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Abstract: We propose a model averaging method that combines estima-

tors from the generalized method of moments (GMM). Unlike other

GMM-based model averaging procedures, this method allows all can-

didate models to be misspecified (not locally misspecified). We prove

that when all candidate models are misspecified, the proposed method

is optimal in the sense of minimizing the estimation loss; when there

exists at least one correctly specified model, the method can achieve

the common root-n convergence rate. Simulation experiments and an

application to a housing market show the superiority of our method

over other methods.
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1. Introduction

Model averaging and selection are the two main approaches used to deal

with having many candidate models. Using model selection, we figuratively

put all of our inferential eggs in one unevenly woven basket (Longford,

2005). Model averaging is a smoothed extension of model selection that

substantially reduce the risk relative to that of selection (Hansen, 2014).

Moreover, model averaging procedures can be more stable than those of

model selection, for which a small change in the data can have a significant

effect on the choice of the choice of model (Breiman, 1996; Yuan & Yang,

2005).

There are two types of model averaging: Bayesian model averaging

(BMA) and frequentist model averaging (FMA). BMA has long been a

popular statistical technique. Its main advantage is that inferences based

on BMA are straightforward; see Hoeting et al. (1999) for a comprehensive

review of this literature. FMA is commonly used to improve prediction or

estimation precision. As discussed in Bates & Granger (1969) and Leung &

Barron (2006), an average estimator often reduces the mean squared error

(MSE) in an estimation. This is because it incorporates useful information

from the relationship between the response and the covariates, providing

a kind of insurance against selecting a very poor candidate model. Many
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FMA methods have been proposed, including averaging weights based on

the scores of information criteria (Buckland et al., 1997; Hjort & Claeskens,

2003, 2006; Zhang & Liang, 2011), optimal weighting (Hansen, 2007; Wan

et al., 2010; Liang et al., 2011; Zhang et al., 2014; Zhang & Wang, 2019),

adaptive weighting (Yang, 2001; Yuan & Yang, 2005; Zhang et al., 2013),

plug-in methods (Liu, 2015; Yin et al., 2019), and model averaging marginal

regression (Li et al., 2015; Chen et al., 2018). The optimal weighting method

minimizes a weight choice criterion, and has been shown to provide the min-

imal prediction loss in a large sample sense. In the seminal work on opti-

mal model averaging, Hansen (2007) combined the least squares estimators.

Since then, a large body of literature has been formed on optimally combin-

ing least squares estimators or generalized least squares estimators, such as

Hansen & Racine (2012), Liu & Okui (2013), Ando & Li (2014), Cheng &

Hansen (2015), Liu et al. (2016), and Fang et al. (2019). Recently, optimal

model averaging methods were extended to combine maximum likelihood

estimators; see, for example, Zhang et al. (2016) and Ando & Li (2017). The

weighted average least squares estimation is a method between BMA and

FMA, using prior distributions and an analysis of the estimation risk from

a frequentist perspective; see Magnus et al. (2010), Magnus et al. (2011),

and De Luca et al. (2018).
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In this study, we develop optimal model averaging based on the gener-

alized method of moments (GMM). In general, the GMM is more applicable

than the maximum likelihood method because the former only requires the

moment functions, and does not require knowledge of the likelihood func-

tion. Despite the extensive literature on model averaging, few studies have

explicitly examined GMM-based model averaging. Those that have include

the works of DiTraglia (2016) and Cheng et al. (2019). DiTraglia (2016)

combines GMM estimators from candidate models with different moment

condition sets, and takes into account locally misspecified moment condi-

tions. We describe the local misspecification in (2.4) of Section 2. Cheng

et al. (2019) combines two GMM estimators, one of which is from a cor-

rectly specified candidate model. In contrast, we allow all candidate models

to be misspecified (not locally misspecified).

To develop an optimal model averaging method for the GMM, following

the classic model averaging literature, we propose a weight choice criterion

by estimating the risk under the GMM framework. We prove that when

all candidate models are misspecified, the corresponding model average es-

timator is optimal in the sense that it minimize the estimation loss. To

provide more comprehensive support for using our method, we prove that

it has root-n consistency when there are correctly specified candidate mod-
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els. Therefore, for a large sample sense, our method performs no worse than

the commonly used methods that also achieve root-n consistency. In addi-

tion to providing theoretical justifications for the proposed method, we use

a Monte Carlo study to demonstrate that the proposed averaging method

outperforms the GMM and a selection method based on the GMM in a

variety of settings, especially when the sample size is small.

The remainder of this paper is structured as follows. In Section 2, we

introduce the candidate models and the GMM estimation. In Section 3,

we introduce the proposed model average estimator based on the GMM. In

Section 4, we show the asymptotic optimality and root-n consistency of the

proposed method. In Sections 5 and 6, we report the results of a Monte

Carlo study and a real-data application, respectively. Section 7 concludes

the paper. The proofs of the theoretical results are given in the online

Supplementary Material.

2. Candidate models and GMM estimation

Let θd×1 be an unknown vector, µtrue(θ)p×1 be moments, and µ̂p×1 be the

sample moments. Thus, the moment conditions are

E {µ̂− µtrue(θ)} = 0p×1. (2.1)
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Let µ(·) be the working moment function, which can be different from

µtrue(·). As a result, the working moment conditions can be misspecified;

that is,

E {µ̂− µ(θ)} 6= 0p×1. (2.2)

For example, when

yi = Xi1θ1 + · · ·+Xi(d−1)θd−1 + exp(Xidθd) + εi,

with E(εi|Xi1, . . . , Xid) = 0, we have µ̂ = XTy and

µtrue(θ) = XT
[{
X11θ1, . . . , X1(d−1)θd−1, exp(X1dθd)

}T
, (2.3)

· · · ,
{
Xn1θ1, . . . , Xn(d−1)θd−1, exp(Xndθd)

}T]T
,

where y = (y1, . . . , yn)T and X =
{

(X11, . . . , X1d)
T, · · · , (Xn1, . . . , Xnd)

T
}T

.

However, the working moment function may be incorrectly set as µ(θ) =

XTXθ; that is, the function of the last variable Xid is misspecified. The

local misspecification considered in DiTraglia (2016) is

E {µ̂− µ(θ)} = (0T
p1×1, ζ

T
p2×1/

√
n)T, (2.4)

where ζ is an unknown vector and p1 +p2 = p. Notably, the setting in (2.2)

is more general than that in (2.4).

Because we are uncertain whether some components of θ should be

set to zero, which determines whether certain variables should be used, we
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consider M candidate models. For the mth candidate model, the unknown

parameter vector is θm, which is a dm-dimensional sub-vector of θ, such that

θm = Πmθ, where Πm is a projection matrix equal to (Idm×dm ,0dm×(d−dm)),

or a column permutation thereof. In the example following (2.2), when θd

is very small, using µ{(θ1, . . . , θd−1, 0)T} as the working moment function

can be better than using µ{(θ1, . . . , θd−1, θd)T)} in (2.5).

Under the mth candidate model, the GMM estimator of θm is

θ̂m = argminθm [{µ̂− µ(ΠT
mθm))TΩ(µ̂− µ(ΠT

mθm)}], (2.5)

where Ω is a positive-definite weighting matrix. Note that this is a special

case of the classic minimum distance estimator and of the general estimator

(Newey & McFadden, 1994), but not of a general GMM estimator in which

the moment conditions are E
{
g(ΠT

mθm)
}

= 0p×1. Developing a model

averaging method that combines the general GMM estimators is left to

future research.

Note that the matrix Ω and sample moments µ̂ do not vary with the

model index m in (2.5), which implies that the candidate models use the

same moment conditions. Hence, we combine models with different specifi-

cations in µ(ΠT
mθm), rather than models with different moment conditions,

as in DiTraglia (2016) and Cheng et al. (2019). We allow M and dm to

increase with the sample size n, but we need p to be unrelated to n. Note
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that if d is large and all 2d possible models are considered, then the compu-

tation burden will be very heavy. In this case, the model-screening methods

developed in Ando & Li (2014) and Zhang et al. (2016) can be applied.

3. Model average estimator based on the GMM

Let w = (w1, w2, ..., wM)T be a weight vector in the following set:

W = {w ∈ [0, 1]M :
M∑
m=1

wm = 1}. (3.1)

We define the model average estimator of θ as

θ̂(w) ≡
M∑
m=1

wmΠmθ̂m. (3.2)

Because some components of the vectors Πmθ̂m are zeros, the model average

estimator θ̂(w) is a type of shrinkage estimator, as pointed out by Liang

et al. (2011) and Hansen (2014).

Let θ0 be the true value of θ. A reasonable loss function to evaluate

the model average estimator θ(w) is

L(w) ≡ [µ{θ̂(w)} − µtrue(θ0)]
TΩ[µ{θ̂(w)} − µtrue(θ0)], (3.3)

and the corresponding risk function is

R(w) ≡ E{L(w)}. (3.4)
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Next, we propose a weight choice criterion by estimating the risk function

R(w). First, we list two conditions.

Condition (C.1) µ̂−µtrue(θ0) satisfies the following central limit theorem:

√
n {µ̂− µtrue(θ0)}

d−→ π ∼ Normal(0,V ),

where
d−→ denotes convergence in distribution, π is a random vector, and V

is a nonrandom positive-definite matrix.

Condition (C.2) For m ∈ {1, . . . ,M}, the derivatives ∂µ(θ)/∂θ and

∂θ̂m/∂µ̂
T exist ar are continuous with respect to θ and µ̂, respectively, and

trace
(
∂(
√
nµ{θ̂(w)} −

√
nµ̂)/[∂

√
n {µ̂− µtrue(θ0)}T]ΩV

)
and
√
nµ{θ̂(w)−

µ̂}Ω
√
n{µ̂− µtrue(θ0)} are uniformly integrable for w ∈ W.

Condition (C.1) is the same as Assumption 1.9 of Harris & Mátyás

(1999), where its rationality is discussed in detail. Condition (C.2) relates

to the existence, continuity, and integrability. We propose the following

weight choice criterion:

C̃(w) ≡ [µ{θ̂(w)} − µ̂]TΩ[µ{θ̂(w)} − µ̂]− 2n−1trace (ΩV )

+2n−1trace

[
M∑
m=1

wm
∂µ{θ̂(w)}
∂θ̂(w)T

ΠT
m

∂θ̂m
∂µ̂T

ΩV

]
+{µ̂− µtrue(θ0)}TΩ{µ̂− µtrue(θ0)}. (3.5)
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Proposition 1 Under Conditions (C.1)−(C.2), we have

E
{
C̃(w)

}
= R(w) + o(n−1). (3.6)

The proof of Proposition 1 is given in Section S.1 of the Supplementary

Material. The normal approximation is widely used in developing model se-

lection criteria; see, for example, Hurvich & Tsai (1989). From (3.6), C̃(w)

is an approximately unbiased estimator of the risk R(w). By minimizing

C̃(w) with respect to w, the risk should also be minimized, but there are

unknown parameters in C̃(w). Hence, the minimization is not feasible.

Let V̂ be the preliminary estimator of V . Andrews (1991) and Den Haan

& Levin (1997) provide methods for estimating V̂ . Removing the terms un-

related to w and replacing V with its estimator, the criterion C̃(w) defined

in (3.5) becomes

C(w) ≡ [µ{θ̂(w)} − µ̂]TΩ[µ{θ̂(w)} − µ̂]

+2n−1trace

[
M∑
m=1

wm
∂µ{θ̂(w)}
∂θ̂(w)T

ΠT
m

∂θ̂m
∂µ̂T

V̂

]
, (3.7)

which can function as a weight choice criterion. By minimizing C(w), we

obtain the following weights:

ŵ = argminw∈WC(w). (3.8)
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The first term of C(w) measures the model fitness. To interpret the sec-

ond term of C(w), following Efron (2004), we define the degrees of freedom

of the model average estimator θ̂(w) as

df(w) = cov
{
µT(θ̂(w))Ω1/2, µ̂TΩ1/2

}
. (3.9)

From the proof of Proposition 1, we know that the second term of C(w) is

an approximately unbiased estimator of the degrees of freedom df(w). We

refer to the resulting estimator θ̂(ŵ) the model average estimator based on

the GMM (MAGMM). When the weight components are restricted to one

or zero, our method simplifies to a model selection method based on the

GMM, called MSGMM.

In general, the moment µ(θ) is an explicit function of θ; hence, the

calculation of ∂µ{θ̂(w)}/∂θ̂(w)T is straightforward. Next, we present a

closed form for ∂θ̂m/∂µ̂
T. Write θ̂m = (θ̂m,1, . . . , θ̂m,dm)T. Let

A(θ̂m) =
∂µ(ΠT

mθ̂m)T

∂θ̂m
, Aτ (θ̂m) =

∂A(θ̂m)

∂θ̂m,τ
, (3.10)

Dm =
[
A1(θ̂m)Ω

{
µ̂− µ(ΠT

mθ̂m)
}
, . . . ,Adm(θ̂m)Ω

{
µ̂− µ(ΠT

mθ̂m)
}]

dm×dm
,(3.11)

and

Bm = A(θ̂m)ΩAT(θ̂m), (3.12)
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for m = 1, . . . ,M and τ = 1, . . . , dm, where dm is the number of components

in θ̂m.

Proposition 2 If Condition (C.2) holds, the derivatives ∂A(θ̂m)/∂θ̂m,τ for

m = 1, . . . ,M and τ = 1, . . . , dm exist, and the minimum singular value

of the matrix (Dm − Bm)T(Dm − Bm) is bounded away from a positive

constant, for m = 1, . . . ,M , then

∂θ̂m
∂µ̂T

= −
{

(Dm −Bm)T(Dm −Bm)
}−1

(Dm −Bm)TA(θ̂m)Ω. (3.13)

The proof of Proposition 2 is given in S.2 of the Supplementary Material.

This proposition provides a closed form for the derivative ∂θ̂m/∂µ̂
T.

Remark 1 When focusing on linear regression candidate models that have

different regressor matrices, our criterion C(w) simplifies to the Mallows’

criterion introduced by Hansen (2007). Specifically, consider a linear regres-

sion model y = Xθ + ε, ε|X ∼ (0, σ2In), where X has a fixed full-column

rank, and the regressor matrix for the mth candidate model is XΠT
m. Then,

we have

µ̂ =
XTy

n
, µ(θ) =

XTXθ

n
, Ω =

(
XTX

n

)−1
, V = σ2E(XiX

T
i ), (3.14)

where XT
i is the ith row of X. Let σ̂2 be an estimator of σ2. Then, V̂ =

σ̂2XTX/n. From (3.10) and (3.11), we have

A(θ̂m) = Πm
XTX

n
, Aτ (θ̂m) = 0dm×p, Dm = 0dm×dm . (3.15)
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Hence, we can show that

trace

[
M∑
m=1

wm
∂µ{θ̂(w)}
∂θ̂(w)T

ΠT
m

∂θ̂m
∂µ̂T

ΩV̂

]
= σ̂2

M∑
m=1

wmdm, (3.16)

and thus

C(w) = n−1‖Xθ̂(w)− y‖2 + 2n−1σ̂2

M∑
m=1

wmdm − yT
{
In −X(XTX)−1XT

}
y,(3.17)

which is the Mallows’ criterion in Hansen (2007) up to the term yT
{
In −X(XTX)−1XT

}
y

unrelated to w. The proofs of (3.16) and (3.17) are provided in Section S.3

of the Supplementary Material.

Remark 2 In this remark, we consider linear regression models with in-

strumental variables. The linear regression model is still y = Xθ + ε, and

there is an instrumental variable matrix Z that has a fixed full-column rank

not smaller than that of X, which also has a fixed full-column rank, and

ε|Z ∼ (0, σ2In). We fix Ω = (ZTZ/n)−1. For the mth candidate model, the

regressor matrix is XΠT
m. Let PZ = Z(ZTZ)−1ZT and σ̂2 be an estimator

of σ2. Then, we have

µ̂ =
ZTy

n
, µ(θ) =

ZTXθ

n
, V̂ = σ̂2ZTZ

n
, (3.18)

A(θ̂m) = Πm
XTZ

n
, Aτ (θ̂m) = 0dm×p, Dm = 0dm×dm . (3.19)

Hence, similarly to (3.16) and (3.17), we can show that

trace

[
M∑
m=1

wm
∂µ{θ̂(w)}
∂θ̂(w)T

ΠT
m

∂θ̂m
∂µ̂T

ΩV̂

]
= σ̂2

M∑
m=1

wmdm, (3.20)
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and thus

C(w) = n−1‖PZXθ̂(w)− y‖2 + 2n−1σ̂2

M∑
m=1

wmdm − yT(In −PZ)y.(3.21)

The proofs of (3.20) and (3.21) are given in Section S.3 of the Supplemen-

tary Material.

Lastly, note that if µ(θ) is a linear function of θ (i.e., there exists a ma-

trix Q such that µ(θ) = Qθ), which is the case in the above remarks, then

calculating ŵ is extremely simple. Let ĝm = Qθ̂m − µ̂, Ĝ = (ĝ1, . . . , ĝM),

and

g̃ = {trace(QTΠT
1 ∂θ̂1/∂µ̂

TΩV̂ ), . . . , trace(QTΠT
M∂θ̂M/∂µ̂

TΩV̂ )}T.

Then

C(w) = wTĜw + 2n−1wTg̃. (3.22)

Thus, the minimization of C(w) with respect to w is simply a quadratic pro-

gramming problem. Numerous software packages (e.g., quadprog of MAT-

LAB) are available to solve this problem very efficiently even when M is

very large.

4. Large-sample properties

In this section, we study the large-sample properties of the proposed MAGMM

estimator θ̂(ŵ). We first consider a common situation in which all candi-
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date models are misspecified (see Section 4.1 a the detailed description of

the model misspecification). In that situation, we show that the estimator

offers asymptotic optimality. Then, we consider an ideal situation in which

at least one of the candidate models is correctly specified. In this case,

the estimator is shown to have root-n consistency. All limiting processes

discussed in this paper are as n→∞. The number of candidate models M

can increase to infinity with n.

4.1 Asymptotic optimality under misspecified candidate models

When no value of θm exists such that µ(ΠT
mθm) = µtrue(θ0), we say

that the mth candidate model is misspecified.

Condition (C.3) V̂ − V = op(1).

Condition (C.4) There exist vectors θ∗1, . . . ,θ
∗
M such that ‖θ̂m − θ∗m‖ =

Op(d
1/2
m n−1/2), for any m ∈ {1, . . . ,M} and maxm∈{1,...,M} ‖θ̂m − θ∗m‖ =

Op(d
1/2M1/2n−1/2), where ‖θ̂m − θ∗m‖ = {(θ̂m − θ∗m)T(θ̂m − θ∗m)}1/2.

Condition (C.5) Uniformly for any w ∈ W and any vector θ̃w between

θ̂(w) and θ∗(w),

λmax

[
∂µ{θ̂(w)}

∂θ̂(w)
T
|θ̂(w)=θ̃w

]
= Op(1),

where λmax(·) denotes the largest singular value of a matrix.
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Condition (C.3) requires the estimatorV̂ to be consistent. Condition

(C.4) is a high-level condition. When the candidate model m is correctly

specified, the root-n consistency in Condition (C.4) has been shown by, for

example, Harris & Mátyás (1999). When the candidate model m is mis-

specified and dm is fixed, Hall & Inoue (2003) proved θ̂m−θ∗m = Op(n
−1/2),

under some regularity conditions. Condition (C.5) requires that the largest

singular value of the fixed-dimensional matrix ∂µ{θ̂(w)}/∂θ̂(w)
T
|θ̂(w)=θ̃

is uniformly bounded, and this matrix depends on the specific form of the

working moment function µ(θ).

Let θ∗(w) =
∑M

m=1wmΠmθ
∗
m,

L∗(w) = [µ{θ∗(w)} − µtrue(θ0)]
T Ω [µ{θ∗(w)} − µtrue(θ0)] ,

and ξn = inf
w∈W

L∗(w).

Condition (C.6) M1/2p1/2n−1/2ξ−1n → 0.

Condition (C.6) requires that the minimum limitation loss decreases at

a rate slower than n−1/2 when n→∞. Similar conditions are used in Ando

& Li (2014), Zhang et al. (2016), and Ando & Li (2017). To further discuss

Condition (C.6), we first define a correctly specified model. For model m̃,

if there exists a value of θm̃ such that µ(ΠT
m̃θm̃) = µtrue(θ0), then we say

that model m̃ is correctly specified. If one of the candidate models (say
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model m̃) is correctly specified, then µ(ΠT
m̃θ
∗
m̃) = µtrue(θ0), and thus

L∗(w0
m̃) =

{
µ(ΠT

m̃θ
∗
m̃)− µtrue(θ0)

]T
Ω
{
µ(ΠT

m̃θ
∗
m̃)− µtrue(θ0)

]
= 0, (4.1)

where w0
m̃ is an M × 1 vector, in which the m̃th element is one and the

others are zeros. Hence, Condition (C.6) requires that all candidate models

are misspecified. This condition is commonly used to study the properties

of an AIC-type model selection criterion; see, for example, Li (1987) and

Shao (1997).

Theorem 1 Under Conditions (C.1)−(C.6) and the conditions in Propo-

sition 2, we have

L(ŵ)

inf
w∈W

L(w)
→ 1 (4.2)

in probability, where the squared loss function L(w) is defined in (3.3).

The proof of Theorem 1 is provided in Section S.5 of the Supplementary

Material. This theorem shows that the model averaging procedure using

ŵ is asymptotically optimal in the sense that the resulting squared loss is

asymptotically identical to that of the infeasible best possible model average

estimator.

4.2 Root-n consistency when there are correctly specified candi-

date models
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The asymptotic optimality in Section 4.1 requires all candidate models

are misspecified. However, in practice, we never know whether there are

correctly specified candidate models (we say that the mth candidate model

is correctly specified if there exists a value of θm such that µ(ΠT
mθm) =

µtrue(θ0)), which may happen. Hence, in this section, we provide theoretical

support for our method when there are correctly specified candidate models.

In this case, our method exhibits root-n consistency, which means that in

a large-sample sense, our method at least does not perform worse than the

commonly used methods that also achieve root-n consistency. We further

impose the following regularity condition.

Condition (C.7) Uniformly for any w ∈ W and any vector θ̃ between

θ̂(w) and θ∗(w),

λ−1min

[
∂µ{θ̂(w)}

∂θ̂(w)
T
|θ̂(w)=θ̃w

]
= Op(1),

where λmin(·) denotes the smallest singular value of a matrix.

Condition (C.7) is similar to Condition (C.5), but requires that the

smallest singular value of the matrix be bounded away from zero.

Theorem 2 Under Conditions (C.1)−(C.5) and (C.7) and the conditions

in Proposition 2, if there exists at least one correctly specified candidate
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model (say model m̃), then

‖θ̂(ŵ)− θ0‖ = Op(n
−1/2p1/2). (4.3)

The proof of Theorem 2 is provided in Section S.6 of the Supplementary

Material. Combining Theorems 1−2, the proposed MAGMM method has

a theoretical justification in a large-sample sense, regardless of whether or

not there are correctly specified candidate models.

5. Monte Carlo

In this section, we conduct Monte Carlo experiments to examine the finite-

sample performance of the proposed model averaging method based on the

GMM (MAGMM). Here, we compare the model selection estimator MSGMM

and the GMM estimator. We do not compare our method with other exist-

ing selection or averaging methods because they focus on candidate models

with different moment conditions. As stated in Section 2, the candidate

models for our method use the same moment conditions, but different vari-

ables.

5.1 Data-generation process

We consider two simulation designs. In the first design, the true data-

generation procedure is captured by at least one of the candidate models,
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while in the second, it is not; that is, all candidate models are misspecified

in the second design.

Design I. We use the linear regression models with instrumental variables

described in Remark 2. Specifically, we set

yi = XT
i θ + εi, Xi = (1, Yi,q

T
i )T,

θ = (1, 1, 0.2,−0.001, 1, 0.01, 0.2, 0.01)T, qi ∼ Normal{06×1, (0.5
|j1−j2|)1≤j1,j2≤6},

Yi = hT
i γ + ui, γ = δ(1, 1, 1, 1, 1, 1, 1)T,

hi ∼ Normal{07×1, (0.5
|j1−j2|)1≤j1,j2≤7},

 εi

ui

 ∼ Normal


 0

0

 ,

 σ2 0.5σ

0.5σ 1


 .

Hence, the correlation coefficient between εi and ui is 0.5, and the instru-

mental variable vector is Zi = (1,hT
i ,q

T
i )T. We control σ2 such that the

theoretical R2 ≡ var(XT
i θ)/var(yi) varies in the set {0.2, 0.3, . . . , 0.8}, and

control δ such that the theoretical R̃2 ≡ var(hT
i γ)/var(Yi) varies in the set

{0.2, 0.5, 0.8}. The sample size n is set to 30, 80, 150, or 300. Here, we

consider the case with a very small sample size, i.e., n = 30, because we

find that when the sample size is large, all methods tend to perform very

similarly. The variables in qi are set to be auxiliary (i.e., they are possibly

used in the candidate models); hence, we have 26 = 64 candidate models.

To evaluate the methods, we use 104 replications. In each replication,

we obtain the estimators of the coefficients of the endogenous variable Yi
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by using the GMM, MAGMM, and MSGMM, which is defined in the text

following (3.9). As described in Remark 2, we set Ω = (ZTZ/n)−1 for all

methods. Then, we calculate MSE using these 104 replications. To facilitate

the comparisons, all MSEs are normalized using the MSE of the GMM.

Design II. In this design, we generate yi as

yi = Xi1θ1 + · · ·+Xi6θ6 + exp(Xi7θ7) + exp(Xi8θ8) + εi,

where Xij and θj are the jth components of Xi and θ, respectively. All

other settings in Design II are the same as those in Design I. Hence, in this

design, all candidate models are misspecified.

In contrast to Design I, we do not use the MSE in the coefficient esti-

mation to evaluate the methods in this design, because the estimators may

not all be consistent. Instead, we use the estimation loss, defined in (3.3),

to evaluate the methods. Then, we calculate the mean loss using the 104

replications. To facilitate the comparisons, all losses are normalized using

the loss from the GMM.

5.2 Results

The results of the simulations under Design I are presented in Figure

1 and Figures S.1−S.2 of the Supplementary Material. It is clear from the

figures that when n ∈ {30, 80, 150}, the MAGMM yields the most accurate

results for a very large range of values of R2. When n = 300, the three
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methods perform similarly, because there are correctly specified candidate

models in this design. Thus, all three methods achieve root-n consistency.

The MSGMM is always dominated by the MAGMM. When R̃2 decreases, the

three methods perform more disparately, and the R2 range in which the

MAGMM has an advantage over the GMM widens, compare the left-bottom

panels of Figure 1 and Figure S.1 of the Supplementary Material.

The simulation results for Design II are presented in Figure 2 and Fig-

ures S.3−S.4 of the Supplementary Material. Again, we find that when R2

is small or moderate, the MAGMM outperforms the GMM; when R2 is large,

the GMM can be superior to the MAGMM. When the sample size is 300

and R2 is close to 0.8, the MSGMM outperforms the MAGMM. However, for

all other settings, MAGMM performs best.

6. Empirical application

6.1 Data and models

We analyze data from the 1980 census on the median thousand dol-

lar value of owner-occupied housing (hsngval) and the median monthly

gross rent (rent) in the 50 US states. The data are provided by Stata:

https://www.stata.com/. We model the rent as

renti = θ1 + θ2hsngvali + θ3pcturbani + θ4region2i + θ5region3i + θ6region4i + εi,(6.1)
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where “pcturban” is the percentage of the population living in urban ar-

eas, and “region2”, “region3” and “region4” are dummy region variables.

Because we focus on the impact of “hsngval” on “rent”, we set the other

variables (“pcturban”, “region2”, “region3” and “region4”) to be auxiliary

(i.e., they are possibly used in the candidate models). Hence, we have

24 = 16 candidate models. Because we do not know whether all of these

candidate models are misspecified, and our method has theoretical support

regardless of whether this is the case, we use our method for this data set.

Because random shocks that affect rent in a state may also affect hous-

ing prices, the variable “hsngval” is taken as endogenous. The median of

family income (faminc) and the region variables are used as instrumental

variables; that is,

hsngvali = γ1 + γ2faminci + γ3region2i + γ4region3i + γ5region4i + ui.(6.2)

Panel I of Table 1 shows the coefficient estimates of the main model (6.1).

The effects estimated by the MAGMM are smaller than those of the GMM.

The variables “region2” and “region3” are not selected by MSGMM. Panel II

of Table 1 shows the weights of the MAGMM. The the weights are primarily

assigned to four models, with the largest weight assigned to the model

selected by the MSGMM.

6.2 Comparison of estimation performance

 
Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0230



24

Table 1: Coefficient estimates and weights in the real-data analysis. The
notation * indicates that the model includes the corresponding variable.
For example, Model 1 only includes “constant” and “hsngval”.

Panel I Panel II

Coefficient estimates Weights of models with weights larger than 10−4

Variables GMM MSGMM MAGMM Model 1 Model 2 Model 3 Model 4

constant 88.3141 96.7447 94.7084 * * * *

hsngval 3.8691 3.7037 3.5430 * * * *

pcturban -0.4993 -0.4612 -0.3414 * *

region2 1.5253 - 0.0000

region3 7.7394 - 2.1899 *

region4 -40.6289 -41.0891 -36.8204 * * *

Weights 0.0586 0.2247 0.3931 0.3235
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To compare the three methods using the real data, we generate data by

sampling the residuals. Specifically, let γ̂OLS be the ordinary least squares

estimator of coefficients in model (6.2). The residual is

ûi = hsngvali − (1, faminci, region2i, region3i, region4i)γ̂OLS, (6.3)

for i = 1, . . . , 50. By sampling in {û1, . . . , û50} 50 times with repetition, we

obtain û
(r)
1 , . . . , û

(r)
50 . Then, we obtain

hsngval
(r)
i = (1, faminci, region2i, region3i, region4i)γ̂OLS + û

(r)
i .

Let θ̂Method be the estimator of the coefficients in model (6.1), where Method

is GMM, MSGMM, or MAGMM. The estimators are shown in Panel I of Table

1. Similarly to (6.3), we obtain the residual

ε̂i = renti − (1, hsngvali, pcturbani, region2i, region3i, region4i)θ̂Method,

for i = 1, . . . , 50. By sampling in {ε̂1, . . . , ε̂50} 50 times with repetition,

we obtain ε̂
(r)
1 , . . . , ε̂

(r)
50 . Then the response variable in the main model is

generated by

rent
(r)
i = (1, hsngval

(r)
i , pcturbani, region2i, region3i, region4i)θ̂Method+ε̂

(r)
i .

We generate 104 data sets; that is r = 1, . . . , 104. Table 2 shows the MSE

when estimating the coefficient of the endogenous variable “hsngval” based
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on the 104 replications. Regardless of which estimated coefficients are used

to generate the data sets, the proposed MAGMM method always performs

best.

Lastly, we compare the out-of-sample prediction performance of the

different methods. We randomly divide the 50 observations into a training

sample of n1 observations and a test sample of n − n1 observations. We

set n1 ∈ {20, 30, 40}. The predictions of the three methods are based on

model (6.1). The average squared prediction errors are calculated across

observations in the test sample. We randomly divide the sample into train-

ing and test samples 104 times. Table 3 provides the mean of the average

squared prediction errors based on the 104 replications. Regardless of how

the sample is divided, the proposed MAGMM method always performs best.

Table 2: MSE in estimating the coefficient of the endogenous variable “hsng-
val”.

GMM MSGMM MAGMM

θ̂Method is from GMM 0.7056 0.7101 0.6289

θ̂Method is from MSGMM 0.6486 0.6465 0.5660

θ̂Method is from MAGMM 0.5977 0.5987 0.5192
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Table 3: Mean of average squared prediction errors ×10−4.

GMM MSGMM MAGMM

n1 = 20 2.6015 0.5914 0.5482

n1 = 30 0.1845 0.1529 0.1400

n1 = 40 0.1462 0.1375 0.1249

7. Conclusion

In this paper, we propose optimal model averaging based on the GMM.

Theoretical justifications are provided, regardless of whether all of the can-

didate models are misspecified. The numerical examples also show the

promise of the proposed method. While the results in this paper offer some

interesting insights to the application of the GMM, they also raise some

important issues that warrant further study.

First, in general, under the GMM framework, the candidate models can

vary with respect to (1) the moment restrictions and (2) the specification

of a working moment function. In this study, we ignore the first situation.

The proposed weight choice method cannot be used in this situation be-

cause our method depends heavily on the loss function (3.3). If the moment

restrictions vary with working models, then the true moment µtrue(θ0) in
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(3.3) can do so as well, leading to serious difficulty in defining a reason-

able loss function. Developing an asymptotically optimal model averaging

method under this situation warrants future study.

Second, when there are correctly specified candidate models, we only

derive the root-n convergence rate for the true parameter vector. We cannot

establish its limit distribution theory, owing to the difficulties caused by the

random weights. Hjort & Claeskens (2003) and Zhang & Liu (2019) may

serve as useful guides in this regard. However, studies that follow Hjort

& Claeskens (2003) use the locally misspecified moment conditions; see

DiTraglia (2016), for example. In Zhang & Liu (2019), the nested setup

of the candidate models limits the flexibility of their theory. Much future

effort is required to promote research on inferences after averaging GMM

estimators.

Lastly, in this study, the dimension of µ̂ is fixed. When the dimension of

µ̂ is divergent to infinity with n, Proposition 2 still holds. For Proposition

1, we conjecture that the criterion C̃(w) is still an approximately unbiased

estimator of the risk, although this requires a more detailed derivation.

Additionally, we think that the optimality and consistency can be derived

using techniques similar to those in the current proofs. Detailed derivations

warrant future study.
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Figure 1: MSE in simulation Design I, with R̃2 = 0.2.
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Figure 2: Loss in simulation Design II, with R̃2 = 0.2.
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