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Abstract: Owing to the rapid development of social networking sites, the spatial

autoregressive (SAR) model plays an important role in social network studies.

However, the underlying structure of the SAR model implicitly assumes that all

nodes (or actors or users) within the network have the same influential power,

measured by the common autocorrelation parameter. Hence, the classical SAR

model is unable to identify influential nodes. Therefore, we propose an adaptive

SAR model that incorporates a network influence index, which includes the clas-

sical SAR model as a special case. Using the proposed model without imposing

a specific error distribution, we apply the quasi-maximum likelihood approach to

estimate the unknown parameters of the index. Then, we use these parameters

to characterize the influential power of each node. We establish the asymptotic

properties of the parameter estimates, and present three test statistics that we

use to assess the homogeneity of the network influence indices. The usefulness

of the adaptive SAR model and its associated network index is illustrated us-

ing simulation studies and an empirical investigation of the spillover effects in
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Chinese mutual fund cash flows.

Key words and phrases: Network influence; Quasi-maximum likelihood estima-

tion; Spatial autoregressive model; Weighted chi-squared test.

1. INTRODUCTION

In the last three decades, online social network sites (SNSs) have devel-

oped rapidly across different disciplines and professions. As a result, many

SNSs, such as Facebook, Twitter, and Weibo, have gathered large amounts

of data encompassing both users’ personal information and network re-

lationships. These important and valuable types of data have attracted

considerable attention from both industry practitioners and academic re-

searchers. For example, Wang et al. (2012) demonstrated that advertising

agencies can effectively promote new products through SNSs. Kass-Hout

and Alhinnawi (2013) found that SNSs allow researchers to investigate the

person-to-person spread of communicable diseases and behaviors. Ozsoylev

et al. (2014) used network information to study the trading behavior of

investors, and found that central investors earn higher returns. Fracassi

(2017) indicated that managers’ social networks can affect their corporate

policy decisions. The above examples indicate how extensively social net-

works have been applied in practice.

 
Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0242



Network Influence Analysis 3

To understand the network structure, we construct a network with n

nodes, and set aij = 1 if a direct connection leads from node i to node

j, and aij = 0 otherwise. For the sake of completeness, define ajj = 0,

for any 1 ≤ j ≤ n. Accordingly, the matrix A = (aij)n×n ∈ Rn×n, for

i, j = 1, · · · , n, describes the network relationships among the n nodes. In

social network studies, A is called an adjacency matrix, presenting useful

information on any two adjacent nodes (see, e.g., Zhu et al., 2017; Zou et

al., 2017). For node i, let Yi be its associated response variable. To assess

the influential power of each node, we can use the network structure to

understand the relationships between the Yis. Hence, we first consider the

following spatial autoregressive (SAR) process, which is commonly used to

model social network information:

Yi = λ
n∑
j=1

wijYj + εi, (1.1)

where λ > 0 is the autocorrelation (or influence) parameter, wij = aij/
∑n

j=1

aij, and εi is the random error, for i = 1, · · · , n. Useful references for model

(1.1) can be found in Whittle (1954), Ord (1975), LeSage and Pace (2009),

and Zhou et al. (2017).

Model (1.1) basically decomposes Yi into two parts: (i) the total amount
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of information allocated to node i from nodes j 6= i in the network, which is∑n
j=1wijYj, together with the influence parameter λ; and (ii) information

from the outside of the network, denoted by εi.

Although model (1.1) is widely used to characterize the relationships

between the Yis, it is unable to identify influential nodes. This is because

model (1.1) simply assumes all nodes have the same influential power, mea-

sured by the parameter λ. In practice, however, node i can have more (or

less) influence than node j, for any two connected nodes i and j. Accord-

ingly, the influence parameter can vary across nodes. To this end, let λj be

the influence measure of node j, for j = 1, · · · , n, in the network. Then,

the information of node i received from node j is Yjwijλj. Accordingly, we

propose the following model:

Yi =
n∑
j=1

Yjλjwij + εi. (1.2)

This model allows us to identify influential nodes via their associated in-

fluence measures λj, which has interesting real-world applications. For ex-

ample, Anagnostopoulos et al. (2008) stated that, “A marketing firm, for

example, can use this information to design viral marketing campaigns or

give out coupons to influential nodes in the network.”
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From model (1.2), the influence of Yj on Yi is λjwij. Accordingly, it

includes two components: (i) λj, which characterizes the influential power

of node j; and (ii) wij, which describes the interaction between nodes i and

j. When all λi are equal, model (1.2) reduces to the classical SAR model

(1.1) (e.g., see Lee, 2004; LeSage and Pace, 2009). Because model (1.2) is

able to characterize the influential power of each node, we refer to it as the

adaptive SAR model, and refer to its associated vector (λ1, · · · , λn)> ∈ Rn

as the network influence index.

Note that Dou et al. (2016) proposed the model Yi = λi
∑n

j=1wijYj +

εi, and also studied influential effects. However, the λi in their model

measures the magnitude of node i being influenced by its connected nodes.

In contrast, λj in model (1.2) denotes node j’s own influential power, which

can affect its connected nodes.

In this paper, we demonstrate the novelty and usefulness of the pro-

posed adaptive SAR model. To this end, we study the parameter estimators

and their properties in the proposed model without imposing a specific error

distribution. Then we make inferences on the influence index and illustrate

its usefulness. We find that the adaptive SAR model can play an impor-

tant role in identifying the most influential nodes, which is a key problem
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in social network analysis.

The rest of this paper is organized as follows. Section 2 presents the

detailed adaptive SAR model structure, applies the quasi-maximum like-

lihood approach of Lee (2004) to estimate the unknown parameters, and

explores the model’s asymptotic properties. In addition, Section 2 pro-

vides three test statistics (quasi-likelihood ratio test, quasi-score test, and

quasi-Wald test), which we use to compare the adaptive SAR model and

the classical SAR model. This allows us to determine the contribution of

the influence index. Monte Carlo studies and an empirical analysis of the

Chinese mutual fund market are given in Sections 3 and 4, respectively. A

short discussion and some concluding remarks are presented in Section 5.

The Appendix presents five useful conditions to establish the theoretical re-

sults. The technical material, additional simulation studies, and empirical

results are relegated to the Supplementary Material.

2. MODELS AND METHODOLOGY

2.1 Models with Parametrization

In addition to the network effect in model (1.2), the response Yi can be

affected by node i’s own attributes. Accordingly, we extend model (1.2) as
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follows:

Yi =
n∑
j=1

Yjλjwij +X>i α + εi (i.e., Y = WΛY + Xα + E), (2.1)

where Xi = (xi1, · · · , xip)> ∈ Rp represents the p-dimensional covariates

associated with their corresponding attributes, α = (α1, · · · , αp)> is a p×1

unknown regression vector, Y = (Y1, · · · , Yn)>, W = (wij)n×n ∈ Rn×n,

E = (ε1, · · · , εn)>, X = (X1, · · · , Xn)>, and Λ = diag{λ1, · · · , λn} denotes

a diagonal matrix with λ1, · · · , λn as its diagonal entries. The error com-

ponents εi of E are assumed to be independent and identically distributed

(i.i.d.) with mean zero and finite variance σ2.

In the adaptive SAR model (2.1), one needs to estimate n parame-

ters of λ and p parameters of α, which is infeasible with only n obser-

vations. Note that λi measures node i’s influential power, which should

be affected by its own attributes. For example, a movie star in the Wei-

bo network often has larger influential power than normal users. That is,

the influential power of node i is affected by its vocation. To this end,

let Zi = (zi1, · · · , zid)> ∈ Rd×1, zi1 ≡ 1, and Z−1,i = (zi2, · · · , zid)> be

the d − 1 possible attributes that may affect the influential power of n-

ode i. In addition, we assume that Z−1 = (Z−1,1, · · · , Z−1,n)> ∈ Rn×(d−1)
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is of full rank. Then, we parameterize the network influence index λi by

λi(β) = F (Z>i β), where F (·) is a strictly monotone and known function,

and β = (β1, · · · , βd)> ∈ Rd×1 is an unknown influence coefficient vector.

Accordingly, zi1 ≡ 1 is associated with the intercept β1, for i = 1, · · · , n.

If β2 = · · · = βd = 0, then λi = F (β1); that is, the λi are all equal. This

implies that the classical SAR model is a special case of the adaptive SAR

model. Because Λ is a function of β, we further express (2.1) as

Y = WΛ(β)Y + Xα + E . (2.2)

In the above equation, the parameter vector α is associated with the

covariate matrix X. Analogously to classical regression models, α can be

interpreted as the effect of the covariate matrix X on the mean of the

vector {In−WΛ(β)}Y. On the other hand, the vector β is the effect of the

attributes Z on the influence indices, λ1, · · · , λn.

To make the proposed model (2.2) practically useful, one needs to spec-

ify the link function F (·). One often assumes the influence parameter λ

satisfies |λ| < 1 in the SAR model setting to ensure the invertibility of

In − λW for any weighting matrix W (see, e.g., LeSage and Pace 2009),

where In is the n × n identity matrix. Recently, Zhou et al. (2017) in-
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dicated that nonnegative λ could provide a more precise interpretation in

social network analysis. This motivates us to consider the following three

link functions, which are often used in binary regression models: logistic,

inverse of the probit, and inverse of the log-log. In fact, the parameter λ

in the SAR model can be any value, as long as In − λW is invertible, as

mentioned in Lee (2004). Hence, we adopt the inverse of the canonical link

function from the Poisson regression model, and propose an exponential

link function, which can be larger than one in our adaptive SAR model by

requiring instead that In −WΛ(β) in (2.2) be invertible.

The four link functions mentioned above can be summarized as fol-

lows: LINK I (logistic), F (Z>i β) = eZ
>
i β/(1 + eZ

>
i β); LINK II (inverse of

the probit), F (Z>i β) = Φ(Z>i β), where Φ(·) is the cumulative distribution

function of the standard normal distribution; LINK III (inverse of the log-

log), F (Z>i β) = 1 − e−eZ
>
i β ; and LINK IV (exponential), F (Z>i β) = eZ

>
i β.

We next study parameter estimators for model (2.2) under a given link

function.

2.2 Quasi-Maximum Likelihood Estimation

We follow Lee’s (2004) approach and employ the quasi-maximum like-

lihood estimation (QMLE) method to estimate the unknown parameters
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in model (2.2). Specifically, the estimator is derived from a normal likeli-

hood, but the random errors in model (2.2) are not required to be normally

distributed, and the corresponding assumptions are stated below equation

(2.1).

Define S(β) = In −WΛ(β). We then have E = S(β)Y−Xα. Based on

the Jacobian transformation, the normal log-likelihood function of (2.2) is

`(θ) = −n
2

log(2π)−n
2

log σ2− 1

2σ2
{S(β)Y− Xα}> {S(β)Y− Xα}+log |det{S(β)}|,

where θ = (α>, β>, σ2)>. Define E(α, β) = S(β)Y−Xα, which is a function

of α and β. Note that E is E(α, β) evaluated at the true parameter values

of α and β. We then adopt Lee’s (2004) concentrated quasi-likelihood

approach to estimate the parameters. Specifically, given β, we maximize

`(θ) with respect to α and σ2, which leads to

α̂(β) =
(
X>X

)−1 X>S(β)Y, and

σ̂2(α̂(β), β) =
1

n
E(α̂(β), β)>E(α̂(β), β) =

1

n
Y>S(β)>MXS(β)Y,

where E(α̂(β), β) =MXS(β)Y andMX = In−X
(
X>X

)−1X>. According-
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ly, the resulting concentrated quasi-log-likelihood is

`c(β) = `(α̂(β), β, σ̂2(α̂(β), β)) = −n
2

log(2π)−n
2
−n

2
log σ̂2(α̂(β), β)+log |det{S(β)}|.

Next, we maximize the above equation with respect to β, which yields the

QMLE β̂ = arg maxβ `c(β). We then obtain the QMLEs of α and σ2, as α̂ =

α̂(β̂) and σ̂2 = σ̂2(α̂, β̂), respectively. We next introduce the notation and

equations used to develop the asymptotic distribution of θ̂ = (α̂>, β̂>, σ̂2)>.

Let Λβk(β) := ∂Λ(β)/∂βk = diag{z1kF ′(Z>1 β), · · · , znkF ′(Z>n β)}, for

k = 1, · · · , d. In the following, we use the generic notation (gk1k2)K1×K2 to

denote a matrix that has dimension K1×K2 and whose (k1, k2)th element is

gk1k2 , for k1 = 1, · · · , K1 and k2 = 1, · · · , K2. After algebraic simplification,

the Fisher information matrix of the quasi-log-likelihood `(θ) is

In(θ) := −n−1E
{
∂`2(θ)

∂θ∂θ>

}
=


σ−2n−1X>X Iαβ,n 0p×1

Iβα,n Iββ,n Iβσ2,n

01×p Iσ2β,n 2−1σ−4

 , where

(2.3)

Iαβ,n =
1

nσ2

(
X>WΛβ1(β)S−1(β)Xα, · · · , X>WΛβd(β)S−1(β)Xα

)
,
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Iββ,n = n−1
(

tr
{
WΛβk1

(β)S−1(β)WΛβk2
(β)S−1(β)

}
+tr

{
WΛβk1

(β)S−1(β)S−1(β)>Λβk2
(β)W>

}
+

1

σ2
α>X>S−1(β)>Λβk1

(β)W>WΛβk2
(β)S−1(β)Xα

)
d×d

,

Iβσ2,n =
1

nσ2

(
tr
{
WΛβ1(β)S−1(β)

}
, · · · , tr

{
WΛβd(β)S−1(β)

})>
,

Iβα,n = I>αβ,n and Iσ2β,n = I>βσ2,n.

Let ◦ be the Hadamard product of matrices, ln = (1, · · · , 1)> ∈ Rn×1,

and Xj = (x1j, · · · , xnj)> ∈ Rn, for j = 1, · · · , p. Because the random

error vector E = (ε1, · · · , εn)> in model (2.2) is not required to be normally

distributed, the third’ order moment µ(3) = E(ε3i ) and the fourth’ order

moment µ(4) = E(ε4i ) are involved in the asymptotic distribution of θ̂. We

then denote the matrix Jn(θ, µ(3), µ(4)) as follows:

Jn(θ, µ(3), µ(4)) =


0p×p Jαβ,n µ(3)X>ln

2nσ6

Jβα,n Jββ,n Jβσ2,n

µ(3)l>n X
2nσ6 Jσ2β,n

µ(4)−3σ4

4σ8

 , where

Jαβ,n =
µ(3)

nσ4

(
tr
[(
Xjl
>
n

)
◦
{
WΛβk(β)S−1(β)

}])
p×d

, Jβα,n = Jαβ,n>,
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Jββ,n =
µ(4) − 3σ4

nσ4

(
tr
[{
WΛβk1

(β)S−1(β)
}
◦
{
WΛβk2

(β)S−1(β)
}])

d×d

+
µ(3)

nσ4

(
tr
[{
WΛβk1

(β)S−1(β)Xαl>n
}
◦
{
WΛβk2

(β)S−1(β)
}])

d×d

+
µ(3)

nσ4

(
tr
[{
WΛβk2

(β)S−1(β)Xαl>n
}
◦
{
WΛβk1

(β)S−1(β)
}])

d×d

,

Jβσ2,n =
µ(4) − 3σ4

2nσ6

(
tr
{
WΛβk(β)S−1(β)

})
d×1

+
µ(3)

2nσ6

(
l>nWΛβk(β)S−1(β)Xα

)
d×1

,

Jσ2β,n = Jβσ2,n
>, and ln = (1, · · · , 1)> ∈ Rn. The asymptotic distribution

of θ̂ is given in the following theorem.

Theorem 1. Under Conditions (C1)–(C5) in the Appendix,
√
n(θ̂ − θ) is

asymptotic normal with mean zero and covariance matrix I−1(θ)+I−1(θ)J (θ, µ(3), µ(4))

I−1(θ), where I(θ) and J (θ, µ(3), µ(4)) are stated in Condition (C5), and

are the convergences of matrices In(θ) and Jn(θ, µ(3), µ(4)), respectively.

In practice, both I(θ) and J (θ, µ(3), µ(4)) are unknown. To make the above

theorem practically useful, one needs to find their consistent estimators. Us-

ing the fact that In(θ)→ I(θ) and Jn(θ, µ(3), µ(4))→ J (θ, µ(3), µ(4)), we can

show that the asymptotic covariance matrix I−1(θ) + I−1(θ)J (θ, µ(3), µ(4))

I−1(θ) can be consistently estimated by I−1n (θ̂)+I−1n (θ̂)Jn(θ̂, µ̂(3), µ̂(4))I−1n (θ̂),

where µ̂(s) = n−1
∑n

i=1 ε̂
s
i , for s = 3, 4, and (ε̂1, · · · , ε̂n)> = E(α̂, β̂).
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2.3 Homogeneous Influence Test

After obtaining the parameter estimator θ̂ and its asymptotic property,

we next assess the homogeneity of the influence in (2.2) by testing the effect

of different influence indices λi. To this end, we consider the following null

and alternative hypotheses:

H0,λ : λ1 = · · · = λn = λ vs. H1,λ : λi1 6= λi2 , for some i1 6= i2.

According to the definition λi(β) = F (Z>i β), for i = 1, · · · , n, the above

hypotheses are equivalent to

H0 : β2 = · · · = βd = 0 vs. H1 : at least one of β2, · · · , βd is not zero,

(2.4)

under the assumptions that the link function F (·) is strictly monotone and

the covariate matrix Z−1 is of full rank. If one does not reject the null hy-

pothesis, then the SAR model and its associated estimators and properties

can be considered (e.g., see Lee, 2004).

Within the maximum likelihood framework, there are three commonly

used tests for making inferences about β. They are the likelihood ratio test,
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Wald test, and score (i.e., Lagrange multiplier) test. Therefore, we use these

to test (2.4). Because we consider the quasi-likelihood function and QMLE,

we refer to them as the quasi-likelihood ratio test, quasi-Wald test, and

quasi-score test. We first consider the quasi-likelihood ratio test. Given

θ̂ = (α̂>, β̂>, σ̂2)>, we obtain the estimated quasi-log-likelihood function

`(θ̂) = `(α̂, β̂, σ̂2). Under the null hypothesis of H0 : β2 = · · · = βd = 0,

we can also obtain the constrained QMLE θ̂(r) and its associated quasi-

log-likelihood function `(θ̂(r)). Accordingly, the quasi-likelihood ratio test

statistic is

Tlr = −2
{
`(θ̂(r))− `(θ̂)

}
.

To show the theoretical properties of Tlr, we introduce additional nota-

tion and equations. Let

∆c =


Ip 0p×1 0p×(d−1) 0p×1

01×p 1 01×(d−1) 0

01×p 0 01×(d−1) 1

 ∈ R(p+2)×(p+d+1),

where 0K1×K2 denotes a K1 × K2 matrix with all its elements zeros. Let
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I11(θ) = ∆cI(θ)∆>c and

I−111 (θ) =
(
∆cI(θ)∆>c

)−1
=:

ι11(θ) ι12(θ)

ι21(θ) ι22(θ)

 ,

where ι11(θ) ∈ R(p+1)×(p+1), ι12(θ) ∈ R(p+1)×1, ι21(θ) ∈ R1×(p+1), and ι22(θ) ∈

R1×1. In addition, let

I1(θ) =


ι11(θ) 0(p+1)×(d−1) ι12(θ)

0(d−1)×(p+1) 0(d−1)×(d−1) 0(d−1)×1

ι21(θ) 01×(d−1) ι22(θ)

 , (2.5)

and denote K(θ, µ(3), µ(4)) = I(θ) + J (θ, µ(3), µ(4)). Then, the asymptotic

distribution of Tlr is given below.

Theorem 2. Assume Conditions (C1)–(C5) in the Appendix hold. Un-

der the null hypothesis H0, the quasi-likelihood ratio test statistic Tlr is

asymptotically distributed as
∑p+d+1

l=1 λl(θ, µ
(3), µ(4))χ2

l (1) as n→∞, where

λl(θ, µ
(3), µ(4)) is the lth largest eigenvalue of the matrix K1/2(θ, µ(3), µ(4)){I−1(θ)−

I1(θ)}K1/2(θ, µ(3), µ(4)), and χ2
l (1) are independent chi-squared random vari-

ables with one degree of freedom, for l = 1, · · · , (p + d + 1). Furthermore,

under the normal assumption of E, Tlr is asymptotically χ2(d− 1).
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In practice, λl(θ, µ
(3), µ(4)) is unknown, and can be estimated using λn,l(θ̂

(r),

µ̂(3,r), µ̂(4,r)), where λn,l(θ̂
(r), µ̂(3,r), µ̂(4,r)) is the lth largest eigenvalue of

the (p + d + 1) × (p + d + 1) matrix K1/2
n (θ̂(r), µ̂(3,r), µ̂(4,r)){I−1n (θ̂(r)) −

In,1(θ̂(r))}K1/2
n (θ̂(r), µ̂(3,r), µ̂(4,r)). Note first thatKn(θ̂(r), µ̂(3,r), µ̂(4,r)) = In(θ̂(r))

+Jn(θ̂(r), µ̂(3,r), µ̂(4,r)) is a consistent estimator of K1/2(θ, µ(3), µ(4)), second

that In,1(θ̂(r)) is a consistent estimator of I1(θ), θ̂(r) = (α̂(r)>, β̂(r)>, {σ̂(r)}2)>,

and finally that µ̂(s,r) = n−1
∑n

i=1{ε̂
(r)
i }s, for s = 3, 4, with (ε̂

(r)
1 , · · · , ε̂(r)n )> =

E(α̂(r), β̂(r)).

An alternative approach to testing H0 is the quasi-Wald test. Let

∆ =

(
0(d−1)×p 0(d−1)×1 Id−1 0(d−1)×1

)
∈ R(d−1)×(p+d+1).

Then, the quasi-Wald test statistic for testing H0 can be constructed as

follows:

Tw = (∆θ̂)>
[
∆
{
n−1I−1n (θ̂)Kn(θ̂, µ̂(3), µ̂(4))I−1n (θ̂)

}
∆>
]−1

∆θ̂,

and its asymptotic distribution is given below.

Corollary 1. Assume Conditions (C1)–(C5) in the Appendix hold. Then,

under the null hypothesis H0, we have Tw
d−→ χ2(d− 1) as n→∞.
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We lastly consider the quasi-score test. The advantage of this test

is that we need only obtain the constrained estimator θ̂(r) under the null

hypothesis of H0 : β2 = · · · = βd = 0. Specifically, the quasi-score test can

be constructed as

Ts = n−1

{
∂`(θ̂(r))

∂θ

}>
I−1n (θ̂(r))

∂`(θ̂(r))

∂θ
.

A detailed expression of ∂`(θ)/∂θ can be found in (??) of the Supplemen-

tary Material. The asymptotic distribution of Ts is given in the following

corollary.

Corollary 2. Assume Conditions (C1)–(C5) in the Appendix hold. Under

the null hypothesis H0, the test statistic Ts = Tlr + oP(1) as n→∞.

The above corollary indicates that the quasi-score test and the quasi-

likelihood ratio test are asymptotically equivalent to the weighted chi-

squared distribution. To the best of our knowledge, such an asymptotic

result, obtained without imposing a specific error distribution, has not been

rigorously discussed in the SAR literature. It is also known that under the

normal assumption, the quasi-likelihood ratio test, quasi-Wald test, and

quasi-score test are all asymptotically equivalent as n → ∞, whereas this
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may not be true under a nonnormal assumption. A good review of these

three tests can be found in Rao (2005). Because the three tests can vary in

terms of their finite-sample performance, we evaluate them in the following

simulation studies.

3. SIMULATION STUDIES

To demonstrate the finite-sample performance of our proposed adaptive

SAR model, we conduct simulation studies with various settings. Let the

diagonals of the adjacency matrix A be zeros, and the off-diagonals of A be

independent and identically generated from the Bernoulli distribution with

probability 5/n. Then, the weighting matrix is set to W = (wij)n×n ∈ Rn×n,

with wij = aij/
∑n

j=1 aij, for i, j = 1, · · · , n. Consider the 2 × 1 covariate

vector Xi = (xi1, xi2)
>, with xi1 ≡ 1 and xi2 being independent and i-

dentically generated from the standard normal distribution N(0, 1), and

their corresponding regression parameters being α = (α1, α2)
> = (2, 1)>.

In addition, consider the 3 × 1 influential covariates Zi = (zi1, zi2, zi3)
>,

where zi1 ≡ 1, and zi2 and zi3 are independent and identically generated

from the uniform distribution U(−0.25, 0.25) and the normal distribution

N(0, 0.22), respectively. Six sets of parameters β = (β1, β2, β3)
> ∈ R3 are
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associated with the influential covariates Zi: (β1, β2, β3) = (−1, 5%,−2%),

where % = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 measure the signal strengths of

the covariates, and % = 0.0 corresponds to the classical SAR model. As

a result, the network influence matrix is Λ = diag{F (Z>1 β), · · · , F (Z>n β)},

where the link functions F (·) are LINKs I–IV presented in Section 2.1. Note

that the above model settings satisfy the technical Conditions (C1)–(C5)

in the Appendix. Finally, the response vector Y is generated from mod-

el (2.2) with the above setting, and its associated random error terms εi

(i = 1, · · · , n) are independent and identically generated from four distri-

butions: the normal distribution N(0, σ2); σζ, where ζ follows a mixture

normal distribution 0.9N(0, 5/9) + 0.1N(0, 5); a standardized t3 distribu-

tion; and a standardized exponential distribution, with σ2 = 1. This allows

us to examine the robustness of the parameter estimates with respect to

the error distributions.

For each setting, we consider three sample sizes: n=200, 500, and

1,000. In addition, all simulations are performed 1,000 times. To assess the

performance of the parameter estimators, we define θ̂(k) = (α̂
(k)
1 , α̂

(k)
2 , β̂

(k)
1 ,

β̂
(k)
2 , β̂

(k)
3 , σ̂2(k))> ∈ R6 as the vector estimate of θ obtained using the QMLE

approach in the kth realization. For each component of θ, say θj, the av-
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eraged bias of θ̂
(k)
j , for k = 1, · · · ,1,000, is BIAS = 1000−1

∑
k(θ̂

(k)
j −θj), and

the standard deviation of θ̂
(k)
j is SD =

{
1000−1

∑
k(θ̂

(k)
j −1000−1

∑
k θ̂

(k)
j )2

}1/2
.

Thus, the root mean squared error is RMSE =
√

SD2 + BIAS2.

For normal random errors, Table ?? in the Supplementary Material re-

ports the BIAS, SD, and RMSE of the QMLEs across 1,000 realizations for

the four link functions and three sample sizes. To save space, we present

only the results for the setting with coefficients (β1, β2, β3) = (−1, 5,−2),

because the setting with coefficients (β1, β2, β3) = (−1, 5%,−2%) yields sim-

ilar findings for % = 0.0, 0.2, 0.4, 0.6, and 0.8. From Table ??, we find

that, in general, the absolute values of BIAS and SD become smaller for all

parameter estimates and for all four link functions when n gets large. It is

not surprising that the RMSE shows the same pattern.

We further study the performance of the QMLE when the random errors

are mixture normal, standardized t3, and standardized exponential. Tables

??–S.4 in the Supplementary Material indicate that the resulting estimators

yield qualitatively similar conclusions to those obtained from the Gaussian

errors. Hence, our estimates still exhibit nice properties under these three

nonnormal cases. The above findings support our theoretical result that

the QMLEs are consistent and asymptotically normal.
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We next assess the finite-sample performance of the quasi-likelihood

ratio test, quasi-Wald test, and quasi-score test. Note that both the quasi-

likelihood ratio test statistic Tlr and the quasi-score test statistic Ts are

asymptotically weighted chi-squared distributed with weights λl(θ, µ
(3), µ(4))

under the null hypothesis. In order to conduct these two tests, we inde-

pendently and identically generate {χ2
l,m : l = 1, · · · , (p+ d+ 1), and m =

1, · · · , 10, 000} from the chi-squared distribution with one degree of free-

dom. Let T be either of these two test statistics, Tlr or Ts. We can compute

the p-values of the quasi-likelihood ratio test and the quasi-score test ap-

proximately using p-value1 = 10000−1
∑

m I{T >
∑p+d+1

l=1 λl(θ, µ
(3), µ(4))χ2

l,m}

and p-value2 = 10000−1
∑

m I{T >
∑p+d+1

l=1 λn,l(θ̂
(r), µ̂(3,r), µ̂(4,r))χ2

l,m}, re-

spectively. Here λn,l(θ̂
(r), µ̂(3,r), µ̂(4,r)) is a consistent estimator of λl(θ, µ

(3), µ(4))

under the null hypothesis stated below Theorem 2, and I{·} is the indica-

tor function. Based on our simulation results, we find that p-value1 and

p-value2 yield very similar results under the null hypothesis. In addition,

p-value1 is not applicable because θ, µ(3), and µ(4) are unknown. As a result,

we use p-value2 to assess the performance of the quasi-likelihood ratio test

and the quasi-score test.

We evaluate the empirical sizes of the quasi-likelihood ratio test, quasi-
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Wald test, and quasi-score test with significance levels ranging from 0.01 to

0.30, and examine their empirical power using the significance level 0.05.

For the exponential link function under the mixture normal distribution,

Figures 1 and 2 depict the size and power, respectively, when n = 200,

500, and 1,000. The other three link functions under the mixture normal

and the other three random error distributions yield similar findings; thus,

they are not presented here. The empirical size and power are the per-

centages of rejections under H0 and H1, respectively, using the hypothesis

test (2.4) with 1,000 realizations. Specifically, the empirical size is the per-

centage of rejections under the setting of (β1, β2, β3) = (−1, 0, 0), whereas

the empirical power is the percentage of rejections under the setting of

(β1, β2, β3) = (−1, 5%,−2%), where the signal strength is % > 0.

From Figures 1 and 2, we obtain four interesting findings. The first is

that the empirical sizes of the three tests are almost identical to the prede-

termined significance levels as n=1,000. The second is that the empirical

power of the three tests tends to 100% when the sample size n or the signal

strength % increases. These two findings indicate that the three homoge-

neous influence tests perform well when n is large. The third is that the

quasi-likelihood ratio test is sometimes oversized (anticonservative) and the
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Figure 1: The empirical sizes of the three homogeneous influence tests for
significance levels ranging from 0.01 to 0.30 under the setting of the expo-
nential link function. The benchmark represents the ideal case when the
percentage of rejections from 1,000 realizations is equal to the significance
level. The i.i.d. random errors are simulated from σζ, where ζ follows a
mixture normal distribution 0.9N(0, 5/9) + 0.1N(0, 5).
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Figure 2: The empirical power of the three homogeneous influence tests
at a nominal level of 0.05 under the exponential link function with 1,000
realizations. The signal strengths % = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, which
correspond to the settings of (β1, β2, β3) = (−1, 5%,−2%). The i.i.d. random
errors are simulated from σζ, where ζ follows a mixture normal distribution
0.9N(0, 5/9) + 0.1N(0, 5).
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quasi-Wald test is undersized (conservative) when n is not sufficiently large

(see Figure 1). In contrast, the quasi-score test enables us to control the

size reasonably well, especially at the significance level 0.05. Lastly, Figure

2 shows that the quasi-score and quasi-likelihood ratio tests are very similar

in terms of power for different n and %. However, the quasi-Wald test is not

powerful when the signal strength % is small. Based on the above four find-

ings, we conclude that the quasi-score test performs best at the significance

level 0.05. In addition, the calculation of the quasi-score test only involves

the constrained QMLE under H0, which is easier to compute than the other

two tests. Consequently, we recommend using the quasi-score test to com-

pare the SAR and adaptive SAR models in practice, particularly when the

sample size is not sufficiently large.

4. REAL-DATA ANALYSIS

4.1 Network and Covariates

To demonstrate the usefulness of the proposed adaptive SAR model,

we present a real example of the spillover effect using Chinese mutual fund

cash flows, where this effect is crucial for both fund managers and general

investors (Spitz, 1970; Sirri and Tufano, 1998; Zheng, 1999; Nanda et al.,
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2004). For example, for fund managers, these cash flows are usually com-

pensated for from the management fees that are charged as a fixed propor-

tion of the total net assets under management. To explore the mechanism

of cash flows, prior studies (see e.g., Spitz, 1970; Sirri and Tufano, 1998;

Zheng, 1999; Nanda et al., 2004; Brown and Wu, 2016) have addressed the

characteristics of the mutual funds themselves, but do not consider the in-

fluence of mutual funds on cash flows from a network perspective, that is,

the spillover effect. The proposed adaptive SAR model enables us to dis-

cuss this mechanism of influence from one mutual fund to another via cash

flows by combining the characteristics of the fund itself and the network

structure among the mutual funds.

To this end, we collect data on actively managed open-ended mutual

funds in the second semi-annual period of 2015 from the WIND financial

database, which is one of the most authoritative databases on the Chinese

financial market. After removing funds in existence for less than one year,

there are 420 mutual funds in our sample. To assess the network influence

of mutual funds, we construct the network as follows. Define funds i and

j as being connected (i.e., aij = aji = 1) if the two funds allocate at least

2.5% of their portfolios to the same stock (see Pareek, 2012). Otherwise, we
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consider the two funds to be disconnected; that is, aij = 0. As a robustness

check, the allocations of funds at 1% and 5% are also considered, and yield

similar results.

We next define the response variable, cash flow, as follows. The cash

flow of fund i at time t, Cit, is calculated from the equation (Zheng, 1999;

Nanda et al., 2004)

Cit =
TAit − TAi,t−1(1 + rit)

TAit
,

where TAit is the total net assets of fund i at time t, and rit is the fund

return at time t. To avoid the impact of outliers induced by the cash flow,

we remove the top 2.5% of the observations (11 funds) from the data set.

Therefore, we are left with 409 observations in our sample, and the resulting

network density for these 409 funds is 20.9%. Removing the top percentage

of observations is not uncommon in finance applications; for instance, Choi

et al. (2016) proposed removing the top 2.5% of mutual funds by cash flow,

and Li and Schürhoff (2019) suggested eliminating the top percentage of

observations when studying financial networks. In addition, after removing

those observations, the distribution of the remaining cash flow is not heavy-
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tailed. Thus, the moment assumption in Condition (C1) is satisfied.

In the spirit of the pioneering work of Spitz (1970), we include four

control variables as X covariates to account for their effect on cash flow: (i)

Size: the logarithm of the total net assets of fund i at time t−1; (ii) Age: the

logarithm of the age of fund i at the end of t−1; (iii) Return: the raw return

of fund i at time t − 1; and (iv) Alpha: the risk-adjusted return of fund

i, measured using the intercept of Carhart’s (1997) four-factor model. To

quantify the influential power of the spillover effect on cash flow, we include

three variables as Z covariates: (1) Size, defined above; (2) Volatility: the

standard deviation of the weekly returns of fund i at time t − 1; and (3)

Degree: the number of funds connected to fund i. It seems natural that

both volatility and size can be influential. We also include the degree in

Z covariates. This is motivated by the empirical work of Ozsoylev et al.

(2014), who found that the central investor not only performs better, but

also has a larger impact on its neighbor investors. Finally, both the X and

the Z covariates are standardized to have a zero mean and a unit standard

deviation.

4.2 Empirical Results

We fit the data using the proposed adaptive SAR model under four dif-
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ferent link functions: exponential, logistic, inverse of the probit, and inverse

of the log-log link. Their corresponding quasi-loglikelihood values evaluated

at their associated QMLEs are -460.731, -463.549, -463.674, and -463.549.

Motivated by Vuong (1989), we apply the exponential link function, be-

cause it has the largest estimated quasi-loglikelihood value. Based on this

link function, Table 1 reports the resulting parameter estimators and their

associated standard errors and t-statistics, as well as the p-values of the

three homogeneous influence tests.

Table 1: The regression results of the adaptive SAR model with the expo-
nential link function.

Estimate Standard-Error t-statistic p-value
X Intercept -0.1584 0.0111 -14.3178 0.0000

Size 0.0180 0.0083 2.1717 0.0299
Age 0.0101 0.0084 1.2053 0.2281
Return 0.0633 0.0083 7.5817 0.0000
Alpha 0.0107 0.0094 1.1371 0.2555

Z Intercept -15.2207 8.7928 -1.7310 0.0835
Degree 4.4926 2.1233 2.1158 0.0344
Size 0.6434 0.7159 0.8987 0.3688
Volatility -5.4266 2.7665 -1.9616 0.0498
σ2 0.0233 0.0030 7.8225 0.0000

For the X covariates, we find that the cash flow after adjusting for

influential effects is positively and significantly related to past size and

raw return at the 5% significance level. For example, α̂Size = 0.0180 in
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Table 3 implies that fund i’s size has a significant and positive effect on

the corresponding response Yi (cash flow), after removing the effects of

other connected cash flows. The coefficients of fund age and alpha are

positive, but not significant. The above findings are consistent with those

of existing research (see, e.g., Brown et al., 1996; Sirri and Tufano, 1998;

Zheng, 1999). This implies that investors tend to invest in big funds. In

addition, investors pay more attention to the raw return than they do to

the risk-adjusted return, because the former is more easily observed.

For the Z covariates, we employ the quasi-score test to assess the influ-

ential effect. The resulting p-value is 0.019, which indicates that the influen-

tial power of the spillover on cash flows among mutual funds indeed depend

on the funds’ influential characteristics. Table 1 shows three interesting

findings. First, the influential power is positively and significantly related

to the degree at the 5% significance level. Specifically, β̂Degree = 4.4926 in

Table 3 indicates a significant and positive effect of fund i’s degree on its

influential power λi. This finding is not surprising because having more

connections yields a bigger influential power, after controlling the size and

volatility. It is also consistent with the results of Ozsoylev and Walden

(2011) and Sirri and Tufano (1998). Second, the coefficient of size is posi-
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tive, but not significant. Therefore, the influential power may not depend

strongly on a fund’s size. Lastly, the coefficient of volatility is negative and

significant at the 5% significance level. This finding is consistent with the

intuition that a stable fund has a larger impact on other funds.

To further illustrate the usefulness of the adaptive SAR model, we com-

pute the estimated influence index λ̂i = exp(Z>i β̂), for i = 1, · · · , n. We

then sort the λ̂i and obtain λ̂(1) ≥ · · · ≥ λ̂(n). Figure 3 depicts the sorted

influence indices. We next conduct a k-means clustering analysis based on

the sorted λ̂i using the R package NbClust. Accordingly, the best number

of clusters is four, as shown in Figure 3. Cluster I includes only the mutual

fund with the largest influence index. Cluster II consists of the mutual

funds with the second and third largest influence indices. Cluster III con-

sists of the mutual funds with the fourth, fifth, sixth, seventh, and eighth

largest influence indices. The other mutual funds, whose influence indices

are all close to zero, are categorized into Cluster IV.

To visualize the influential power, Figure 4 depicts the four clusters in

the network of 409 mutual funds. Each node in Figure 4 is a mutual fund,

and we configure the node sizes from large to small to represent Clusters

I–IV, respectively. Specifically, the left panel of Figure 4 reveals the whole
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Figure 3: The sorted influence indices (λ̂(i)) of the i = 1, · · · , 409 mutual
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Figure 4: The network of 409 mutual funds and the subnetwork of the top
eight most influential mutual funds, with their associated codes.

network structure of the 409 mutual funds, and the top eight most influ-

ential mutual funds in Clusters I–III are marked in colors. The detailed
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subnetwork structure among these eight most influential mutual funds is p-

resented in the right panel of Figure 4. Note that the location of each node in

the left panel is constructed based on the number of the node’s connections

(i.e., the degree of each node). As a result, the more connections a node

has, the closer it is to the center of the network. However, none of the top

eight most influential mutual funds is located in the center. This indicates

that a larger degree does not necessarily lead to greater influence. This is

because volatility also plays a significant role in constructing the influence

index. For the sake of illustration, we present the eight largest influence

indices along with their two significant covariates, degree and volatility, in

Table ?? of the Supplementary Material. It shows that although the second,

third, fourth, and seventh influential funds have more connections than the

most influential fund, their volatilities are higher. Accordingly, the fund

with the largest influence index does not have the highest number of con-

nections. Note too that the right panel of Figure 4 indicates that the fund

202211.OF, with the largest influential power, is connected to the other

top seven influential funds. We also observe that these top eight influential

funds are almost all connected to each other within the network constructed

by the 409 Chinese mutual funds. In summary, we have used the adaptive
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SAR model to effectively identify influential funds, with valuable findings.

5. Conclusion

We have proposed the adaptive SAR model and introduced an influence

index for identifying influential nodes in a large network. In addition, we

obtained the asymptotic properties of the parameter estimates, which allow

us to make inferences on the network influence index. The usefulness of the

adaptive SAR model and its associated network influence index was demon-

strated using Monte Carlo studies and an application from the Chinese mu-

tual fund market. We believe empirical finance researchers can apply the

proposed model to investigate other possible factors (e.g., centrality) that

may determine the influential power of individual mutual funds.

In practical applications, one usually considers positive influence pa-

rameters (e.g., Zhou et al., 2017). However, using the fact that F (Z>i β) ∈

(0, 1) for LINKs I–III, the transformation G(Z>i β) = 2F (Z>i β)−1 can lead

to λi(β) ∈ (−1, 1) if we specify λi(β) = G(Z>i β) in model (2.2). Thus, one

can assume a negative influence index if it is needed to broaden the appli-

cation of the adaptive SAR model. We next identify four avenues for future

research. The first is to employ a nonparametric approach to constructing
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the network influence indices. The second is to use the screening or regu-

larization method to obtain the sparse solution for constructing n influence

indices λi (e.g., see Zhu et al. 2019a), or to develop a test statistic to test

whether a subset of λi are equal. The third avenue is to propose a com-

putationally feasible estimation approach (e.g., the least squares method

in Huang et al.(2019) Huang et al. 2019 and Zhu et al. 2019b) to over-

come the computational challenge of the QMLE under large-scale networks

(see the numerical illustrations in Section S.4 of the Supplementary Ma-

terial). The fourth avenue is to extend the adaptive SAR model (1.2) to

Yi =
∑n

j=1 λijYj +εi so that the closeness between node i and node j can be

characterized by the influence parameter λij. We believe that these efforts

would further increase the application of the adaptive SAR model.

Supplementary Material

The online Supplementary Material consists of four parts (Sections S.1–

S.4). Section S.1 introduces five technical lemmas and their proofs. Section

S.2 discusses the technical conditions in the Appendix. Section S.3 presents

the proofs of the theorems and corollaries. Section S.4 provides simulation

studies that assess the robustness of our proposed parameter estimate, as
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well as additional empirical results.
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Appendix

This Appendix introduces five useful conditions. As defined in details

in Section S.1 of the Supplementary Material, ‖ · ‖s denotes the vector s-

norm or the matrix s-norm for 1 ≤ s ≤ ∞ and |G|∞ = ‖vec(G)‖∞ denotes
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the element-wise `∞ norm for any generic matrix G. The discussions of

the following conditions are presented in Section S.2 of the Supplementary

Material.

(C1) Assume that the random errors εi are i.i.d. with mean zero, and there

exists some η > 0 such that E|εi|4+η <∞.

(C2) Assume supn≥1 ‖W‖1 < ∞, supn≥1 ‖W‖∞ < ∞ and supn≥1 |X|∞ <

∞.

(C3) Assume that S(β) = In − WΛ(β) is nonsingular uniformly over β

in a compact parameter space B and the true parameter β is in the

interior of B. In addition, assume supβ∈B supn≥1 ‖S−1(β)‖1 <∞ and

supβ∈B supn≥1 ‖S−1(β)‖∞ <∞.

(C4) Assume, for the true parameter β,

sup
n≥1

max
1≤i≤n

|zik1F ′(Z>i β)| <∞, sup
n≥1

max
1≤i≤n

|zik1zik2F ′′(Z>i β)| <∞, and

sup
β∈B

sup
n≥1

max
1≤i≤n

|zik1zik2zik3F ′′′(Z>i β)| <∞

for any k1, k2, k3 ∈ {1, · · · , d}, where the link function F is assumed

to be three times differentiable.
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(C5) Assume In(θ) → I(θ) and Jn(θ, µ(3), µ(4)) → J (θ, µ(3), µ(4)) as n →

∞, where In(θ) and Jn(θ, µ(3), µ(4)) are defined above Theorem 1. We

further assume I(θ) and I(θ) + J (θ, µ(3), µ(4)) are finite and positive

definite.
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