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Abstract: We consider the joint sparse estimation of the regression coefficients

and the covariance matrix for covariates in a high-dimensional regression model.

Here, the predictors are both relevant to a response variable of interest and

functionally related to one another via a Gaussian directed acyclic graph (DAG)

model. Gaussian DAG models introduce sparsity in the Cholesky factor of the

inverse covariance matrix, and the sparsity pattern in turn corresponds to specific

conditional independence assumptions on the underlying predictors. A variety

of methods have been developed in recent years for Bayesian inferences that

identify such network-structured predictors in a regression setting. However,

crucial sparsity selection properties for these models have not been thoroughly

investigated. Therefore, we consider a hierarchical model with spike and slab

priors on the regression coefficients, and a flexible and general class of DAG–

Wishart distributions with multiple shape parameters on the Cholesky factors of

the inverse covariance matrix. Under mild regularity assumptions, we establish

the joint selection consistency for both the variable and the underlying DAG of
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the covariates when the dimension of the predictors is allowed to grow much larger

than the sample size. We demonstrate that our method outperforms existing

methods in selecting network-structured predictors in several simulation settings.

Key words and phrases: DAG-Wishart prior, Posterior ratio consistency, Strong

selection consistency.

1. Introduction

In practice, we often encounter data sets in which the number of variables

is much larger than the number of samples. Here, a major problem is that

of high-dimensional variable selection, where the challenge is to select a

subset of predictor variables that significantly affect a given response. The

literature on Bayesian variable selection in linear regression is vast and

rich. For example, George and McCulloch (1993) propose the stochastic

search variable selection method, which uses the Gaussian distribution with

a zero mean and a small, but fixed variance as the spike prior, and another

Gaussian distribution with a large variance as the slab prior. Ishwaran,

Kogalur, and Rao (2005) also use Gaussian spike and slab priors, but use

continuous bimodal priors for the variance of the regression coefficient to

alleviate the difficulty of choosing specific prior parameters. Narisetty and

He (2014) introduce shrinking and diffusing priors as spike and slab priors,
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and establish the model selection consistency of the approach in a high-

dimensional setting.

Another important problem is how to formulate models and develop

inferential procedures to understand the complex relationships and mul-

tivariate dependencies in these high-dimensional data sets. A covariance

matrix is one of the most fundamental objects that quantifies these rela-

tionships. A common and effective approach for covariance estimation in

sample-starved settings is to induce sparsity in the covariance matrix, its

inverse, or the Cholesky factor of the inverse. The sparsity patterns in

these matrices can be encoded uniquely using appropriate graphs. Hence,

the corresponding models are often referred to as covariance graph mod-

els (sparsity in Σ), concentration graph models (sparsity in Ω = Σ−1), or

directed acyclic graph (DAG) models (sparsity in the Cholesky factor of

Ω).

In this work, we focus on a high-dimensional regression setting in which

the predictors are both relevant to a response variable of interest and func-

tionally related to one another via a Gaussian DAG model. Our goal is

to jointly perform the variable and DAG selection, and then to establish

the selection consistency in a high-dimensional regime. The advantage of

joint modeling is that we can borrow information from the DAG structure
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to improve the performance of the variable selection. A popular motiva-

tion for this type of problem comes from genomic studies: the mechanism

for an effect on an outcome such as quantitative molecular phenotypes, in-

cluding gene expression, proteomics, or metabolomics data, often displays

a coordinated change along a pathway, and the impact of a single genotype

may not be apparent. In this setting, our proposed method can incorpo-

rate and highlight unknown pathways or regulatory networks that affect

the response, which may improve the performance of the variable selection

by borrowing information from the network structure. To uncover these

relationships, we develop a Bayesian hierarchical model that favors the in-

clusion of variables that are not only relevant to the outcome of interest,

but are also linked through a DAG.

Several approaches have been proposed for a known underlying graph

structure, including both frequentist and Bayesian methods, when solv-

ing the variable selection problem. Li and Li (2008, 2010) study a graph-

constrained regularization procedure and its theoretical properties to take

into account the neighborhood information of the variables measured on a

known graph. Pan et al. (2010) propose a grouped penalty based on the

Lγ-norm that smooths the regression coefficients of the predictors over the

available network. From a Bayesian perspective, Li and Zhang (2010) and
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Stingo and Vannucci (2010) incorporate a graph structure in the Markov

random field (MRF) prior on indicators of variable selection, encouraging

the joint selection of predictors with known relationships. Stingo et al.

(2011) and Peng et al. (2013) propose selecting both the pathways and

the genes within them using prior knowledge on gene–gene interactions or

functional relationships.

However, when the underlying graph is unknown and needs to be se-

lected, comparatively fewer methods have been proposed. Dobra (2009)

estimates a network among relevant predictors by first performing a stochas-

tic search in the regression setting to identify possible subsets of predictors.

Then, a Bayesian model averaging method is applied to estimate a depen-

dency network. Liu et al. (2014) develop a Bayesian method for a regular-

ized regression that provides an inference on the inter-relationship between

the variables by explicitly modeling a graph Laplacian matrix. Peterson

et al. (2016) simultaneously infer a sparse network among the predictors

and perform variable selection. They use this network as guidance by in-

corporating it into a prior that favors the selection of connected variables

based on a Gaussian graphical model among the predictors. This, in turn,

provides a sparse and interpretable representation of the conditional depen-

dencies found in the data. In a slightly different context, Chekouo et al.
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(2015) and Chekouo et al. (2016) relate two sets of covariates via a DAG to

integrate multiple genomic platforms and select the most relevant features.

Given the ordering of the variables, they use a mixture of a non-local prior

(Johnson and Rossell, 2012) and a point mass at zero to infer the DAG

structure.

To the best of our knowledge, despite the developments in Bayesian

methods for joint variable and graph selection, no rigorous investigations

of the high-dimensional consistency properties of these methods have been

undertaken. Hence, our goal is to investigate whether joint selection con-

sistency results can be established in a high-dimensional regression setting

with network-structured predictors. This is a challenging goal, particu-

larly because of the interaction between the regression coefficients and the

graph in the posterior analysis, as well as the massive parameter space to

be explored for both the coefficients and the graph.

We consider a hierarchical multivariate regression model with DAG–

Wishart priors on the covariance matrix for the predictors, spike and slab

priors on regression coefficients, independent Bernoulli priors for each edge

in the DAG, and an MRF prior linking the variable indicators to the graph

structure. Under high-dimensional settings, we establish the posterior ratio

consistency, following Cao et al. (2019c) and Narisetty and He (2014), for
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both the variable and the DAG, with a given DAG and variable, respectively

(Theorems 1 and 2). In Theorems 3 and 4, we establish the posterior ratio

consistency and the strong selection consistency for any DAG and variable

pair. In particular, the strong selection consistency implies that under the

true model, the posterior probability of the true variable indicator and

the true graph converge in probability to one as n → ∞. Finally, using

simulation studies, we demonstrate that the proposed models outperform

existing state-of-the-art methods, including both the penalized likelihood

and the Bayesian approaches, in several settings.

The rest of paper is organized as follows. Section 2 provides background

material on the Gaussian DAG model and the DAG–Wishart distribution.

In Section 3, we introduce our hierarchical Bayesian model. The model

selection consistency results are presented in Section 4, with proofs pro-

vided in the Supplementary Material. In Section 5, we conduct simulation

experiments to illustrate the performance of the proposed method. The

benefits of our Bayesian method for identifying network-structured predic-

tors are demonstrated vis-a-vis existing Bayesian and penalized likelihood

approaches. Section 6 concludes the paper.
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2. Preliminaries

In this section, we provide the necessary background material on graph

theory, Gaussian DAG models, and DAG–Wishart distributions.

2.1 Gaussian DAG models

Throughout this paper, a DAG D = (V,E) consists of a vertex set V =

{1, . . . , p} and an edge set E, such that there is no directed path starting

and ending at the same vertex. As in Ben-David et al. (2016) and Cao et al.

(2019c), we assume a parent ordering in which all edges are directed from

larger vertices to smaller vertices. Thus, the ordering of variables is assumed

to be known. The set of parents of i, denoted by pai(D), is the collection of

all vertices larger than i that share an edge with i. A Gaussian DAG model

over a given DAG D , denoted by ND , consists of all multivariate Gaussian

distributions that obey the directed Markov property with respect to the

DAG D . In particular, if x = (x1, . . . , xp)
T ∼ Np(0,Σ) and Np(0,Σ) ∈ ND ,

then xi ⊥ x{i+1,...,p}\pai(D)|xpai(D) for each i.

Any positive-definite matrix Ω can be uniquely decomposed as Ω =

LD−1LT , where L is a lower triangular matrix with unit diagonal entries,

and D is a diagonal matrix with positive diagonal entries. This decom-

position is known as the modified Cholesky decomposition of Ω (e.g., see
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2.2 DAG–Wishart distribution

Pourahmadi (2007)). It is well known that if Ω = LD−1LT is the mod-

ified Cholesky decomposition of Ω, then Np(0,Ω
−1) ∈ ND if and only if

Lij = 0 whenever i /∈ paj(D). In other words, the structure of the DAG D

is reflected in the Cholesky factor L of the inverse covariance matrix.

Given a DAG D on p vertices, denote LD as the set of lower triangular

matrices with unit diagonals, and Lij = 0 if i /∈ paj(D). Furthermore,

let Dp
+ be the set of strictly positive diagonal matrices in Rp×p. We refer

to ΘD = Dp
+ × LD as the Cholesky space corresponding to D , and to

(D,L) ∈ ΘD as the Cholesky parameter corresponding to D . In fact, the

relationship between the DAG and the Cholesky parameter implies that

ND = {Np(0, (L
T )−1DL−1) : (D,L) ∈ ΘD}.

The skeleton of D , denoted by Du = (V,Eu), can be obtained by replac-

ing all directed edges of D with undirected edges. We define the adjacency

matrix of D as a (0,1)-matrix, such that the elements of the matrix indi-

cate whether or not pairs of vertices are adjacent in D ; adjacent vertices

are denoted by one, and all others by zero.

2.2 DAG–Wishart distribution

In this section, we revisit the multiple shape parameter DAG–Wishart dis-

tributions introduced in Ben-David et al. (2016). Given a directed graph
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2.2 DAG–Wishart distribution

D = (V,E), with V = {1, . . . , p}, and a p× p matrix A, denote the column

vectors A>D .i = (Aij)
T
j∈pai(D) and A≥D .i = (Aii, (A

>
D .i)

T )T . In addition,

A≥iD =

 Aii (A>D .i)
T

A>D .i A>iD

 ,
where A>iD = (Akj)k,j∈pai(D). In particular, we have A≥D .p = A≥pD = App. Let

νi(D) = |pai(D)| = |{j : j > i, (j, i) ∈ E(D)}|.

The DAG-Wishart distributions in Ben-David et al. (2016) correspond-

ing to a DAG D are defined on the Cholesky space ΘD . Given a p × p

positive-definite matrix U and a p-dimensional vector α(D) = (α1(D), . . . , αp(D)),

with min1≤i≤p{αi(D) − νi(D)} > 2, the probability density of the DAG–

Wishart distribution is given by

πΘD

U,α(D)(D,L) =
1

zD(U,α(D))
exp{−1

2
tr((LD−1LT )U)}

p∏
i=1

D
−αi(D)

2
ii I

(
(D,L) ∈ ΘD

)
,

(2.1)

where

zD(U,α(D)) =

p∏
i=1

Γ(αi(D)
2
− νi(D)

2
− 1)2

αi(D)

2
−1(
√
π)νi(D)det(U>i

D )
αi(D)

2
− νi(D)

2
− 3

2

det(U≥iD )
αi(D)

2
− νi(D)

2
−1

,

and I(·) denotes the indicator function. The above density has the same

form as the classical Wishart density, but is defined on the lower dimensional

space ΘD and has p shape parameters {αi(D)}pi=1, which can be used for

the differential shrinkage of variables in high-dimensional settings.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0202



The class of densities πΘD

U,α(D) forms a conjugate family of priors for the

Gaussian DAG model N (D). In particular, if the prior on (D,L) ∈ ΘD is

πΘD

U,α(D) and X1, . . . , Xn | D,L,D
i.i.d.∼ Np(0, (L

T )−1DL−1), then the resulting

posterior distribution of (D,L) is πΘD

Ũ ,α̃(D)
, where S = 1

n

∑n
i=1XiX

T
i , Ũ =

U + nS, and α̃(D) = (n+ α1(D), . . . , n+ αp(D)).

3. Model Specification

In this section, we specify our hierarchical model for joint variable and

DAG selection in regression models with network-structured predictors. We

start by considering the standard Gaussian linear regression model with p

coefficients and introducing some required notation. Similarly to Peter-

son et al. (2016) and Li and Li (2008), we consider both the response

Y = (y1, . . . , yn) ∈ Rn×1 and the predictors X = (X1, . . . , Xn)T ∈ Rn×p

to be random variables. In particular, Y ∼ Nn (Xβ, σ2In), and the pre-

dictors are assumed to obey a multivariate Gaussian distribution; that is,

Xi
i.i.d.∼ Np

(
0, (LD−1LT )−1

)
, for i = 1, 2, . . . , n, where β ∈ Rp×1 is a vector

of regression coefficients, and (L,D) represents the Cholesky parameter cor-

responding to a DAG D . Let the symmetric matrix G = (Gij)1≤i,j≤p repre-

sent the adjacency matrix corresponding to DAG D , where Gij = Gji = 1 if

and only if there is an edge between vertex i and vertex j, and Gij = Gji = 0
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otherwise. Our goal is both (i) variable selection (i.e., correctly identifying

all nonzero regression coefficients) and (ii) network estimation (i.e., pre-

cisely recovering the sparsity pattern in D).

For the variable selection, we denote a variable indicator γ = {γ1, . . . , γp},

where γj ∈ {0, 1} for 1 ≤ j ≤ p, and |γ| =
∑p

j=1 γj. Let βγ = (βj)
T
{j:γj=1} ∈

R|γ|×1 be the vector formed by the active components in β corresponding to

a model γ. For any n× p matrix A, let Ak represent the submatrix formed

from the columns of A corresponding to model k. In particular, Let Xγ

denote the design matrix formed from the columns of X corresponding to

model γ. For the network estimation, the class of DAG–Wishart distribu-

tions in Section 2.2 can be used for joint variable and DAG selection with

the following hierarchical model:

Y |Xγ, βγ ∼ Nn (Xγβγ, σ
2In) , (3.1)

Xi|(L,D),D
i.i.d.∼ Np

(
0, (LD−1LT )−1

)
, for i = 1, 2, . . . , n, (3.2)

(L,D)|D ∼ πΘD

U,α(D)(D,L), (3.3)

βγ|γ ∼ N|γ| (0, τ
2σ2Iγ) , (3.4)

π(D) ∝
∏p−1

j=1 q
νj(D)(1− q)p−j−νj(D)I {max1≤j≤p−1 νi(D) < R} , (3.5)

π(γ|D) ∝ exp
(
−a1Tγ + bγTGγ

)
I {|γ| < R} , (3.6)

for some constants σ, τ, a > 0, b ≥ 0, 0 < q < 1, and a positive integer
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0 ≤ R ≤ p. Here, we assume that σ in (3.1) is a known constant, for sim-

plicity. However, it can be extended to the unknown case by imposing an

inverse-gamma prior; see Corollary 1. Note that in (3.4), we are essentially

imposing a spike and slab prior on the regression coefficients, where τ 2 in-

dicates the variance of the slab part; see Narisetty and He (2014), Yang

et al. (2016), and the references therein. Prior (3.5) corresponds to an

Erdos–Renyi type of prior over the space of DAGs. In particular, similarly

to Cao et al. (2019c), we define eji = I{(j, i) ∈ E(D)}, for 1 ≤ j < i ≤ p,

to be the edge indicator. Let eji, where 1 ≤ i < j < p, be independent

and identically distributed (i.i.d.) Bernoulli(q) random variables. Recall

νj(D) = |paj(D)| is the cardinality of the parent set of vertex j. It follows

that π(D) =
∏

(j,i):1≤j<i≤p q
eji (1− q)1−eji =

∏p−1
j=1 q

νj(D)(1 − q)p−j−νj(D). In

(3.5) and (3.6), the positive integer R is an upper bound on the DAG and

regression complexity. Note that to obtain our desired asymptotic consis-

tency results, we introduce appropriate conditions for the hyperparameters

τ, R, a, b and the edge probability q in Section 4.

Remark 1. In (3.6), given a DAG D , we are imposing an MRF prior

on the variable indicator γ that favors the inclusion of variables linked to

other variables in the associated DAG. MRF priors have also been used in a

variable selection setting in Peterson et al. (2016), Li and Zhang (2010), and
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Stingo and Vannucci (2010). In particular, as indicated in Peterson et al.

(2016), the parameter a in (3.6) controls the variable inclusion probability,

with larger values of a corresponding to sparser models, while b essentially

determines how strongly the inclusion probability of a variable is affected

by the inclusion of its neighbors in the DAG.

The hierarchical model in (3.1)–(3.6) can be used to estimate a pair

of a variable and a DAG, as follows. By (2.1) and Bayes’ rule, the follow-

ing lemma gives the (marginal) joint posterior probabilities; the proof is

provided in the Supplementary Material.

Lemma 1. Under the hierarchical model in (3.1)–(3.6), the (marginal)

joint variable and DAG posterior is given by

π (γ,D |Y,X)

∝ π(γ|D)π(D)
zD(U +XTX,n+ α(D))

zD(U, α(D))

× det
(
τ 2XT

γ Xγ + I|γ|
)− 1

2 exp

{
− 1

2σ2

(
Y T
(
In + τ 2XγX

T
γ

)−1
Y
)}

,

(3.7)

where zD(·, ·) is the normalized constant in the DAG–Wishart distribution.

Hence, after integrating out βγ, we have the joint posterior available in

closed form (up to the multiplicative constant π(X, Y )). In particular,
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these posterior probabilities can be used to select a pair of a variable and

a DAG by computing the posterior mode defined by

(γ̂, D̂) = argmax
(γ,D)

π (γ,D |Y,X) . (3.8)

4. Joint Selection Consistency

In this section, we explore the high-dimensional asymptotic properties of

the Bayesian joint variable and DAG selection approach specified in Section

3. For this purpose, we work in a setting where the number of regression co-

efficients p = pn increases with the sample size n. The true data-generating

mechanism is given by

Y = Xβn0 + εn,

where Y = (Y1, . . . , Yn) ∈ Rn, X = (X1, . . . , Xn)T ∈ Rn×pn , Xi
i.i.d.∼

Npn (0,Σn
0 ), and εn ∼ Nn(0, σ2

0In). Here, βn0 is the true pn-dimensional

vector of regression coefficients, and Σn
0 is the true covariance matrix. As

in the usual context of variable selection, we assume that the true vec-

tor of regression coefficients is sparse; that is, all entries of βn0 are zero,

except those corresponding to the active entries in the true variable in-

dicator γn0 (Castillo et al., 2015; Yang et al., 2016; Narisetty and He,

2014). Denote ρ1n = minj∈γn0 |β
n
0 j| and ρ2n = maxj∈γn0 |β

n
0 j| as the min-
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imum and maximum magnitudes, respectively, of the nonzero entries in

βn0 . We assume that the true quantities |γn0 |, ρ1n, and ρ2n vary with n.

Let Ωn
0 = (Σn

0 )−1 = Ln0 (Dn
0 )−1(Ln0 )T , where (Dn

0 , L
n
0 ) denotes the modified

Cholesky parameter of Ωn
0 . Let Dn

0 be the true underlying DAG with struc-

ture corresponding to the sparsity pattern in Ln0 (i.e, Ln0 ∈ LDn
0
), and let

Gn
0 be the adjacency matrix for Dn

0 . Denote dn as the maximum number of

nonzero entries in any column of Ln0 , and sn = min1≤j≤pn,i∈paj(Dn
0 ) |(Ln0 )ij|

as the minimum magnitude of the nonzero off-diagonal entries in Ln0 . Let

P̄ denote the probability measure corresponding to the true model pre-

sented above. In order to establish the desirable consistency results, we

need the following mild assumptions. Each assumption is followed by an

interpretation/discussion.

Assumption 1. There exists 0 < ε0 ≤ 1, such that ε0 ≤ eig1(Ωn
0 ) ≤

eigpn(Ωn
0 ) ≤ ε−1

0 , for every n ≥ 1, where eig1(Ωn
0 ) and eigpn(Ωn

0 ) are the

minimum and maximum eigenvalues, respectively, of Ωn
0 .

This is a standard assumption for high-dimensional covariance asymptotic

consistency, in both the frequentist and the Bayesian paradigms; see, for

example, Bickel and Levina (2008), El Karoui (2008), Banerjee and Ghosal

(2014), Xiang et al. (2015), and Banerjee and Ghosal (2015). Cao et al.

(2019c) relax this assumption by allowing the lower and upper bounds on
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the eigenvalues to depend on pn and n.

Assumption 2. For the true DAG, dn
√

log pn/n→ 0 and dn log pn/(s
2
nn)→

0. For the true regression coefficient, |γn0 |
√

log pn/n→ 0, log n log pn/(nρ1
2
n)→

0, and ρ2n/
√

log pn → 0 as n→∞.

This assumption resembles the dimension assumption in Cao et al. (2019a),

and is a much weaker assumption for a high-dimensional covariance asymp-

totic than those of, for example, Xiang et al. (2015), Banerjee and Ghosal

(2014), Banerjee and Ghosal (2015), and Cao et al. (2019c). Here, we es-

sentially allow the dimension of our covariance matrix to grow more slowly

than exp(n/d2
n). Recall that sn is the smallest (in absolute value) nonzero

off-diagonal entry in Ln0 , so the second condition in Assumption 2 can also

be interpreted as the lower bound for the signal size. This assumption, also

known as the “beta-min” condition, provides a lower bound for the signal

size needed to establish consistency. This type of condition has been used

for the exact support recovery of high-dimensional linear regression and

Gaussian DAG models; see, for example, Yang et al. (2016), Khare et al.

(2017), Lee et al. (2018), and Cao et al. (2019c). Assumption 2 also allows

the complexity of γn0 and the nonzero entries of βn0 to grow with n, while

staying uniformly bounded by a function of n and pn. In addition, the as-

sumption on ρ1n can be viewed as the beta-min condition in the regression
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context.

Assumption 3. The hyperparameters in model (3.4) and the MRF prior

(3.6) satisfy τ 2 ∼
√

log pn, a ∼ α1 log pn, and bn2/{(log n)2 log pn} → 0 as

n → ∞, where for any positive sequences an and bn, an ∼ bn implies that

there exist positive constants c and C, such that c ≤ min(an/bn, bn/an) ≤

max(an/bn, bn/an) ≤ C.

Recall that the parameter a in (3.6) controls the variable inclusion probabil-

ity, and b reflects how strongly this probability is affected by the inclusion of

its neighbors in the DAG. In Section 4.3, we investigate the behavior of the

posterior probability evaluated at the true model under b > 0 and b = 0.

In the Bayesian variable selection literature, similar priors corresponding

to a = C log pn, for some constant C > 0, and b = 0 have been commonly

used to obtain selection consistency (Narisetty and He, 2014; Castillo et al.,

2015; Yang et al., 2016). The assumption that the variance of the slab prior,

τ 2, is required to approach infinity is also stated here to ensure the desired

model selection consistency.

Assumption 4. Let qn = O(p−α1
n ), for some constant α1 > 0, and Rn in

model (3.5) and (3.6) satisfy Rn ∼ n/ log n and bR2
n/ log pn → 0 as n→∞.

This assumption provides the rate at which the edge probability qn needs
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to approach zero. It also states that the prior on the space of the 2(pn2 )

possible models places zero mass on unrealistically large models. Note that

qn approaches zero more slowly than in Cao et al. (2019c), which helps

avoid potential computation limitations, such as the simulation results al-

ways favoring the most sparse model. This assumption also states that the

MRF prior on the space of the 2pn possible models places zero mass on

unrealistically large models (see similar assumptions in Shin et al. (2018)

and Narisetty and He (2014) in the context of regression).

Assumption 5. For every n ≥ 1, the hyperparameters for the DAG–

Wishart prior π
ΘDn

Un,α(Dn) satisfy (i) 2 < αi(Dn) − νi(Dn) < c, for every

Dn and 1 ≤ i ≤ qn, and (ii) 0 < δ1 ≤ eig1(Un) ≤ eigp(Un) ≤ δ2 <∞. Here,

c, δ1, and δ2 are constants that do not depend on n.

This assumption provides mild restrictions on the hyperparameters for the

DAG–Wishart distribution. The assumption 2 < αi(D)− νi(D) establishes

prior propriety. The assumption αi(D)− νi(D) < c implies that the shape

parameter αi(D) can only differ from νi(D) (number of parents of i in D)

by a constant, which does not vary with n. Additionally, the eigenvalues of

the scale matrix Un are assumed to be uniformly bounded in n.

For the rest of this paper, pn,Ω
n
0 ,Σ

n
0 , L

n
0 , D

n
0 ,D

n
0 ,D

n, dn, qn, βn, γn, τn,

and An will be denoted as p,Ω0,Σ0, L0, D0,D0,D , d, q, β, γ, τ , and A, re-
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4.1 Posterior ratio consistency of γ and D

spectively, for notational convenience and ease of exposition. We now state

and prove the main joint variable and DAG selection consistency results.

4.1 Posterior ratio consistency of γ and D

In this section, we show that our method guarantees the posterior ratio

consistency of γ and D . Although Peterson et al. (2016) consider a similar

network-structured regression model, to the best of our knowledge, theoret-

ical properties of Bayesian models such as posterior ratio consistency and

joint selection consistency have not yet been established. We first establish

the posterior ratio consistency with respect to D under the true variable

indicator γ0. Theorem 1 states that the true DAG is the mode of the pos-

terior distribution with probability tending to one as n → ∞ under fixed

γ0.

Theorem 1. Under Assumptions 1 2, 4, and 5,

max
D 6=D0

π(γ0,D |Y,X)

π(γ0,D0|Y,X)

P̄→ 0, as n→∞.

Remark 2. Note that the posterior ratio consistency of a DAG is achieved

under a given parent ordering in which all edges are directed from larger

vertices to smaller vertices. For several applications in genetics and environ-

mental sciences, a location- or time-based ordering of variables is naturally
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available. For temporal data, a natural ordering of variables is provided

by the time at which they are observed. In quantitative molecular appli-

cations, the variables can be genes or SNPs located on a chromosome, and

their spatial location provides a natural ordering; see Huang et al. (2006),

Shojaie and Michailidis (2010), Yu and Bien (2016), Khare et al. (2017),

and the references therein.

The next theorem establishes the posterior ratio consistency with re-

spect to γ under DAG D . This notion of consistency implies that the true

variable indicator γ0 is the mode of the posterior distribution with proba-

bility tending to one as n→∞ under fixed D .

Theorem 2. Under Assumptions 1–5, the following holds:

max
(γ,D)6=(γ0,D0)

π(γ,D |Y,X)

π(γ0,D |Y,X)

P̄→ 0, as n→∞.

Remark 3. By carefully examining the proof of Theorem 2, we find that

even under a DAG with a mis-specified ordering, the consistency result for

γ under fixed D still holds. We also investigate the performance of the

proposed method under a mis-specified ordering in Section 5. The results

suggest that our method recovers the true variable indicator γ0 well, even

in the mis-specified case.
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From Theorem 1, Theorem 2, and the fact that

π(γ,D |Y,X)

π(γ0,D0|Y,X)
=

π(γ0,D |Y,X)

π(γ0,D0|Y,X)
× π(γ,D |Y,X)

π(γ0,D |Y,X)
,

we can obtain the joint posterior ratio consistency with respect to both γ

and D . It implies that the true variable indicator and DAG, (γ0,D0), will

be the mode of the posterior distribution with probability tending to one.

Theorem 3. Under Assumptions 1–5, the following holds:

max
(γ,D)6=(γ0,D0)

π(γ,D |Y,X)

π(γ0,D0|Y,X)

P̄→ 0 as n→∞,

which implies that

P̄ ((γ̂, D̂) = (γ0,D0))→ 1, as n→∞.

4.2 Strong selection consistency of γ and D

In this section, we establish the joint strong selection consistency with re-

spect to both γ and D . Theorem 4 shows that the posterior probability

assigned to the true variable indicator γ0 and the true underlying graph D0

grows to one as n → ∞. We call this property the joint strong selection

consistency. Note that the result given in Theorem 3 does not guarantee

this property.
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Theorem 4. Under Assumptions 1–5, if we further assume α1 > 2, then

the following holds:

π(γ0,D0|Y,X)
P̄→ 1 as n→∞.

Note that the condition on α1, which controls the rate of the indepen-

dent Bernoulli probability specified in Assumption 4, is only needed for

strong selection consistency (Theorem 4). Similar restrictions on the hy-

perparameters have been considered in order to establish the consistency

properties in the regression setup (Yang et al., 2016; Lee et al., 2018; Cao

et al., 2019b). The model selection consistency for the posterior mode in

Theorem 3 does not require a restriction on α1.

The aforementioned theorems are based on known σ2. However, in real

applications, the underlying true variance is often unavailable. Therefore,

we introduce the following corollary for a fully Bayesian hierarchical ap-

proach, where an appropriate inverse-gamma prior is imposed on σ2. It

turns out that even with the unknown σ2, strong model selection consis-

tency still holds under the same conditions given in Theorem 4.

Corollary 1. Suppose σ2 is unknown and a proper inverse-gamma den-

sity with some positive constant parameters (a0, b0) is placed on σ2. Under
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Assumptions 1–5, and α1 > 2, the following holds:

π(γ0,D0|Y,X)
P̄→ 1 as n→∞.

4.3 Behavior of the posterior probability when b = 0

In this section, we examine the behavior of the posterior probability for

(γ0,D0) corresponding to two scenarios, that is, when the MRF prior pa-

rameter b > 0 and b = 0, respectively. The goal is to show that under

a certain assumption on the connection between the sparsity patterns in

γ0 and D0, by borrowing the graph information from the MRF prior, the

posterior probability assigned to (γ0,D0) will increase. In particular, we

introduce the following condition with respect to the true sparsity patterns

encoded in both the variable indicator and the graph.

Condition 1. The true adjacency matrix G0 and the true variable indicator

γ0 satisfy γ0i = γ0j = 1 whenever (G0)ij = 1, for 1 ≤ i, j ≤ p.

Condition 1 essentially assumes that the variables connected through the

underlying true DAG are active. Under this condition, compared with

modeling the variable and the DAG separately (i.e. b = 0), incorporating

network information into the variable selection through the MRF prior with

b > 0 increases the posterior probability assigned to (γ0,D0), as illustrated
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in the following theorem. The proof for Theorem 5 is provided in the

Supplementary Material.

Theorem 5. Let π1(γ0,D0 | Y,X) be the posterior probability evaluated at

(γ0,D0) under b > 0, and let π2(γ0,D0 | Y,X) be the posterior probability

evaluated at (γ0,D0) under b = 0. Then, the following holds:

π1(γ0,D0 | Y,X) > π2(γ0,D0 | Y,X).

Theorem 5 implies that, under Condition 1, our method achieves joint

strong selection consistency without the condition on b stated in Assump-

tion 3, which means the hyperparameter b in the MRF prior does not need

to go to zero.

5. Numerical Studies

5.1 Posterior inference

For given positive real values a0 and b0 > 0, let IG(a0, b0) be the inverse-

gamma distribution with the shape parameter a0 and scale parameter b0.

Then, similarly to (3.7), the joint posterior distribution of γ and D based
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on (3.1)–(3.6) and σ2 ∼ IG(a0, b0) is

π(γ,D | Y,X)

∝ π(γ|D)π(D)
zD(U +XTX,n+ α(D))

zD(U, α(D))

× det
(
I|γ| + τ 2XT

γ Xγ

)− 1
2

{
b0 +

1

2
Y T
(
In + τ 2XγX

T
γ

)
Y
}−n+2a0

2
.

We suggest using a Metropolis–Hastings within Gibbs sampling for the

posterior inference:

1. Set the initial values γ(1) and D (1).

2. For each s = 2, . . . , S,

(a) sample γnew ∼ qγ(· | γ(s−1));

(b) set γ(s) = γnew with the probability

pacc,γ = min

{
1,

π(γnew | D (s−1), Y,X)

π(γ(s−1) | D (s−1), Y,X)

qγ(γ
(s−1) | γnew)

qγ(γnew | γ(s−1))

}
,

otherwise set γ(s) = γ(s−1);

(c) sample Dnew ∼ qD(· | D (s−1));

(d) set D (s) = Dnew with the probability

pacc,D = min

{
1,

π(Dnew | γ(s), Y,X)

π(D (s−1) | γ(s), Y,X)

qD(D (s−1) | Dnew)

qD(Dnew | D (s−1))

}
,

otherwise set D (s) = D (s−1).
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Note that the inference for the DAG D , that is, steps 2-(c) and 2-(d) in the

above algorithm, can be parallelized for each column. For further detail,

refer to Cao et al. (2019c) and Lee et al. (2018). We used the proposal

kernel qγ(· | γ′), which gives a new set γnew by changing a randomly chosen

nonzero component in γ′ to zero with probability 0.5, or by changing a

randomly chosen zero component to one randomly with probability 0.5.

The same kernels were used for each column of D .

5.2 Simulation studies

In this section, we demonstrate the performance of the proposed method

in various settings. We closely follow, but slightly modify the simulation

settings in Peterson et al. (2016).

Suppose we have Xi = (Xi1, . . . , Xip)
T i.i.d.∼ Np(0,Σ0), for i = 1, . . . , n,

where Σ−1
0 = L0(D0)−1LT0 , n = 100, and p = 240. If we consider p as the

number of genes, we have 240 genes. We assume there are 40 transcription

factors (TFs), and that each TF regulates five genes. Let TFj be the

index for the jth TF and (TF1, TF2, . . . , TF40) = (6, 12, . . . , 240). This

corresponds to the DAG D0, the support of L0, such that paTFj−k(D0) =

{TFj}, for j = 1, . . . , 40 and k = 1, . . . , 5. Suppose the TFs independently

follow a normal distribution; that is, XTFj
ind∼ N(0, dTFj), where dTFj

i.i.d.∼
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Unif(3, 5), for j = 1, . . . , 40. We further assume that, given XTFj , the

conditional distribution of the gene Xj regulated by TFj′ is N(XTFj′
, dj),

where dj
i.i.d.∼ Unif(3, 5), for j = 1, . . . , 240. This corresponds to the true

modified Cholesky parameter (L0, D0), such that (L0)TFj ,TFj−k = 1 and

D0 = diag(dj), for j = 1, . . . , 40 and k = 1, . . . , 5. We simulate the data

from

Y = Xβ0 + ε,

where X = (X1, . . . , Xn)T , ε ∼ Nn(0, σ2
ε In), and σ2

ε = ‖β0‖2
2/4. We in-

vestigate four settings for the true coefficient vector β0, as described in Li

and Li (2008) and Peterson et al. (2016). In the first setting, it is assumed

that β0,TF1:4 = (5,−5, 3,−3)T , β0,TFj−k = β0,TFj/
√

10 for j = 1, 2, 3, 4 and

k = 1, . . . , 5, and β0,j = 0 for j = 25, . . . , 240. This setting implies that

the coefficients of genes in the same cluster have the same signs. In the

second setting, the true coefficient β0 is the same as the first setting, except

that the signs are reversed for the two genes regulated by TFj; that is,

β0,TFj−k = −β0,TFj/
√

10, for j = 1, 2, 3, 4 and k = 1, 2. This setting implies

that the coefficients of genes in the same cluster might have different signs.

The third and fourth settings the same as the first and second settings, re-

spectively, expect that we consider 10 instead of
√

10. Thus, they consider

smaller signals. We call this simulation setting Scenario 1.
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We also investigate a simulation scenario in which the signals in β0

are small. In this case, there are p = 150 genes, 30 TFs, and four reg-

ularized genes for each TF. The precision matrix Σ−1
0 = L0(D0)−1LT0 is

generated by dj
i.i.d.∼ Unif(2, 5) and (L0)TFj ,TFj−k

i.i.d.∼ Unif(0.3, 0.7). The

variance of ε is chosen as σ2
ε = ‖β0‖2

2. We consider four settings for the

true coefficient vector β0. In the first and third settings, β0 is gener-

ated by β0,j
i.i.d.∼ Unif(0.5, 1) and β0,j

i.i.d.∼ Unif(0.2, 1), respectively, for

j = 1, . . . , 20, and β0,j = 0 for j = 21, . . . , 150. In the second and fourth

settings, we randomly change the signs of the nonzero entries of β0. We call

this simulation setting Scenario 2.

Lastly, we consider a setting in which the network structure of the

covariate X is an undirected graph. We generate the covariates X̃i
i.i.d.∼

Np(0,Σ0), for i = 1, . . . , n, where n = 100, p = 150, Σ0 = Σ̃0 + {0.01 −

eig1(Σ̃0)}Ip, and

(Σ̃0)ij =


2 max

(
1− |i−j|

10
, 0
)
, if |i− j| ≤ 5

0, otherwise.

Note that Σ0 is positive definite. Furthermore, to consider the mis-specified

ordering case, we randomly shuffle the columns of X̃ = (X̃1, . . . , X̃n)T

to construct X. We simulate the data from Y = Xβ0 + ε, where ε ∼

Nn(0, σ2
ε In) and σ2

ε = ‖β0‖2
2/4. Two settings for the true coefficient vector β0
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are considered. In the first setting, β0 is generated by β0,j
i.i.d.∼ Unif(0.5, 1)

for j = 1, . . . , 10 and β0,j = 0 for j = 11, . . . , 150. In the second setting, we

randomly change the signs of the nonzero entries of β0. We call this simu-

lation setting Scenario 3; the simulation results for this setting are reported

in Table 3.

We compare the performance of our joint selection method with that

of existing variable selection methods: Lasso (Tibshirani, 1996), elastic net

(Zou and Hastie, 2005), and the Bayesian joint selection method proposed

by Peterson et al. (2016). The tuning parameters for the Lasso and elastic

net were chosen by 10-fold cross-validation. For the Bayesian methods, as

discussed by Peterson et al. (2016), we suggest using the hyperparameters

a = 2.75 and b = 0.5 for the MRF prior as the default. Furthermore, to

show the benefits of joint modeling, we tried b = 0, which corresponds to

the Bayesian method that models the variable and the DAG separately.

The other hyperparameters were set at a0 = 0.1, b0 = 0.01, τ 2 = 1, q =

0.005, U = Ip, and αi(D) = νi(D) + 10, for all i = 1, . . . , p. The initial

state for γ was set as a p-dimensional zero vector; that is, the empty model,

while the initial state for D was chosen using the convex sparse Cholesky

selection method (Khare et al., 2017). For the posterior inference, 5, 000

posterior samples were drawn after a burn-in period of 5, 000. Indices with
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a posterior inclusion probability larger than 0.5 were included in the fi-

nal model. The resulting model is called the median probability model.

Note that when the posterior probability is larger than 1/2, the model co-

incides with the posterior mode Barbieri and Berger (2004). Because we

have proved the joint strong selection consistency (Theorem 4), the two

models are asymptotically equivalent in our setting. Thus, although other

approaches (e.g., see Scott and Carvalho (2008)) can be adapted to give a

reasonable estimate of the posterior mode, we use the median probability

model as a convenient, but asymptotically equivalent alternative.

To evaluate the performance of the variable selection, the sensitivity,

specificity, area under the curve (AUC), Matthews correlation coefficient

(MCC), number of errors (#Error), and mean-squared prediction error

(MSPE) are reported in Tables 1, 2, and 3. The criteria are defined as

follows:

Sensitivitiy =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

#Error = FP + FN,

MSPE =
1

ntest

ntest∑
i=1

(
Ŷi − Ytest,i

)2
,
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where TP, TN, FP, and FN are true positive, true negative, false positive,

and false negative, respectively. The AUC is calculated based on the true

positive rate (Sensitivity) and the false positive rate (1−Specificity) for

Bayesian methods with varying thresholds. To draw the AUC, for each

threshold, indices with a posterior inclusion probability larger than a given

threshold were included in the final model. The AUCs for the regularization

methods are omitted. We denote Ŷi = XT
i β̂, where β̂ is the estimated

coefficient based on each method. For the Bayesian methods, the usual

least square estimates based on the selected support were used as β̂. We

generated test samples Ytest,1, . . . , Ytest,ntest , with ntest = 100, to calculate

the MSPE.

Tables 1 and 2 show that the Bayesian joint selection methods tend to

have better specificity and MCC, while the regularization methods (Lasso

and elastic net) have better sensitivity. As discussed by Peterson et al.

(2016), this seems natural because the regularization methods based on

cross-validation tend to include many redundant variables. This leads to a

relatively larger number of errors for the regularization methods compared

with those for the Bayesian joint selection methods. Furthermore, the pro-

posed joint Bayesian selection method (Joint.CL (b = 1/2)) outperforms

that proposed by Peterson et al. (2016) (Joint.P) in terms of all measures
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Table 1: The summary statistics for Scenario 1 are represented for each set-

ting. Each setting denotes a different choice of the true coefficient β0. Sens

and Spec are sensitivity and specificity, respectively. Joint.CL: the Bayesian

joint selection method proposed in this paper. Joint.P: the Bayesian joint

selection method suggested by Peterson et al. (2016). Elastic: elastic net.

Setting 1 Setting 2

Sens Spec AUC MCC #Error MSPE Sens Spec AUC MCC #Error MSPE

Joint.CL (b = 1
2
) 0.8750 0.9861 0.9937 0.8611 6 69.1445 0.8750 0.9954 0.9894 0.9049 4 56.4885

Joint.CL (b = 0) 0.7500 0.9815 0.9601 0.7605 10 96.9889 0.3333 1.0000 0.9058 0.5571 16 142.2708

Joint.P 0.8750 0.9861 0.9838 0.8611 6 71.0443 0.7500 0.9954 0.9958 0.8282 7 73.7870

Lasso 1.0000 0.8056 · 0.5412 42 45.5522 0.7083 0.8519 · 0.4170 39 106.0526

Elastic 1.0000 0.9352 · 0.7685 14 41.8631 0.8750 0.8426 · 0.5122 37 92.6665

Setting 3 Setting 4

Sens Spec AUC MCC #Error MSPE Sens Spec AUC MCC #Error MSPE

Joint.CL (b = 1
2
) 0.2083 0.9907 0.8493 0.3549 21 42.5213 0.3750 1.0000 0.7373 0.5922 15 30.3394

Joint.CL (b = 0) 0.1667 0.9907 0.7117 0.3025 22 42.7116 0.3333 0.9954 0.7619 0.5191 17 35.0479

Joint.P 0.2500 0.9907 0.8559 0.4023 20 40.3569 0.2917 0.9954 0.8954 0.4797 18 35.7181

Lasso 1.0000 0.8241 · 0.5648 38 32.1919 0.6667 0.8102 · 0.3362 49 40.7437

Elastic 1.0000 0.9444 · 0.7935 12 29.3908 0.6250 0.8935 · 0.4261 32 34.9673

in Tables 1 and 2 except the AUC. In fact, the two Bayesian joint selection

methods are quite similar, except for the graph structure they consider. In

these simulation scenarios, the DAG structure seems more appropriate be-

cause clearly there are parents (TFs genes) and children (regularized genes

for each TF). Thus, our method is preferable in this case. Lastly, the results

show that our joint modeling (Joint.CL (b = 1/2)) significantly improves

the performance of the variable selection compared with modeling the vari-
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Table 2: The summary statistics for Scenario 2 are represented for each

setting. Each setting denotes a different choice of the true coefficient β0.

Setting 1 Setting 2

Sens Spec AUC MCC #Error MSPE Sens Spec AUC MCC #Error MSPE

Joint.CL (b = 1
2
) 0.7500 0.9923 0.9362 0.8174 6 20.9925 0.6000 1.0000 0.8933 0.7518 8 15.8789

Joint.CL (b = 0) 0.6000 1.0000 0.9200 0.7518 8 29.6691 0.6500 0.9923 0.8790 0.7506 8 23.3007

Joint.P 0.6500 1.0000 0.9842 0.7854 7 15.4705 0.5000 1.0000 0.9081 0.6814 10 19.2450

Lasso 1.0000 0.8308 · 0.6290 22 14.8092 0.9000 0.7692 · 0.4877 32 13.4260

Elastic 0.9500 0.9077 · 0.7201 13 18.9942 0.8000 0.8615 · 0.5371 22 14.5779

Setting 3 Setting 4

Sens Spec AUC MCC #Error MSPE Sens Spec AUC MCC #Error MSPE

Joint.CL (b = 1
2
) 0.7500 1.0000 0.9537 0.8498 5 6.6246 0.6500 1.0000 0.8398 0.7854 7 7.4111

Joint.CL (b = 0) 0.4000 1.0000 0.9631 0.6051 12 20.3681 0.3000 1.0000 0.7962 0.5204 14 12.7521

Joint.P 0.6500 1.0000 0.9811 0.7854 7 11.6528 0.4500 1.0000 0.9057 0.6441 11 9.2049

Lasso 0.9500 0.8154 · 0.5754 25 8.2451 0.8500 0.7462 · 0.4299 36 7.7223

Elastic 0.9500 0.8923 · 0.6912 15 10.7742 0.7000 0.8846 · 0.5032 21 7.8241

Table 3: The summary statistics for Scenario 3 are represented for each

setting. Each setting denotes a different choice of the true coefficient β0.

Setting 1 Setting 2

Sens Spec AUC MCC #Error MSPE Sens Spec AUC MCC #Error MSPE

Joint.CL (b = 1
2
) 1.0000 0.9357 0.9964 0.7018 9 1.6875 1.0000 0.9500 0.9821 0.7475 7 1.6469

Joint.CL (b = 0) 1.0000 0.9429 0.9786 0.7237 8 1.7331 1.0000 0.9429 0.9786 0.7237 8 1.7331

Joint.P 1.0000 0.9500 0.9857 0.7475 7 1.6838 1.0000 0.9500 0.9821 0.7475 7 1.6838

Lasso 1.0000 0.3571 · 0.1890 90 1.8121 1.0000 0.3571 · 0.1890 90 1.8121

Elastic 1.0000 0.6714 · 0.3463 46 1.6770 1.0000 0.6286 · 0.3184 52 1.6969

able and DAG separately (Joint.CL (b = 0)). These findings suggest that

the proposed joint modeling approach actually improves variable selection

performance by borrowing information from the DAG structure.

Table 3 shows the results for Scenario 3, where the true network struc-
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ture for X is an undirected graph and the ordering is mis-specified. Even

in this case, our joint modeling method provides comparable performance

to that of Peterson et al. (2016), which is designed for undirected graphs.

Similarly to Scenarios 1 and 2, the regularization methods do not work well

compared with the Bayesian methods in our settings.

6. Conclusion

We examine a regression setting in which the predictors are both relevant to

a response variable of interest and functionally related to one another via a

Gaussian DAG model. In particular, we consider a hierarchical multivariate

regression model with DAG–Wishart priors on the covariance matrix for the

predictors, spike and slab priors on the regression coefficients, independent

Bernoulli priors for each edge in the DAG, and an MRF prior linking the

variable indicators to the graph structure. Under high-dimensional settings

and standard regularity assumptions, for a known underlying variance σ2,

we establish both the posterior ratio consistency and the strong selection

consistency in order to jointly estimate the variable and the graph for the

covariates. When the underlying response variance is unknown and an

appropriate inverse-gamma prior is placed on σ2, we also establish the joint

selection consistency under the same regularity conditions. Finally, we use
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simulation studies to demonstrate that the proposed model outperforms

existing state-of-the-art methods in terms of selecting network-structured

predictors, including both penalized likelihood and Bayesian approaches, in

several settings. In future work, we intend to explore other types of priors

over the graph space and on the regression coefficients to determine whether

the consistency and better simulation performance can be achieved under

weaker assumptions.

Supplementary Materials

Supplementary material includes the proofs for main results and other aux-

iliary results.
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