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Abstract: We propose a projection-based test to check partially linear models.

The proposed test achieves a reduction in dimension and, in the presence of mul-

tiple linear regressors, behaves as though only a single covariate is present. The

test is shown to be consistent and can detect Pitman local alternative hypothet-

ical models. We further derive the asymptotic distributions of the proposed test

under the null hypothesis and the local and global alternatives. Most important-

ly, the test’s numerical performance is consistently and remarkably superior to

that of its competitors. Real examples are presented for illustration. Although

we assume that the nonparametric component of the model has a univariate

covariate, our model can be generalized to partially linear additive models, par-

tially linear single-index models, and other models with linear and nonparametric

components.
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1. Introduction

Regression models with linear and nonparametric components, or “semi-

parametric regression” are widely used in practice (Ruppert et al., 2003).

In particular the linearity assumption of the parametric component means

there is a need for methods to check whether these models provide a satisfac-

tory fit to data. Although a number of lack-of-fit tests have been developed,

they do not work well when the dimension of the parametric component is

even moderately high. To address this problem, we extend the projection-

based lack-of-fit test of Escanciano (2006) for parametric models to include

semiparametric models. This is the first theoretical study of Escanciano’s

test applied to models with nonparametric components. We work only with

a particular class of semiparametric models, namely partially linear mod-

els (PLMs). Extensions to other semiparametric regression models, such

as partially linear additive models and partially linear single-index models,

are important and straightforward in practice, although an asymptotic s-

tudy will require more work. Nonetheless, the theory presented here should

provide a good starting point for further research.
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Consider the PLM

Y = X>β + g(T ) + ε, (1.1)

where Y ∈ R1 is the response variable, X ∈ Rp is a predictor vector, β ∈ Rp

is an unknown parameter vector, g(T ) is an unknown smooth function of a

univariate predictor T , and E(ε2|X,T ) <∞.

The PLM is important in the context of semiparametric regression ow-

ing to the interpretability of the linear component and the flexibility of

the nonparametric part. Various estimation methods for parametric and

nonparametric components have been proposed and well studied in the lit-

erature (Ma et al., 2006; Speckman, 1988; Engle et al., 1986; Heckman, 1986;

Wahba, 1984); for detailed information on estimators and their properties,

see Härdle et al. (2000).

A number of methods have been proposed that check the lack-of-fit

of a PLM. Define the residual ε(U, β, g(T )) = Y − {X>β + g(T )}, where

U> = (X>, T ), and consider

H0 : Pr
{

E
{
ε(U, β, g(T ))

∣∣X,T} = 0
}

= 1,

for some β and g(t), (1.2)
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against the alternative hypothesis:

H1 : Pr
{

E
{
ε(U, β, g(T ))

∣∣X,T} = 0
}
< 1, for all β ∈ Rp

and any function g(t).

Fan and Li (1996) developed a U-statistic-based test that is consistent

for general semiparametric models and is applicable for PLM diagnosis. Zhu

and Ng (2003) developed an empirical process-based test. Both methods

have desirable statistical properties such as consistency, and perform well in

terms of empirical size and power when the dimension of X is small. Howev-

er, the performance of the two methods deteriorates as the dimension of the

covariates increases, as noted by Xia (2009). This is further corroborated by

the results of our simulation studies in Section 6 and the online Supplemen-

tary Material. Here, we find that with five-dimensional covariates in the

linear part, the U-statistic-based statistic sometimes degenerates, that is,

becomes equal to zero, and the empirical process-based statistic yields low

empirical size and power. This is not surprising because, for the statistic

proposed by Fan and Li (1996), one needs to estimate E(ε|X,T ) nonpara-

metrically, which suffers from the curse of dimensionality. The statistic

proposed by Zhu and Ng (2003) involves the term I(X ≤ x, T ≤ t), which

is equivalent to {
∏p

j=1 I(Xj ≤ xj)}I(T ≤ t). When p becomes larger, this

product can easily degenerate for given sample sizes, causing the empirical
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process-based statistic to degenerate.

To overcome the problems caused by the curse of dimensionality, pro-

posed solutions include avoiding a high-dimensional nonparametric regres-

sion or applying a simple indicator weighting function. Important results

from these efforts include applications of the integrated conditional mo-

ment (ICM) method proposed by Bierens (1982). The principle of the ICM

method is to transform the conditional expectation condition of the null hy-

pothesis, (i.e., E{ε(U, β, g(T ))|X,T} = E{Y −{X>β+g(T )}|X,T} = 0) in-

to an uncountable number of unconditional moment restrictions, specifically

that E{ε(U, β, g(T ))w(X,T,x)} = 0. The weighting function w(X,T,x)

is chosen to guarantee that E{ε(U, β, g(T ))|X,T} = 0 is equivalent to

E{ε(U, β, g(T ))w(X,T,x)} = 0 for all x. Note that the curse of dimen-

sionality occurs more often in model checking than it dose in estimation,

because we need to deal with the regression of ε(U, β, g(T )) against (p+ 1)

covariates (X>, T ), even we just check a multiple linear model.

Several weight functions have been proposed, including the exponen-

tial weighting function (Bierens, 1982), linear indicator weighting function

(Stute and Zhu, 2002; Escanciano, 2006), logistic weighting function (Lee

et al., 2001), and trigonometric weighting function (Bierens and Ploberger,

1997). Some weighting functions lead to inconsistent model checking meth-
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ods and different weighting functions lead to different power properties.

Furthermore, theoretically, there is no best choice among these weighting

functions in term of power, because, as shown by Bierens and Ploberger

(1997), they all lead to asymptotic admissible tests. Note that the statis-

tics proposed by Fan and Li (1996) and Zhu and Ng (2003) are special cases

of the ICM test corresponding to weighting functions E{ε(U, β, g(T ))|X,T}

and I(X ≤ x, T ≤ t), respectively; unfortunately, they may suffer from the

curse of dimensionality.

A popular choice of weighting function is the linear indicator weighting

function I(U>W ≤ u), where u ∈ R1, U is a vector of predictors, and W is a

projection direction. This function avoids both high-dimensional problems

and having to use a multiple integration to calculate a Crámer–von Mises

type test statistic (see Section 2). For example, Stute and Zhu (2005, 2002)

and Xia et al. (2004) applied this weighting function to check generalized

linear models and single-index models. Ma et al. (2014) applied a similar

idea to check partially linear single-index models.

A critical step when using the ICM method with the linear indicator

weighting function is the selection of the projection direction, W . This

direction should ideally ensure (1) the equivalence of the null hypothesis

and the weighted unconditional moment conditions, (2) the consistency of
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the associated tests, (3) outstanding power performance under the alter-

natives, and (4) computational expediency. Stute and Zhu (2002) and Xia

et al. (2004) chose a vector of regression parameters as the projection direc-

tion, and then weakened the testing problem to that of testing the indepen-

dence of the residuals and a linear combination of regressors (Escanciano,

2006). Ma et al. (2014) chose a fixed projection direction by estimating a

single-index model. Because only one fixed direction is considered, the tests

proposed in Xia et al. (2004), Stute et al. (2008), and Ma et al. (2014) may

be inconsistent , except under specific conditions.

Xia (2009) also developed a projection-based testing procedure for para-

metric and semiparametric models by projecting the fitted residuals onto

a direction via a single-index model. The proposed method is applicable

for general settings and reduces the dimensionality. However, asymptotic

distributions under the null hypothesis are not available, making it difficult

to control type-I errors.

To overcome these limitations, we also use projections, but allow the

direction to vary such that the null hypothesis is equivalent to an in-

finite collection of weighted unconditional moment restrictions. Recal-

l that U = (X>, T )> and E{ε(U, β, g(T ))|U} = 0 a.e. if and only if

E{ε(U, β, g(T ))|U>W} = 0 a.e. for every unit (p + 1)-vector W (Lavergne
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and Patilea, 2008; Bierens, 1990; Stinchcombe and White, 1998). Therefore,

if E{ε(U, β, g(T ))|U} 6= 0 a.e., then the set {W : E{ε(U, β, g(T ))|U>W} 6=

0} has a Lebesgue measure larger than zero. Thus, it is critical that the test

statistic contains as many projection directions as possible, which ensures

that E{ε(U, β, g(T ))|U>W} 6= 0 if E{ε(U, β, g(T ))|U} 6= 0.

This observation motivates us to assume that (1) W is independent of

the response variable, covariates, and model error, and (2) W follows a uni-

form distribution on the unit ball in Rp+1 such that every possible projection

is considered. Therefore, the corresponding test can detect a deviation from

the null hypothesis in any direction. As a result, the proposed statistic is

consistent against all alternatives. Because U>W in I(U>W ≤ u) is scalar,

the test avoids the curse of dimensionality. Furthermore, we show that

the proposed test is independent of the data-sgeneration process (see the

discussion following Theorem 3) and can detect the alternative hypothesis,

which approaches to the null hypothesis at the rate n−r with 0 ≤ r ≤ 1/2.

To avoid complexity in calculating the critical value, we suggest a robust

bootstrap method. Extensive numerical experiments, including two real

examples, confirm our theoretical findings and demonstrate the superiority

of the test.

Note that the proposed procedure can be treated as an extension of
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Escanciano (2006) to include partially linear models. However, such an

extension, while important, is by no means straightforward. Escanciano

(2006) focused mainly on parametric models and required an asymptotic

expansion(A3(b)), for the estimators of the parameters that does not hold

for the estimators of the parametric and nonparametric components in the

PLM. Furthermore, in a comparison of the projection test with the existing

methods, Escanciano (2006) uses simulations to show the power gain of the

projection test. In this study, we focus on both the superior power of the

proposed procedure and its dimension-reduction characteristics.

The rest of this paper is organized as follows. In Section 2, we de-

velop an empirical-process testing statistic using projection for (1.2). The

asymptotic properties of the testing statistic under the null and alternative

hypothetical models are shown in Sections 3 and 4, respectively. In Sec-

tion 5, we develop a wild bootstrap method to calculate the critical value.

Simulation studies and real-data analyses are conducted in Section 6. The

assumptions and estimations of β and g(·) are given in the Appendix. The

proofs of the main results and additional simulation results are presented

in the online Supplemental Material.
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2. The proposed test

Let {(Yi, Xi, Ti), i = 1, . . . , n} be a sample from (Y,X, T ), and let β̂n and

ĝn(·) be the estimators of β and g(·), respectively; see Appendix A.2 for

the definitions. Write ε̂(Ui, β̂n, ĝn(Ti)) = Yi − {X>i β̂n + ĝn(Ti)}, where

U>i = (X>i , Ti). Define

Mn,pro(u,W ) =
1√
n

n∑
i=1

ε̂(Ui, β̂n, ĝn(Ti))I
(
U>i W ≤ u

)
,

for (u,W ) ∈ Π, where Π = R1 × Sp+1 and W is uniformly distributed on

Sp+1 = {w ∈ Rp+1 :‖ w ‖= 1}, the unit ball in Rp+1.

Our projection-based test statistic is

Tn,pro =

∫ ∞
−∞

∫
Sp+1

{Mn,pro(u,w)}2 Fnw(du)dw,

where Fnw(u) = 1/n
∑n

i=1 I(U>i w ≤ u) and W has been integrated out.

When the test statistic is sufficiently large, we reject the null hypothesis.

The estimated empirical process Mn,pro(u,w) is actually the cumulative sum

of the estimated model error, and Tn,pro is a Crámer-von Mises type test

statistic.

Note that the test statistic Tn,pro is equal to the summation

Tn,pro =
1

n2

n∑
i=1

n∑
j=1

n∑
l=1

ε̂(Ui, β̂n, ĝn(Ti))ε̂(Uj, β̂n, ĝn(Tj))Aijl,
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where Aijl =
∫
I(U>i w ≤ U>l w)I(U>j w ≤ U>l w)dw. By an argument of

Escanciano (2006), we have

Aijl = Cq

∣∣∣∣π − arccos

{
(Ui − Ul)>(Uj − Ul)
|Ui − Ul| |Uj − Ul|

}∣∣∣∣ ,
with Cq = π(q/2)−1/Γ(q/2 + 1), where Γ(·) is the gamma function and

q = p + 1. Thus, the calculation of the statistic can be transformed to a

calculation of a summation. This avoids the multiple integration in Härdle

and Mammen (1993) and makes the implementation easier.

3. Asymptotic properties under the null hypothesis

We now study the asymptotic properties of the projection-based test s-

tatistic under the null hypothesis. We show that, for fixed w, the es-

timated empirical process Mn,pro(u,w), −∞ < u < ∞, converges to a

centered Gaussian process, and Tn,pro converges to an integrated squared

Gaussian process. Let g1(t) = E(X|T = t), g2(t) = E(Y |T = t), X̃ =

X − g1(T ), Γ(u,w) = E{X̃>I(U>W ≤ u)|W = w}, Σ = E(X̃X̃>), and

Ψu(U, Y, ε,W ) = ε[I(U>W ≤ u)−E{I(U>W ≤ u|T,W )}]−Γ(u,W )Σ−1εX̃.

We have the following result.

Theorem 1. Suppose that Conditions (C1)–(C5) in the Appendix hold.

Under the null hypothesis (1.1), for any given nuisance parameter W =

Statistica Sinica: Preprint 
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w ∈ Sp+1, the estimated empirical process Mn,pro(u,w), ∞ < u < ∞,

converges in distribution to Mpro(u,w), ∞ < u <∞, in the Skorohod space

S[−∞,∞], where Mpro(u,w) is a centered Gaussian process with covariance

function

cov{Mpro(u1, w),Mpro(u2, w)} = E{Ψu1(U, Y, ε,W )Ψu2(U, Y, ε,W )|W = w}.

For the test statistic Tn,pro, we have

Tn,pro
L−→
∫
{Mpro(u,w)}2Fw(du)dw,

where Fw is the conditional distribution of U>W , given W .

In Tn,pro, if the weighting function is taken to be one, then Tn,pro re-

duces to a score-type statistic. However, this score-type test cannot de-

tect an alternative that satisfies E
[
Y −

{
X>β + g(T )

}]
= 0 a.e., but

E[Y − {X>β + g(T )}|X,T ] 6= 0 a.e.

4. Analysis of the asymptotic power

In the following, we investigate the power behavior of the statistic under

local and global alternatives. We consider the local alternative with a devi-

ation of a nonlinear measurable function of (X,T ) from the null hypothesis;

that is,

H1n : Pr
{
Y = X>β + g(T ) + n−1/2D(X,T ) + ε

}
= 1, (4.3)

Statistica Sinica: Preprint 
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where E(ε|X,T ) = 0, and D(X,T ) cannot take the form of X>β + g(T )

for any β and g(T ) and is a measurable function of (X,T ) satisfying with

0 < E{D2(X,T )} < ∞. Let Ω(u,w) = E{D̃(X,T )I(U>W ≤ u)|W =

w}−Γ(u,w)Σ−1 E{X̃D̃(X,T )}, with D̃(X,T ) = D(X,T )−E{D(X,T )|T}.

Then, we have the following result.

Theorem 2. Under Conditions (C1)–(C5) in the Appendix and the alter-

natives in (4.3), we have

Tn,pro
L−→
∫
{Mpro(u,w) + Ω(u,w)}2Fw(du)dw,

where Mpro(u,w) is defined in Theorem 1.

Compared with the results of Theorem 1, Theorem 2 indicates that

there is an additional component Ω(u,w) in the asymptotic distribution

of the statistic Tn,pro under the local alternatives in (4.3). The quantity

Ω(u,w) reflects the distance between the null and the alternative hypothe-

ses. Therefore, the proposed statistic can detect a local alternative that

approaches the null hypothetical model at the parametric rate. Such a de-

tection cannot be achieved if one uses the local test methods (Härdle and

Mammen, 1993; Li and Wang, 1998).

We further consider the following global alternative hypotheses:

H1n : Pr
{
Y = X>β + g(T ) +D(X,T ) + ε

}
= 1. (4.4)

Statistica Sinica: Preprint 
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We have the following results.

Theorem 3. Under Conditions (C1)–(C5) in the Appendix and the alter-

natives in (4.4), we have Tn,pro−→∞ as n→∞.

Theorem 3 shows that the statistic Tn,pro diverges to infinity under the

global alternative hypothesis in (4.4). Therefore, it has asymptotic power

one and is consistent. Note that the results of Theorems 1–3 do not depend

on distributional assumptions on the model error, but do allow for error

heteroscedasticity.

We also consider the following local alternative hypothetical models:

H1n : Pr
{
Y = X>β + g(T ) + nαD(X,T ) + ε

}
= 1. (4.5)

Theorem 4. Under Conditions (C1)–(C5) in Appendix and the alternatives

in (4.5), with −1/2 < α < 0, we have Tn,pro−→∞ as n→∞.

When −1/2 < α < 0, the convergence rate of model (4.5) to the null

hypothetical model is between those of models (4.3) and (4.4). Theorems

1, 3, and 4 show that the test can detect alternative models converging to

the null model with rates nα, for −1/2 ≤ α ≤ 0.
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5. A bootstrap option for critical value calculation

Theorem 1 gives the asymptotic distribution of the statistic Tn,pro under

the null hypothesis. An immediate concern is that this distribution may be

case-dependent, which complicates the calculation of the critical value. To

overcome this potential difficulty, we suggest using the bootstrap method

to determine the critical value.

To begin bootstrapping, generate an independent and identically dis-

tributed (i.i.d.) random variable sequence {Vi, i = 1, . . . , n} with mean zero

and variance one, that also satisfies the condition that |Vi| ≤ c for some

finite constant c. Let Y ∗i = X>i β̂n + ĝn(Ti) + [Yi − {X>i β̂n + ĝn(Ti)}]Vi.

Then, calculate the statistic Tn,pro, denoted by T ∗n,pro, based on the boot-

strap sample {(Y ∗i , Xi, Ti), i = 1, . . . , n}. Repeat the above process B times

and obtain T ∗n1,pro, . . . , T ∗nB,pro. Then, calculate the 1−α empirical quantile

of the bootstrap statistic based on {T ∗n1,pro, . . . , T ∗nB,pro}, which is taken as

the α-level critical value.

Note that for the bootstrap procedure, it is not necessary to estimate

any new quantities, such as the influential function. In addition, the testing

procedure is data-driven. Given only the sample {(Y1, X1, T1), . . . , (Yn, Xn, Tn)},

the proposed testing procedure using the bootstrap-generated critical value

can determine whether the partially linear model fits the data adequately,

Statistica Sinica: Preprint 
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without any other information on the data-generation process.

For the bootstrap testing statistic T ∗n,pro, we have the following result.

Theorem 5. Under the null hypothesis (1.1) or alternative hypothesis (4.4),

if Conditions (C1)–(C5) in the Appendix are satisfied, the conditional dis-

tribution of T ∗n,pro converges in distribution to the limiting null distribution

of Tn,pro, given {(Y1, X1, T1), . . . , (Yn, Xn, Tn), . . .}.

Theorem 5 shows that the bootstrap test statistic has the same asymp-

totic distribution as that of the proposed test. By repeatedly generating

series of i.i.d. random variables {Vi, i = 1, . . . , n}, we can obtain a series

of bootstrap test statistics that can be viewed as a sample coming from

the population Tn,pro. Then, we can calculate the empirical quantile of the

distribution of Tn,pro. The critical value determined using this method ap-

proximates the theoretical value, regardless of whether the data are from the

null hypothetical model (1.1) or the alternative hypothetical model (4.4).

6. Simulations and real data analyses

6.1 Simulation studies

In this section, we report simulation results to evaluate the finite sample

performance of the proposed method. For the comparisons, four tests (i.e.,

Statistica Sinica: Preprint 
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Fan and Li’s test, T un ; Zhu and Ng’s test, T sn, Xia’s test, TXian ; and the

proposed test, Tn,Pro) were evaluated. Two settings with were considered,

namely, with two-dimensional, and 20-dimensional covariates in the linear

part were considered. Additional simulation results for the settings with

five- and 10-dimensional linear covariates are presented in the online Sup-

plemental Material. In the estimation procedure (see Appendix A.2), we

used a Gaussian kernel and bandwidth hn = 1.06 min(std(T ), 3Q̂r/4) n−1/3,

where std(T ) and Q̂r are the sample standard deviation and interquantile

of {T1, . . . , Tn}, respectively. This choice of bandwidth is a combination

of a rule of thumb and an undersmoothing method. We considered three

different sample sizes: n = 60, 100, and 200. All simulation results are

based on 1000 replications. For each replication, the bootstrap process was

repeated 300 times. The nominal level was set to 0.05 and 0.1.

Example 1. We consider candidate models with two-dimensional linear

covariates and possible interaction between the linear covariates:

Y = β1X1 + β2X2 + g(T ) + CX1X2/2 + ε (6.6)

with X1, X2 ∼ U(0, π), g(T ) = exp(T 2 − 2T ), T ∼ U(0, 1), ε ∼ N (0, 1),

and β1 = 2, β2 = 3. To examine the empirical size and power of each test,

we took C = 0, 0.2, 0.4, 0.6, 0.8, 1.0.
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Example 2. We consider candidate models with 20-dimensional linear co-

variates:

Y = X>β + g(T ) + C
∑
r

log(X2
r + T 2) + ε, (6.7)

where X = (X1, . . . , X20)
>, g(T ) = T 2, T ∼ N (0, 1), ε ∼ N (0, 0.5), and

β = 120 (a 20-dimensional vector of ones). Let X follow a multivariate nor-

mal distribution N20(0,Σ), with Σ = (σjj′) and σjj′ = 0.1, j, j′ = 1, . . . , 20.

We used C = 0, 0.1, 0.2, 0.3, 0.4, 0.5.

We calculated the proportions of times the null hypothesis was rejected

among the 1000 replicates. This yields the empirical size under the null

hypothesis (i.e., C = 0) and the empirical power under the alternative

hypothesis (i.e., C 6= 0). We report the rejection proportions of the tests

in Figures 1 and 2, where Tn,Pro, T sn, T un , and TXian denote the proposed

test (solid line with filled diamond), Zhu and Ng’s test (dotted line with

filled circle), Fan and Li’s test (dashed line with filled square), and Xia’s

test (dot-dash line with filled triangle), respectively. The thin horizontal

line indicates the nominal level of 0.05 or 0.1.

In Example 1, the empirical sizes of T sn and Tn,Pro are close to the nom-

inal levels, while the empirical sizes of T un and TXian are lower than the

nominal levels. With regard to the power curves, Tn,Pro clearly performs

best, followed by TXian , T sn, and T un in a consistent order for all configura-
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(e) : n= 200 with level 5%
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Figure 1: Simulation results for model (6.6) in Example 1. Rejection pro-

portions of four methods against C with different sample sizes and test

levels 0.05, 0.1.

tions.

In Example 2, the performance of Tn,Pro is still very promising, while

the other tests almost crash. Specifically, T un is always equal to zero, which
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(e) : n= 200 with level 5%
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Figure 2: Simulation results for model (6.7) in Example 2. The legend is

the same as that in Figure 1.

causes the empirical size and power to be zero. Furthermore, T sn and its

bootstrap version may degenerate to zero, which results in large empirical

sizes. Though TXian is free from any degeneration, its power curve indicates

that it does not perform well when the dimension of X is moderate or large.
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Table 1: Failure times among the 1000 replicates for the four tests in model

(6.7) with different sample sizes and different C-values.

n=60 n=100 n=200

C F u F s F u F s F u F s FXia F Pro

0.0 1000 995 1000 998 1000 946 0 0

0.5 1000 996 1000 987 1000 953 0 0

1.0 1000 999 1000 985 1000 949 0 0

2.0 1000 997 1000 989 998 946 0 0

3.0 1000 994 1000 983 1000 950 0 0

4.0 1000 999 1000 980 1000 945 0 0

F u, F s, FXia, and F Pro: corresponding to the tests by Fan and Li (1996),

Zhu and Ng (2003), Xia (2009), and the proposed test, respectively.

We report the failure times of the tests T un , T sn, TXian , and Tn,Pro under

Example 2 in Table 1. There were no failures for the four tests in Example

1. In Example 2, T un and T sn almost always degenerated in all configurations.

This may explain why the power curves of these two tests in Figure 2 are

so flat.

Overall, the proposed test performs best, with satisfactory empirical

size and power. Most importantly, the proposed test is free from the

curse of dimensionality. This feature becomes more significant with higher-

dimensional covariates.
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6.2 Real-data analyses

Additive models are perhaps the most realistic, parsimonious option when

the relationship between the dependent variable and the covariates may not

be linear. On the other hand, if some nonparametric components can be

simplified to linear components, the estimation can be more efficient and

easy to interpret. In this case, partially linear models are preferable to addi-

tive models. In the real-data analysis, our preliminary exploration indicates

that the relationship between the dependent variable and the covariates is

not linear. However, whether a partially linear model can parsimoniously

reflect this relationship is unclear. We therefore apply the proposed method.

In this section, we apply the proposed test Tn,Pro and the three tests

T un , T sn, and TXian used in the simulation studies to analyze two real data

sets. We test whether the partially linear model in (1.1) can adequately fit

the data sets. The choices of the kernel function and bandwidth are the

same as those in the simulation studies, in principle.

Example 3. (Analysis of hitters’ salary data) In this example, we apply the

four tests to analyze hitters’ salary data, which were analyzed previously by

Xia et al. (2002). After removing 59 missing values from the original data set

of 322 observations, we were left with 263 observations. The annual salary

in 1987 served as the response variable Y . We treated home runs during
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their entire career up to 1986 (CHmRun) as the nonlinear component, and the

following 15 covariates as linear components: times at bat in 1986 (AtBat),

hits in 1986 (Hits), home runs in 1986 (HmRun), runs in 1986 (Runs), runs

batted in 1986 (RBI), walks in 1986 (Walks), years in major leagues (Years),

times at bat during their entire career up to 1986 (CAtBat), hits during

their entire career up to 1986 (CHits), runs during their entire career up to

1986 (CRuns), runs batted in during their entire career up to 1986 (CRBI),

walks during their entire career up to 1986 (CWalks), put-outs (PutOuts),

assistances (Assists), and errors (Errors). For numerical convenience, all

predictors were standardized to have mean zero and variance one.

Having conducted 5000 bootstrap replications, we obtained the p-values

based on T un , T sn, and Tn,Pro to be 0.3756, 0.2538, and 0.0170, respectively.

We also had SCVn = 0.9820 < TSSn = 0.9962 for the test TXian . Here,

SCVn and TSSn are the single-indexing cross-validation values and the av-

erage residual sum of squares, respectively, that is,
∑n

i=1(ε̂i−
∑n

j=1 ε̂j/n)2/n.

See Xia (2009) for the calculation of SCVn and TSSn. Therefore, the pro-

posed method and Xia’s method both suggest that we should reject the null

hypothesis, while the tests of Fan and Li (1996) and Zhu and Ng (2003) sug-

gest not rejecting the null hypothesis of the partially linear model. Based

on our simulation results, we prefer to reject the null hypothesis.
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Figure 3: Results for the hitters salary data. The estimated residuals ε̂n

versus CHmRun (a) and X>β̂n (b) along the nonparametric estimated curves

with 95% confidence bands. The estimated curves of the salary against hits

in 1986 (c) and home runs in 1986 (d) via the gam fitting.

We show scatter plots of the estimated residuals ε̂n versus CHmRun and

X>β̂n in Figure 3 (a) and (b), and a nonparametric regression of salary

against Hits and HmRun via the gam fitting in Figure 3 (c) and (d). Both

curves show significant nonlinear patterns. This evidence further supports

the finding that a partially linear model is not adequate to fit this data set,
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supporting the conclusion of the proposed method and of Xia’s method.

Example 4. (Analysis of body fat data) We studied a body fat data set,

available at http://lib.stat.cmu.edu/datasets/bodyfat, with 249 observa-

tions after removing three outliers from the original data set. The log-

arithm of the percentage of body fat serves as the response variable Y .

There are 11 predictors in the linear part: age (Age), weight (Weight),

height (Height), chest circumference (CChest), abdomen circumference

(CAbdomen), hip circumference (CHip), thigh circumference (CThigh), ankle

circumference (CAnkle), bicep (extended) circumference (CBiceps), forear-

m circumference (CForearm), and wrist circumference (CWrist).

Following the editor’s suggestion, we apply our method to a partially

linear model with a two-dimensional nonparametric component; that is, we

consider

Y = X>β + g(CKnee, CNeck) + ε.

The procedure and theory are still valid for this situation, with mild

additional assumptions, although we focus only on univariate T . For nu-

merical convenience, all predictors were standardized with mean zero and

variance one.

Based on 5000 bootstrap replications, we obtained the p-values based

on T sn and Tn,Pro to be 0.1022 and 0.0058, respectively, while the test based

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0238



6.2 Real-data analyses 26

on the U-statistic T un degenerated. For the test TXian , we obtained SCVn =

1.2615 > TSSn = 0.9960 and, therefore, the null hypothetical partially

linear model should not be rejected. Thus, the tests T sn and TXian suggest

not rejecting the null hypothesis, and the test T un is not applicable. However,

the proposed test suggests that we reject the null hypothesis, which means

that the hypothesized partially linear model does not adequately fit this

body fat data.

To investigate whether the above results seem sensible, we plot the

estimated surface of the nonparametric function g(T ) with T = (T1, T2)
> =

(CKnee, CNeck)> in Figure 4 (a), indicating that it is difficult to find a

suitable form to model the function g(T ). We also provide scatter plots

of the estimated residuals ε̂n versus CKnee, CNeck, and X>β̂n in Figure

4 (b), (c), and (d), respectively. Figures 4 (b) and (c) indicate that the

nonparametric model for knee circumference and neck circumference fits

reasonably well. However, Figure 4 (d) shows a nonlinear trend between

the residuals and X>β̂n, which casts suspicion on the model adequacy. To

explore this further, we depict the estimated effects for ankle circumference

(CAnkle) in Figure 4 (e) and bicep (extended) circumference (CBiceps) in

Figure 4 (f). The evidence of nonlinear patterns indicates that a partially

linear model is not adequate to fit this data set. As shown, the proposed

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0238



6.2 Real-data analyses 27

CKnee

−2
−1

0
1

2
3C

N
eck

−2

−1
0

1
2

3

Y

2.5

3.0

(a)

−2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

CKnee

ε̂ n

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b)

−2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

CNeck

ε̂ n

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

XTβ̂n

ε̂ n

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(d)

−2 −1 0 1 2

−
0.

2
0.

0
0.

2
0.

4

CAnkle

s(
C

A
nk

le
)

(e)

−2 −1 0 1 2

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

CBiceps

s(
C

B
ic

ep
s)

(f)

Figure 4: Results for the body fat data. The estimated surface of the

nonparametric function g(CKnee, CNeck) (a). The estimated residuals ε̂n

versus CKnee (b), CNeck (c), and X>β̂n (d) along the nonparametric esti-

mated curves with 95% confidence bands. The estimated curves of log(fat)

against ankle circumference (e) and bicep (extended) circumference (f) via

the gam fitting.

test is more powerful than the tests T sn and TXian .
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7. Conclusion

We have proposed a projection-based method for checking the adequacy

of a PLM. The method is consistent and reduces dimensionality, which

may be of interest in dealing with high-dimensional observations. In sum-

mary, the proposed procedure is computationally expedient, theoretically

reliable, intuitively appealing, and practically useful. We have shown both

theoretically and numerically that the proposed procedure has advantages

over the existing methods. However, note that we do not claim that the

proposed method will always be best. Different circumstances may favor

other methods, based on the assertion of Bierens and Ploberger (1997) that

the aforementioned four weighting functions and the simple indicator func-

tion lead to asymptotic admissible tests. However, our overall numerical

comparison suggests that the proposed procedure is very promising.

The proposed projection-based methodology is not limited to the PLM,

but, in fact, is applicable to more general semiparametric models. While

a theoretical investigation in this direction would be challenging,we believe

the success of our projection-based method on the PLM makes further

research warranted. Future studies should also examine the cases when

(i) the number of covariates increases with the sample size, and (ii) the

response variable is not continuous.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0238



A.1 Assumptions29

Supplementary Material

The online Supplementary Material provides proofs for Theorems 1 – 5

and additional simulation studies.
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Appendix

In what follows, we denote X̃ = X − g1(T ) and X̃i = Xi − g1(Ti).

A.1 Assumptions

We begin this section by giving the conditions needed in the proofs of the

theorems.

(C1) The functions g(t), g1(t) = E(X|T = t) and g2(t) = E(Y |T = t) are

second-order continuously differentiable and satisfy Lipschitz condi-

tion of order 1.
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(C2) The matrix Σ = E(X̃X̃>) is positively definite and supx,tE(Y 2|X =

x, T = t) <∞.

(C3) (i)The density of T , ft(t), exists and satisfies

0 < inf
t∈R1

ft(t) ≤ sup
t∈R1

ft(t) <∞;

(ii) ft(t) is second-order continuously differentiable.

(C4) The kernel function K(·) is a bounded kernel function of order 2 with

bounded support.

(C5) The bandwidths satisfy hn → 0, nhn →∞ and nh4n → 0 as n→∞.

Remark 1. Conditions (C1)and (C2) are necessary for the asymptotic nor-

mality of the model estimating procedure. Condition (C3) aims at avoiding

tedious proofs of the theorems. Conditions (C4)–(C5) are generally needed

to obtain the convergence rates of the nonparametric estimates.

A.2 Estimation of β and g(t)

Let Sj(t, h) = 1/n
∑n

i=1(Ti − t)jKh(t − Ti), j = 0, 1, 2, with K(·) being a

kernel function, hn a bandwidth sequence and Kh(t) = 1/hnKh(t/hn). We

first estimate the function g1(t) and g2(t) by the local linear method:

ĝ1n(t) =
1

n

n∑
i=1

{S2(t, h)− S1(t, h)(Ti − t)}Kh(t− Ti)Xi

S0(t, h)S2(t, h)− S2
1(t, h)

,
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ĝ2n(t) =
1

n

n∑
i=1

{S2(t, h)− S1(t, h)(Ti − t)}Kh(t− Ti)Yi
S0(t, h)S2(t, h)− S2

1(t, h)
.

Then we can estimate β and g(t) as follows:

β̂n =

[
n∑
i=1

{Xi − ĝ1n(Ti)}{Xi − ĝ1n(Ti)}>
]−1 n∑

i=1

{Xi−ĝ1n(Ti)}{Yi−ĝ2n(Ti)}

and

ĝn(t) = ĝ2n(t)− ĝ1n(t)>β̂n.

Therefore we can estimate the model error ε for the ith subject by ε̂(Ui, β̂n, ĝn(Ti))

= Yi − {X>β̂n + ĝn(Ti)}.
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