and confidence intervals in high-dimensional proportional hazards

models. Neykov et al. (2018) proposed a unified theory of confidence regions and testing

for high-dimensional estimating equations. Ning and Liu (2017) proposed a decorrelated

score approach for hypothesis tests and confidence regions in sparse high-dimensional

models. Zhu and Bradic (2018) proposed an approach for testing linear hypotheses in
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high-dimensional linear models without assumptions on the model sparsity or the loading

vector representing the hypothesis. For other related works that use the regularized score

method, refer to Belloni et al. (2013), Dezeure et al. (2015), Lockhart et al. (2014), Mein-

shausen (2014), Meinshausen et al. (2009), Ning and Liu (2017), Stucky and van de Geer

(2018), and Yang (2017).

Belloni et al. (2012) proposed a two-stage selection procedure with post-double se-

lection to estimate a single treatment effect parameter in a high-dimensional linear model.

Tibshirani et al. (2016) considered the statistical inference for a forward stepwise and least

angle regression in high-dimensional models after selection. Recently, various researchers

have considered post-selection in the presence of high-dimensional parameters, including

Berk et al. (2009, 2013), Lee et al. (2016), Lee and Taylor (2014), Rügamer and Greven

(2018), and Tibshirani et al. (2016).

Belloni and Chernozhukov (2011) studied the `1-penalized quantile regression under

a high-dimensional setting and established a near-oracle property of the estimator. Wang

et al. (2012) showed that the oracle property still holds when SCAD and MCP penalties are

used. Zhao et al. (2014) provided a globally penalized framework for high-dimensional

quantile regression models by employing adaptive `1 penalties; this approach achieved

consistent shrinkage of the regression quantile estimates across a continuous range of

quantile levels. Belloni et al. (2018) considered the robust inference of the regression

coefficients of high-dimensional quantile regression models using an optimal instrument
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that is a residual from a density-weighted projection of the regressor of interest on other

regressors. Zheng et al. (2015) proposed a robust and uniformly honest inference in a

high-dimensional quantile regression using a debiased composite quantile estimator.

Inspired by the work of Zhang and Zhang (2014) and Ning and Liu (2017), we con-

sider the estimation of a preconceived low-dimensional parameter based on a projected

score approach, and study its statistical inference under linear quantile regression models.

In particular, our proposed approach is similar to the decorrelated score method of Ning

and Liu (2017). In essence, these approaches extend the efficient score method for deal-

ing with infinite-dimensional nuisance parameters in semiparametric models (Bickel et al.

1998) to high-dimensional settings. However, the decorrelated score method assumes a

smooth loss function with second derivatives, which is not satisfied in the context of a

quantile regression.

The rest of the paper is organized as follows. Section 2 describes the estimation

method based on regularized projection scores. The asymptotic properties of the esti-

mates of the preconceived parameters are obtained in Section 3. We then propose a re-

sampling approach based on cross-validation and confirm its validity in Section 4. An

efficient computation algorithm is given in Section 5. Based on this algorithm, we propose

a one-step estimator in Section 6. Numerical studies are used to assess the finite-sample

performance of the proposed method in Section 7. All proofs are given in the online Sup-

plementary Material. An R package implementing the proposed method is available at
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https://github.com/xliusufe/pqr.

2. Regularized Projection Score Estimation

Suppose we have observations {(yi, xi, zi), i = 1, . . . , n} that are independent and iden-

tically distributed as (y, x, z), where y ∈ IR is a response variable, x ∈ IRd is a d-

dimensional vector containing the covariates of main interest, and z ∈ IRq is a q-dimensional

covariate with possibly confounding variables. Consider the linear quantile regression

model

Qτ (yi|xi, zi) = x′iβ0 + z′iη0, (2.1)

where Qτ (·|xi, zi) refers to the conditional τ th quantile, given the covariate (xi, zi). Here,

for notional simplicity, we assume that an intercept term is included in β0. We would like

to estimate the effect of the covariate vector x, represented by β0, on the response variable,

while taking into account the effect of the covariate z, represented by η0. We are interested

in the case where d is small (fixed), but q is large, and may be far larger than the sample

size n.

In the standard linear quantile regression, the parameters of model (2.1) are estimated

by minimizing

Mn(β, η) = n−1

n∑
i=1

ρτ (yi − x′iβ − z′iη)

with respect to β and η, where ρτ (u) = u{τ − I(u < 0)}. This approach works well in

low-dimensional cases where both d and q are fixed and smaller than n. However, in the
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case where q � n, it no longer works, owing to the singularity of the design matrix. There

has been much work on penalized methods for estimating the parameter vector (β0, η0).

An important method is the Lasso estimator (Tibshirani 1996),

(β̂lasso, η̂lasso) = argmin
β,η

Mn(β, η) + λ(‖β‖1 + ‖η‖1).

This provides a point estimate of (β0, η0), denoted by (β̂, η̂). Owing to the shrinkage

effect of the `1 penalty, β̂lasso does not converge at the usual root-n rate, and its asymptotic

distributional property is unknown. The penalized estimate β̂lasso cannot be used directly

to make statistical inferences about β0, the main parameter of interest.

To reduce the shrinkage effect of the penalization of the estimation of β0, we consider

the semi-penalized estimator,

(β̃, η̃) = argmin
β,η

1

n

n∑
i=1

ρτ (yi − x′iβ − z′iη) + λ1‖η‖1. (2.2)

Note that here β is not penalized. Intuitively, the estimator β̃ should be less biased than

β̂lasso, because it is not subject to penalization. However, because xi and zi are correlated,

the bias in η̃ will still lead to bias in β̃. This can be observed more clearly by considering

the score equations corresponding to (2.2):

1

n

n∑
i=1

ψτ (yi − x′iβ − z′iη)xi =0, (2.3)

1

n

n∑
i=1

ψτ (yi − x′iβ − z′iη)zi =λ1∂(‖η‖1), (2.4)
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where ψτ (u) = τ − I(u < 0) is the directional derivative of ρτ (u), and ∂(‖η‖1) =

(∂(|η1|), · · · , ∂(|ηq|))′. Here, ∂(|ηj|) is the subdifferential of |ηj|; that is, ∂(|ηj|) = 1 if

ηj > 0, ∂(|ηj|) = −1 if ηj < 0, and ∂(|ηj|) ∈ [−1, 1] if ηj = 0. The estimator (β̃′, η̃′)′

approximately satisfies (2.3) and (2.4). Therefore, β̃ is a solution to

1

n

n∑
i=1

ψτ (yi − x′iβ − z′iη̃)xi = 0.

However, owing to the bias in the estimator η̃ and the correlation between xi and zi, the

estimator β̃ does not have a root-n rate of convergence.

To obtain an estimator of β0 with a root-n rate of convergence and an asymptotically

normal distribution, we propose a regularized projection score approach. To describe this

approach, we first consider the projection score function for β based on the loss function

ρτ at the population level. The projection score is defined as the residual of the projection

of the score function ψτ (y − x′β − z′η)x for β onto the closure of the linear span of the

score function ψτ (y−x′β−z′η)z for the nuisance parameter η in the Hilbert space L2(P ),

where P is the distribution of (y, x, z) under model (2.1). That is, we need to find a matrix

H0 ∈ Rd×q that minimizes

E‖ψτ (y − x′β0 − z′η0)x− ψτ (y − x′β0 − z′η0)Hz‖2 = E{ψ2
τ (ε)‖x−Hz‖2} (2.5)

with respect to H ∈ Rd×q, where ε = y − x′β0 − z′η0. Here, ‖ · ‖ denotes the Euclidean

norm. Then, the projection score function for β in the direction H0 is

ψτ (y − x′β − z′η)x− ψτ (y − x′β − z′η)H0z = ψτ (y − x′β − z′η)(x−H0z). (2.6)
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In general, (2.5) is a weighted least squares function. Under the quantile regression

model given in (2.1), it can be simplified considerably. By the law of iterated expectations,

we have

E{ψ2
τ (ε)‖x−Hz‖2} =E{E[ψ2

τ (ε)|x, z]‖x−Hz‖2}

=τ(1− τ)E‖x−Hz‖2,

(2.7)

where the last equation follows from (2.1). Thus, minimizing (2.5) is equivalent to mini-

mizing (2.7). Because τ is independent of H , we have

H0 = argmin
H∈Rd×q

E‖x−Hz‖2.

This is a least squares problem that can be solved explicitly. In particular, H0 satisfies the

normal equation E{(x−Hz)z′} = 0, which yields

H0 = E(xz′){E(zz′)}−1.

However, the sample version of E(zz′), which is given by n−1
∑n

i=1 ziz
′
i, is not invert-

ible if q > n. Therefore, we cannot estimate H0 by simply using the sample versions of

E(xz′) and E(zz′). We need to regularize the projection calculation. We can use either

the standard Lasso or the group Lasso for the multi-response linear regression (Obozinski

et al. 2011; Wang et al. 2013) estimation of the matrix H0. For any H ∈ Rd×q, denote its

jth column by hj . We estimate H0 by

H̃ = argmin
H∈Rd×q

1

2n

n∑
i=1

‖xi −Hzi‖2 + λ2

d∑
j=1

q∑
k=1

|hjk| (2.8)
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or

H̃ = argmin
H∈Rd×q

1

2n

n∑
i=1

‖xi −Hzi‖2 + λ2

q∑
j=1

‖hj‖. (2.9)

Note that Zhang and Zhang (2014) and van de Geer et al. (2014) use the standard Lasso to

calculate the approximate projection.

By the KKT conditions, we obtain∥∥∥∥∥ 1

n

n∑
i=1

(xi − H̃zi)zij

∥∥∥∥∥ ≤ λ2, 1 ≤ j ≤ q.

This implies that the vectors zi and xi−Hzi are nearly orthogonal for a small λ2. Further-

more, Lemma 1 of the Supplementary Material states that we need a sparsity assumption

on H0 in the sense that λ2

∑q
j=1 ‖h0j‖ is small, where h0j is the jth column of H0. The or-

thogonality property is important in establishing the theoretical properties of the proposed

estimator described below.

We are now ready to describe the proposed regularized projection score estimator.

Define the score function in the direction H as

Ψn(β, η)[H] ≡ 1

n

n∑
i=1

ψτ (yi − x′iβ − z′iη)(xi −Hzi). (2.10)

Because the parameter η is unknown, we replace it with the initial estimator η̃ given in

(2.2). We also estimate H by H̃ . We then define the regularized projection score function

for β as

Ψ̃n(β) ≡ Ψn(β, η̃)[H̃] =
1

n

n∑
i=1

ψτ (yi − x′iβ − z′iη̃)(xi − H̃zi). (2.11)
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Thus, we estimate the parameter β0 based on the following estimating equation:

Ψ̃n(β) = 0. (2.12)

Owing to the nonsmoothness of ψτ , Ψ̃n may not have an exact zero root. In that case, we

need only to solve (2.12) within op(n−1/2) precision. In Section 5, we consider a series of

minimization problems that corresponds to solving (2.12) in an iterative way.

We summarize the proposed regularized projection score approach in two steps:

(S1) estimate the vector η0 and the matrix H0 by solving (2.2) and (2.9), respectively;

(S2) estimate the parameter vector β0 by solving the estimation equation (2.12).

3. Asymptotic Properties

In this section, we establish the asymptotic results for β̂, where β̂ is a solution of (2.12).

The asymptotic results of the Lasso estimate η̃ and the block Lasso estimate H̃ are given

by Belloni and Chernozhukov (2011), Obozinski et al. (2011), and Wang et al. (2013). To

simplify the presentation, we summarize their regularity conditions below; moreover, we

need to make some additional assumptions.

(A1) z follows N(0,Σz), and the covariance Σ satisfies (x′, z′)′ 0 < cΛ < Λmin(Σ) <

Λmax(Σ) < CΛ <∞. ‖β0‖+ ‖η0‖+ max1≤j≤q ‖h0j‖ ≤ C0, where C0 is a constant

and h0j is the jth column of H0.
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(A2) The coefficient η0 is sparse with s = o(n), and λ1 = O(
√

log(q)/n), where S =

{j : η0j 6= 0, j = 1, · · · , q} and s = |S|.

(A3) If the estimated coefficient matrix H̃ is obtained from (2.8), H0 is sparse with sh,k ≤

sh = o(1), for 1 ≤ k ≤ d, where Sh,k = {j : h0kj 6= 0, j = 1, · · · , q} and

sh,k = |Sh,k|. If H̃ is obtained from (2.9), H0 is sparse with sh = o(1), where

Sh = {j : h0j 6= 0, j = 1, · · · , q}, sh = |Sh|. s2
h ∨ s2 = o (

√
n/ log(q)), and

λ2 = O
(√

log(q)/n
)

. There exists a constant c0 ∈ (0, 1] such that ‖Σ−1
ShSh
‖∞ ≤

c0, where ΣI1I2 is the submatrix of Σ with row and column index sets I1 and I2,

respectively.

(A4) |f(u|x, z) − f(0|x, z)| ≤ C|u|1/2 for some constant C uniformly on (x, z) in a

neighborhood of zero. f(0|x, z) is uniformly bounded from above by fmax < ∞,

and from below by fmin > 0, for all (x, z), where f(·|x, z) is the density function of

ε = y − x′β0 − z′η0.

(A5) max1≤j≤q E{‖(x − H0z)zj‖} = O(1), max1≤j≤d E{‖(x − H0z)xj‖} = O(1), and

{E[‖z‖∞]2}1/2 ≤ ζn, with (s∨sh)3/2ζnλ2 = o(n1/2) and τn(s∨sh) log(ζnshλ2τ
−1/2
n ) =

o(1), where τn = (s ∨ sh)(λ1 ∨ λ2). For any wi between x′i(β̂ − β0) + z′i(η̃ − η0)

and zero, and for any H ∈ UH ,

max
1≤j≤q

∥∥∥∥∥n−1

n∑
i=1

f(wi|xi, zi)(xi −Hzi)zij

∥∥∥∥∥ = op(s
−1{log(q)}−1/2),

where UH = {H ∈ Rd×q : n−1/2
∑n

i=1 ‖(H −H0)zi‖ = Op(s log(q)/n)}.
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(A6) E {f(0|x, z)(x−H0z)x′} is an invertible matrix.

Assumption (A1) imposes an eigenvalue restriction on the design matrix. Assumption

(A2) is the mutual incoherence and self-incoherence condition that bounds the difference

between the estimator H̃ and the true matrix H0 and the difference between the estimator

η̃ and the true parameter η0. Under Assumptions (A1) and (A2), the conditions of Belloni

and Chernozhukov (2011), Obozinski et al. (2011), and Wang et al. (2013) are satisfied.

Assumption (A3) limits the increasing rate of the covariate dimension relative to the sam-

ple size to ensure that the Bahadur representation of the estimator β̂ holds. Assumption

(A4) is used to obtain β̂, which is widely used in the quantile regression literature. As-

sumption (A5) imposes the orthogonality of x− H̃z and z, where x− H̃z is the projection

of x to the space of z. Because E {(x−H0z)zj} = 0, from the definition of H0, Assump-

tion (A5) holds if (x−H0z)zj is weakly correlated with f(0|x, z), the conditional density

around zero. Thus, it is weaker than the assumption of independence between (x, z) and ε,

which is imposed by Zhao et al. (2014) and Bradic and Kolar (2017). Similar conditions

are used in Theorem 3.1 of van de Geer et al. (2014) when generalized linear models are

considered.

Theorem 1. Under model (2.1), if Assumptions (A1)–(A4) hold,

β̂
p−→ β0.
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Theorem 2. Under model (2.1), if Assumptions (A1)–(A6) hold,

n1/2(β̂ − β0)
L−→ N(0, Q−1DQ

′−1),

where Q = E {f(0|x, z)(x−H0z)x′} and D = τ(1− τ)E {(x−H0z)(x−H0z)′} .

Theorem 2 establishes that the proposed estimator is asymptotically normal. However,

under the high-dimensional setting, it is challenging to estimate the asymptotic covariance

matrix Q−1DQ
′−1, in which the density of the error term is involved. In the following

section, we propose a resampling method that avoids estimating the error density at zero.

4. Refitted Wild Bootstrap

Adopting the ideas of the refitted cross-validation of Fan et al. (2011) and the wild boot-

strap of Feng et al. (2011), we propose a refitted wild bootstrap method to estimate the

asymptotic variance-covariance matrix of β̂. This resampling method accounts for hetero-

geneous errors and can bypass the estimation of different densities of errors at zero. Unlike

the method of Wang et al. (2018), which only considered a fixed number of covariates, the

proposed refitted wild bootstrap method can deal with high-dimensional confounding co-

variates with divergent dimension q.

We randomly split the original data set into two even parts and carry out the refitted

wild bootstrapping using the following steps.

(B1) Estimate the parameters using the method described in Section 2 and the first part of
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the data set, and denote the estimates as η̃1.

(B2) Use the second part of the data set to estimate the parameters using the regular quan-

tile regression method based on the nonzero coefficient set determined by the vector

η̃1. Denote the estimate as (β̂′2, η̃
′
2), where the vector η̃2 includes those zero coeffi-

cients determined in Step (B1), for notation consistency.

(B3) Independently generate weights ζi satisfying the following conditions:

(B3.1) there are two positive constants c1 and c2 satisfying sup{ζ ∈ G : ζ ≤ 0} =

−c1 and inf{ζ ∈ G : ζ ≥ 0} = c2, where G is the support of ζ;

(B3.2) the distribution G of ζ satisfies
∫ +∞

0
ζ−1g(ω)dζ = −

∫ 0

−∞ ζ
−1g(ζ)dζ = 1/2

and Eζ [|ζ|] < ∞, where g(ζ) is the density of ζ and the expectation Eζ is

taken under G;

(B3.3) the τ th quantile of the weight ζ is zero.

(B4) Use the second part of the data set to obtain the bootstrapped samples as y∗i = β̂′2xi+

η̃′2zi + ζi|r̂i|, where r̂i = yi − β̂′2xi − η̃′2zi.

(B5) Use the bootstrapped samples to estimate the parameters using the method of Section

2, and denote the estimate of β0 by β̂∗.

(B6) Repeat (B2)–(B5) B times, and denote the sample variance of B copies of β̂∗ as V̂2.
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Similarly, we use the second part of the data set to determine those variables with nonzero

coefficients, and use the first part to estimate the variance-covariance matrix using the

approach described in (B1)–(B6). Denote the estimated matrix as V̂1. We use (V̂1 + V̂2)/2

to estimate the variance of β̂, and repeat the above procedure a certain number of times to

reduce the randomness effects of splitting the data.

The growth rate of the dimension of β in condition (A3) is too fast to ensure the

validity of the refitted wild bootstrap of (B1)–(B6). We need to further limit the rate to

(A3′) s log(q)/n1/3 → 0.

Let P ∗ denote the probability under the resampling procedure given in (B1)–(B6).

Theorem 3. Under Assumptions (A1)–(A2), A(4)–A(6), and (A3′), using the resampling

approach described in steps (B1)–(B6), we have

sup
x∈R

∣∣∣P ∗((n/2)1/2(β̂∗ − β̂) ≤ x
)
− P

(
n1/2(β̂ − β0) ≤ x

)∣∣∣ p−→ 0.

Theorem 3 provides a theoretical justification for using the refitted wild bootstrap to

estimate the asymptotic variance-covariance matrix. This makes it possible to conduct

statistical inferences without estimating the error densities. In the following section, we

describe a computational algorithm for solving the estimating equation (2.12).
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5. Computation

As pointed out in Section 2, we need to determine how to solve

Ψ̃n(β) =
1

n

n∑
i=1

ψτ (yi − x′iβ − z′iη̃)(xi − H̃zi) = 0. (5.13)

Let ỹi = yi − z′iη̃ and x̃i = xi − H̃zi. Write

n∑
i=1

ψτ (yi − x′iβ − z′iη̃)(xi − H̃zi) =
n∑
i=1

ψτ{ỹi − (H̃zi)
′β − x̃′iβ}x̃i.

Let βk be the value at the kth iteration, for k = 0, 1, 2, . . . We take the Lasso estimator by

solving (2.2) as the initial estimator β0, and use the following iterative steps:

Step 1: Calculate

ỹki = ỹi − (H̃zi)
′βk.

Step 2: Solve

βk+1 = argmin
β

n∑
i=1

ρτ (ỹ
k
i − x̃′iβ).

Step 3: Set k ← k + 1; go to Step 1 until certain convergence criteria are satisfied.

Note that Step 2 is an optimization problem based on a low-dimensional quantile regres-

sion, so it can be solved using existing software. Refer to Koenker (2005) for details on its

computation.
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6. One-Step Estimator

The procedure given in Section 5 inspired the following one-step estimation approach.

First, we obtain an initial estimator of β by solving (2.2). Recall that the projected

score function is

Ψ̃n(β) =
1

n

n∑
i=1

ψτ (yi − x′iβ − z′iη̃)(xi − H̃zi),

where H̃ is obtained by solving (2.9). We consider a modified projected score function

Ψ̃∗n(β) =
1

n

n∑
i=1

ψ{yi − (xi − H̃zi)′β − (H̃zi)
′β̃ − z′iη̃}(xi − H̃zi).

Let ỹi = yi − (H̃zi)
′β̃ − z′iη̃. Then, solving Ψ̃∗(β) = 0 is equivalent to solving

β̂one = argmin
β

1

n

n∑
i=1

ρτ
(
ỹi − (xi − H̃zi)′β

)
.

Clearly, β̂one can be considered a one-step update from the initial estimator β̃.

We replace Assumption (A6) with the following assumption:

(A6′) E {f(0|x, z)(x−H0z)(x−H0z)′} is an invertible matrix.

We then have the following result.

Theorem 4. Under model (2.1), if Assumptions (A1)–(A5) and (A6′) hold, then

n1/2(β̂one − β0)
L−→ N(0, Q̃−1DQ̃−1),

where Q̃ = E {f(0|x, z)(x−H0z)(x−H0z)′}, and D is defined as in Theorem 2.
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Note that Q̃ is different from Q in Theorem 2, owing to the modification of the score

function. In addition, the refitted wild bootstrap method of Section 4 can be used sim-

ilarly to estimate the asymptotic covariance matrix Q̃−1DQ̃−1. The computation of this

estimator is efficient because no iterations of (Step 1)–(Step 2) are needed.

7. Numerical Studies

7.1 A Simulation Study

We investigate the finite-sample performance of the estimation method of Section 2 using

the variance-covariance matrix estimated by the refitted wild bootstrap method described

in Section 4. Two sample sizes, n = 50 and n = 100, are used, and two quantile levels,

τ = 0.5 and τ = 0.75, are considered.

We simulate data from the model

yi = µ+
3∑
j=1

xijβj +
199∑
k=1

zikηk + ei, i = 1, · · · , n,

where all the covariate variables and the model error ei are generated independently from

the standard normal distribution. We consider a sparsity structure with coefficients given

as

(µ, β1, β2, β3, η1, η2, η3, · · · , η199) = (3, 3, 3, 3, 3, 3, 0, · · · , 0).

We use the method of Huang et al. (2012) to solve (2.9), using the Bayesian informa-

tion criterion for the choice of penalties. Then, we use the method of Belloni and Cher-
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7.1 A Simulation Study

nozhukov (2011) to solve (2.2) at confidence levels 0.7 and 0.8, corresponding to sample

sizes n = 50 and n = 100, respectively. We repeat the bootstrap procedure 1000 times to

estimate the covariance matrix, where the random weights follow the discrete distribution

P (W = w) =


1− τ, w = 2(1− τ)

τ, w = −2τ

,

for 0 < τ < 1. The R packages quantreg and grpreg are used to solve (2.2) and (2.9),

respectively. We generate 1,000 Monte Carlo samples to compare the performance of the

proposed method and the oracle method, where the sparsity structure is assumed to be

known.

We report the biases of the proposed and the oracle estimators, as well as the relative

efficiency, which is the ratio of the mean squared errors of the two estimators. We also

estimate the coverage probabilities of the proposed method at the 95% confidence level. As

shown in Table 1, the bootstrap leads to overall conservative interval estimates, especially

when the quantile level τ = 0.75. When the sample size is as small as 50, the relative

efficiencies vary from 70% to 82%; these efficiencies can be improved to 82% to 92% when

the sample size is doubled. From the results shown in Table 1, the proposed method usually

leads to estimates with smaller biases, probably because of the projection procedure used

in our estimation.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0247



7.1 A Simulation Study

Table 1: Estimated coverage probability (CP) at 95% confidence level, and the estimated

relative efficiencies (RE) and biases (Bias) of the proposed estimator (EC) and the oracle

estimator (Oracle).

n = 50 Parameter Bias of EC (×10−3) Bias of Oracle (×10−3) RE CP (×100%)

β1 -9.608 -0.971 0.811 95.9

τ = 0.5 β2 0.945 1.993 0.701 95.8

β3 -3.486 -8.541 0.813 96.2

β1 -2.744 -6.880 0.697 99.0

τ = 0.75 β2 2.891 -0.413 0.617 97.8

β3 -4.957 -12.802 0.690 98.7

n = 100 Parameter Bias of EC (×10−3) Bias of Oracle (×10−3) RE CP (×100%)

β1 -2.245 -1.684 0.992 95.6

τ = 0.5 β2 -2.913 0.455 0.919 96.5

β3 -7.060 -6.316 0.948 96.2

β1 -5.663 -0.863 0.854 97.2

τ = 0.75 β2 1.615 1.790 0.927 97.7

β3 -8.156 -2.809 0.938 97.8
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7.2 Case Study of GDP Growth Rate

7.2 Case Study of GDP Growth Rate

In this section, we analyze the national growth rate of GDP using data collected by Barro

and Lee (2013). Their results indicate that in a broad group of countries, educational

attainment serves as a proxy for the stock of human capital, as well as for economic de-

velopment. This data set includes 138 countries and eight broad categories comprising

national income, education, population/fertility, government expenditure, PPP deflators,

political variables, and trade policy, among others. A detailed description can be found at

http://www.barrolee.com/. Data are presented either quinquennially, for the period 1950–

2010, or as averages of five-year sub-periods over 1950–2010.

There is a subset of data including 90 complete observations (by country) with 61

covariates, which can be downloaded in the R package hdm (Chernozhukov et al. 2016).

There are 41 observations out of 90 from 1965; the rest are from 1975. In this example,

we only consider the 49 observations from 1975. We choose national GDP growth rate per

capita as the response yi, and denote the 61 scaled covariates by x̃i = (x̃i1, · · · , x̃ip)′, for

i = 1, · · · , n, where n = 49 and p = 61. We first take the logarithm or cubic-root trans-

formation such that each predictor’s empirical distribution is more normally distributed.

There is a large body of literature on the relationship between economic develop-

ment and government consumption expenditure; see Landau (1986), Barro (1990), Barro

(1991), Barro (1989), Devarajan et al. (1996), d’Agostino et al. (2016), and Dissou et al.

(2016). Owing to the correlation between government consumption expenditure and other
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7.2 Case Study of GDP Growth Rate

variables that characterize population/fertility, political instability, the economic system,

and so on, we need to reduce their influence by using the proposed regularized projection

procedure.

The following two variables are important to understanding the effect of a country’s

government consumption expenditure on its economic growth rate: the ratio of real gov-

ernment “consumption” expenditure to real GDP (govsh41, denoted by x̃i1), and the ratio

of real government “consumption” expenditure, net of spending on defense and education,

to real GDP (gvxdxe41, denoted by x̃i2). We use these two variables as treatments, denoted

by xi = (x̃i1, x̃i2)′, and the remaining ones as confounders, denoted by zi, i = 1, · · · , n.

Then we consider the linear quantile regression model (2.1) on these treatments and con-

founders:

Qτ (yi|xi, zi) = β0 +
2∑
j=1

xijβj +
59∑
k=1

zikηk, i = 1, · · · , 49.

We report the estimated coefficients and the corresponding p-values in Table 2.

Barro (1989, 1990, 1991) found that both variables, govsh41 and gvxdxe41, are neg-

atively associated with the GDP growth rate. However, our results indicate that it may be

a good strategy to promote GDP growth by increasing the total government consumption

expenditure in slowly growing economies. At the same time, countries with relatively

slow GDP growth rates should limit government expenditure on defense and education to

ensure economic growth.
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Table 2: List of p-values of the two variables for GDP growth rate. The numbers in

parentheses are the estimated coefficients at the corresponding quantile levels. *govsh41:

Ratio of real government “consumption" expenditure to real GDP, and *gvxdxe41: Ratio of real government

“consumption" expenditure, net of spending on defense and education, to real GDP.

Variable Name τ = 0.25 τ = 0.5 τ = 0.75

govsh41∗ 0.0122 (0.8215) 0.2722 (0.1971) 0.9356 (-0.00498)

gvxdxe41∗ 0.0043 (-0.6523) 0.0026 (-0.3530) 0.7259 (-0.2403)

8. Conclusion

In this work, we used regularized projection scores to estimate low-dimensional precon-

ceived parameters in high-dimensional quantile regression models. Our asymptotic re-

sults facilitate classical statistical inference in high-dimensional scenarios, which has been

largely overlooked in the quantile regression literature. In addition, we proposed a refitted

wild bootstrapping approach to bypass the estimation of the variance-covariance matrix

of the estimator, which involves the probability densities of the errors. To the best of

our knowledge, this is the first demonstration of wild bootstrapping in a high-dimensional

setting in the quantile regression literature.

The proposed method can be implemented easily because its computation is based

on existing algorithms, which can be accomplished using R packages. In practice, we
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advocate the one-step estimator owing to its computational efficiency in high-dimensional

settings, especially when a resampling approach is needed.

Supplementary Materials

The proofs of Theorems 1–4 and related technical details can be found in the online Sup-

plementary Material.
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