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Abstract: We study Markov regime-switching Gaussian autoregressive models that capture tem-

poral heterogeneity exhibited by time series data. Constructing a Markov regime-switching

model requires making several specifications related to the state and observation models. In par-

ticular, the complexity of these models must be specified when fitting to a data set. We propose

new regularization methods based on a conditional likelihood for simultaneous autoregressive-

order and parameter estimation, with the number of regimes fixed. We use a regularized Bayesian

information criterion to select the number of regimes. Unlike existing information-theoretic

approaches, the proposed methods avoid an exhaustive search of the model space for model

selection, and thus are computationally more efficient. We establish the large-sample properties

of the proposed methods for estimation, model selection, and forecasting. We also evaluate the

finite-sample performance of the methods using simulations, and apply them to analyze two real

data sets.

Key words: Autoregressive models, Markov regime-switching models, Information criteria, Reg-

ularization methods, em algorithm.
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1. Introduction

Markov regime-switching models (Hamilton, 1989) are commonly used to incorporate

the latent structure of a time series in order to capture the nonstationarity or time-

inhomogeneity in real data. An extensive body of literature discusses the use of these

models in econometrics, with many applications related to representations of economic

or business cycles (Hamilton, 2016). Other applications include those related to speech

recognition and neurobiology (Krishnamurthy and Yin, 2002).

In a Markov regime-switching model, we typically use a discrete-state and often

first-order Markov “state” model to capture unobserved stochastic variation corre-

sponding to regime changes. In addition, conditional on the latent structure, we use

a conventional time series “observation” model to represent the observed data. In

practice, we must specify the complexity of the model, that is, the number of regimes

(states) and the structure of each regime-specific observation model. In this study, we

develop new results based on a regularized conditional likelihood that demonstrate that

sparse estimations for such two-stage models consistently estimate the parameters of

the presumed model under mild conditions. We also establish certain model selection

consistency results, including forecasting consistency. Although our technical results

apply under general modeling assumptions, our development and exposition focus on

Markov regime-switching autoregressive (msar) models with Gaussian errors.

A Gaussian msar model postulates the existence of a latent process {St : t =
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1, 2, . . .} on a finite set {1, . . . , K} that determines, for each time t, the Gaussian au-

toregressive regime that dictates the stochastic behavior of an observable discrete-time

series {Yt : t = 1, 2, . . .}. Specifically, St is presumed to be a first-order Markov chain,

parameterized through a transition matrix P. Conditional on St = j, the distribution of

Yt depends on the lagged Y , say, Yt−1, . . . , Yt−qj , for some qj. Such models, in compar-

ison to standard Gaussian autoregressive (ar) processes, are particularly useful when

the data exhibit heterogeneity in the conditional mean or autocovariance structure.

A maximum likelihood estimation (mle) is typically used for inferences in msar

models, implemented using adaptations of filtering-smoothing and forward-backward

algorithms (Frühwirth-Schnatter, 2006; Baum et al., 1970). Krishnamurthy and Rydén

(1998) and Douc et al. (2004, 2011) establish the consistency and asymptotic normality

of the mle when the model complexity (a common ar-order q across the regimes and

the number of ar-regimes K) is fixed. In real applications, however, there may be

latent external factors (policy changes, macroeconomic conditions, etc.) that dictate

which ar-regimes are in operation, and that these regimes may have different stochastic

characteristics, as manifested in their mean level, variance, or autocovariance. For

example, an economy under one regime may be subject to more persistent effects of

a shock than when under another regime. Hence, our inferential interest centers on

the choice of potentially different regime-specific ar-orders q1, . . . , qK , the number of

ar-regimes K, estimations of the ar-coefficients and the transition matrix P, and
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prediction.

Information criteria such the aic (Akaike, 1973), bic (Schwarz, 1978), and their

variations (Psaradakis and Spagnolo, 2006) are commonly used to simultaneously se-

lect the ar-orders and the number of regimes K. Smith et al. (2006) proposed a

Markov-switching criterion (msc) as an estimate of a Kullback–Leibler divergence for

model selection. However, these methods typically require exhaustive evaluation of 2Kq

different models with varying complexity. As illustrated in our simulations, even for

moderate values of (q,K), this is rarely computationally feasible.

In addition, such methods can be numerically unstable (Breiman, 1996), and it

is difficult to study the theoretical properties of the resulting parameter estimators.

Regularization techniques such as the lasso (Tibshirani, 1996), smoothly clipped ab-

solute deviation (scad) of Fan and Li (2001), and adaptive lasso (Zou, 2006) offer a

potential solution, which we investigate here.

We also study prediction, or forecasting, and demonstrate that we can achieve

consistency in the optimal prediction in terms of the mean squared prediction error,

even when the number of regimes is overestimated. In light of the challenges and

limitations of previous approaches, our main contributions are as follows:

1. We develop a new regularized conditional likelihood method that, to the best

of our knowledge, is the first in the field for simultaneous ar-order and parameter

estimation in msar models, and propose a regularized bic (rbic) for choosing the
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number of regimes K. Compared with existing methods, given (K, q), the proposed

method simultaneously estimates the ar-orders and parameters without an exhaustive

search of 2Kq possible models, and is thus computationally efficient. This is supported

by our analysis of the average computational time (in seconds) taken by each method

to complete the per-sample results in our simulations; see Section 7.1.

2. We study the large-sample properties of the methods, and assess their finite-

sample performance using simulations. Our results show that, under standard regular-

ity conditions, when K is given or consistently estimated, the regularization method

is consistent in terms of the ar-order and parameter estimation, and achieves consis-

tent predictions of future values of the process. Furthermore, we discuss the asymptotic

properties of the rbic in estimating K, and show that the conditional h-step-ahead pre-

dictive density can be estimated consistently when the number of regimes is estimated

using the rbic.

The rest of the paper is organized as follows. In Section 2, we introduce Gaus-

sian msar models. In Section 3, we develop new regularization methods and present

their numerical implementation. Section 4 discusses predictions using msar models.

In Section 5, we estimate the number of ar-regimes. Section 6 contains a theoretical

discussion. Our simulations are presented in Section 7. We analyze two real data sets

in Section 8. Section 9 concludes the paper.
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2. Gaussian msar models, and their conditional likelihood

Consider an observable discrete-time series {Yt : t = 1, 2, . . .} with realized values

{yt : t = 1, 2, . . .}, and a latent stochastic process {St : t = 1, 2, . . .} taking values

in {1, . . . , K}, where K is the number of regimes underlying the process. In a msar

model, the process St follows a homogeneous discrete, finite-regime (or finite-state),

first-order Markov chain with transition matrix P = [αij]. That is, for each t,

Pr[St = j|St−1 = i, St−2 = st−2, . . . , S1 = s1] = Pr[St = j|St−1 = i] = αij , 1 ≤ i, j ≤ K,

with an initial state distribution Pr[St = j] = πj ∈ (0, 1), which may, if required, be

assumed to be the unique solution of π = πP, where π = (π1, . . . , πK)>. Conditional

on St, Yt follows an inhomogeneous Markov process, such that for each t, the conditional

distribution of Yt depends only on the regime indicator St = j and the lagged Y , say,

yt−1, . . . , yt−qj , for some qj and j = 1, . . . , K. We assume the conditional distribution

of Yt|(St = j, yt−1, . . . , yt−qj) is Gaussian with variance νj and mean

µt,j = θj0 + θj1yt−1 + . . .+ θjqjyt−qj ; j = 1, . . . , K. (2.1)

For our theoretical study, the Gaussianity assumption can be relaxed, and the observa-

tion process can be assumed to be a linear process driven by a white-noise error with

appropriate finite-moment conditions. Note that the msar models under consideration

are rather general. They encompass important special cases, including the mixture

of autoregressive models studied by Wong and Li (2000), and the msar models with
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common ar-orders and ar coefficients across the regimes; that is, qj = q and θjl = θl,

for j = 1, . . . , K and l = 1, . . . , q, as discussed in Frühwirth-Schnatter (2006). The

stationarity and ergodicity conditions of msar models are studied by Yao and Attali

(2000) and Francq and Zaköıan (2001). Timmermann (2000) provides calculations for

the variance, higher order moments, and autocovariances of stationary msar models.

Let q∗ = max1≤j≤K qj denote the maximal ar-order of a stationary msar model.

Proposition 1 in Section 1 of the Supplementary Material (henceforth referred to as

the Supplement) shows that the lag-l population pacf of Yt is zero for any l > q∗, a

property shared by the standard ar model of order q∗ (Brockwell and Davis, 1991).

In practice, the sample pacf of Yt can be used to estimate q∗ in an msar model,

but it gives little insight into the regime ar-orders qj, which are also the focus of our

inferences. We now introduce a conditional likelihood function as the basis for our new

estimation method, described in Section 3.

Conditional likelihood: Let {(S1, Y1), . . . , (Sn, Yn)} ≡ (S1:n, Y1:n) be a sample of

“complete” data from an msar model. The joint density or complete data likelihood,

by the assumptions and for some prespecified densities g0 and g1, can be written as

g(s1:n, y1:n) =
{

Pr[S1 = s1]×
n−1∏
t=1

Pr[St+1 = st+1|s1:t]
}{

g0(y1|s1:n)
n∏
t=2

g1(yt|s1:n, y1:(t−1))
}

= Pr[S1 = s1]×
n−1∏
t=1

αst,st+1 ×
{
g0(y1|s1)

n∏
t=2

g1(yt|st, y1:(t−1))
}
,

where αst,st+1 = Pr[St+1 = st+1|s1:t] = Pr[St+1 = st+1|St = st], for 1 ≤ t ≤ n − 1. The
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initial probability Pr[S1 = s1] can be incorporated in two ways: it can be treated as a

separate marginal law that is inferred or conditioned upon during an inference, or we

may use the stationary distribution Pr[S1 = s1] = πs1 , for s1 = 1, . . . , K, arising from

the Markov chain with the transition matrix P. This renders the probability Pr[S1 = s1]

a function of the elements of P. In either case, Ocone and Pardoux (1996), Kleptsyna

and Veretennikov (2008), and Douc et al. (2009) show that, under mild conditions, the

influence of the assumptions on Pr[S1 = s1] diminishes at a geometric rate in n.

The incomplete data likelihood f(y1:n) is then available by marginalizing g(s1:n, y1:n)

over the values of s1:n. Given a prespecified value q ≥ q∗, f may be further factorized

as f1(y1:q)f2(yq+1:n|y1:q). Using a standard conditional approach in time series, we work

with f2, which by the model assumptions, can be written as

f2
(
yq+1:n

∣∣y1:q) =
K∑

s1=1

. . .
K∑

sn=1

f(yq+1:n|y1:q, s1:n) Pr(s1:n|y1:q)

=
K∑

sq=1

. . .
K∑

sn=1

{
Pr[Sq = sq|y1:q]×

n∏
t=q+1

αst−1,st

}{ n∏
t=q+1

g(yt|y(t−q):(t−1), st)
}
,(2.2)

with Gaussian density g(yt|y(t−q):(t−1), st) = φ(yt;µt,st , νst), and µt,st = θst,0 + θst,1yt−1 +

. . .+θst,qyt−q. Note that in this construction, we have used a common ar-order q(≥ qj)

for all of the regimes; the regularization method in Section 3 estimates the regime-

specific qj using the data. The treatment of the probability Pr[Sq = sq|y1:q] is similar

to that of Pr[S1 = s1], discussed above. To avoid this specification, inspired by Douc
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et al. (2004), we condition on the state Sq = sq, and work with the conditional density

f3
(
yq+1:n

∣∣y1:q, sq,ΦK

)
=

K∑
sq+1=1

. . .
K∑

sn=1

{ n∏
t=q+1

αst−1,st

}{ n∏
t=q+1

φ(yt;µt,st , νst)
}
. (2.3)

Finally, the conditional log-likelihood that we use for inferences in msar models is

`n(ΦK |y1:q, sq) ≡ `n(ΦK ; sq) = log{f3
(
yq+1:n

∣∣y1:q, sq,ΦK

)
}, (2.4)

where ΦK = (ν1, . . . , νK ,θ1, . . . ,θK ,P = {αij}), and θj = (θj0, θj1, . . . , θjq)
>.

As discussed in the introduction, the potential regime-specific ar-orders qj(≤ q)

mean that different elements of the vectors θj may be zero, which then results in

different sparsity patterns in θj across the ar-regimes. This allows for regime-specific

seasonality effects. Alternatively, we can allow for nonseasonality effects in θj and a

decreasing pattern in |θjl| as the lag l increases; see Section 3 for more details.

The marginalization over the states st in (2.3) is achieved efficiently using the stan-

dard filtering/prediction recursions employed in the hidden Markov model literature.

A numerical maximization of (2.4) with respect to ΦK , treating st as the missing

data, is relatively straightforward using the expectation-maximization (em) algorithm

(Dempster et al., 1977) described in Section 3.

In principle, given (K, q), one could obtain the conditional mle of ΦK by maxi-

mizing `n(ΦK ; sq) in (2.4). However, in general, all of the estimated ar-coefficients are

nonzero. Thus, such an approach does not provide a sparse msar, as postulated. This

observation, and the limitations of the existing methods, motivate us to investigate
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regularized conditional likelihood methods.

3. Simultaneous ar-order and parameter estimation

The conditional log-likelihood `n(ΦK ; sq) in (2.4), similarly to that of a Gaussian mix-

ture model with unequal component variances νj, diverges to infinity when some νj

goes to zero. This singularity can be avoided by imposing a positive lower bound on

νj (Hathaway, 1985) or by adding a penalty function to the conditional log-likelihood

(Chen et al., 2008). For convenience in the implementation, we apply the latter ap-

proach, and work with

˜̀
n(ΦK ; sq) = `n(ΦK ; sq)−

K∑
j=1

pn(νj), (3.1)

where pn(νj)→ +∞, as νj → 0 or ∞. An example of such a penalty is

pn(νj) =
1√
n− q

[
V2
n

νj
+ log

(
νj
V2
n

)]
, (3.2)

with V2
n = (n − q)−1

∑n
t=q+1(yt − ȳn)2 and ȳn = (n − q)−1

∑n
t=q+1 yt as the sample

variance and the mean of yq+1:n, respectively. From a Bayesian point of view, (3.2)

is a data-dependent gamma prior on ν−1j with its mode at V−2n . With this penalty,

we avoid instability of the em algorithm, while obtaining closed-form updates for νj.

Refer to (3.1) as the adjusted conditional log-likelihood. We now introduce the new

regularization method.

Statistica Sinica: Preprint 
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Given (K, q) and any sq ∈ {1, 2, . . . , K}, we achieve a joint ar-order and parameter

estimation by maximizing the penalized (adjusted) conditional log-likelihood,

Ln(ΦK ; sq, λ) = ˜̀
n(ΦK ; sq)−Rn(ΦK ;λ), (3.3)

using the penalty (regularization) function

Rn(ΦK ;λ) =
K∑
j=1

q∑
l=1

rn(θjl;λ). (3.4)

Examples of rn are the lasso, adaptive lasso (adalasso), and scad, which are

given in Section 1 of the Supplement. Unlike the penalties in information criteria,

rn(θ;λ) is a continuous function of θ and has a spike at θ = 0; λ ≥ 0 is a tuning

parameter. Given λ, let Φ̂n,K,sq(λ) ≡ Φ̂n,K,sq = arg maxΦK
{Ln(ΦK ; sq, λ)} be the

maximum penalized conditional likelihood estimator (mpcle) of ΦK . By the properties

of rn and λ (Conditions C1–C3 in Section 1 of the Supplement), Theorem 2 shows that,

irrespective of the initial condition sq, one can encourage estimates of some θjl to be

zero. Hence, the method performs a simultaneous ar-order and parameter estimation

without evaluating all candidate msar models, and thus is computationally feasible.

In general, the method allows for regime-specific seasonality effects, owing to the

zero estimates of some θjl. Using adalasso, we admit no seasonality effects. Fur-

thermore, |θjl| deceases with an increase in the lag l, as discussed in Section 1 of the

Supplement.

Computation: We use a modified em algorithm for the maximization of Ln(ΦK ; sq, λ)

in (3.3). The core elements of the algorithm are given here; more details, including a
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data-adaptive choice of λ, are given in Section 3.2 of the Supplement. In what follows,

we fix sq ∈ {1, . . . , K}, and denote x>t = (1, yt−1, . . . , yt−q).

For observation yt, let Vtij equal one if St−1 = i and St = j, and zero otherwise;

Vtij records the presence of a transition between regime i at time t− 1 and regime j at

time t. In addition, let Utj equal one if St = j. The complete conditional log-likelihood

is

`cn(ΦK ; sq) =
K∑
i=1

K∑
j=1

n∑
t=q+1

Vtij logαij +
K∑
j=1

n∑
t=q+1

Utj

{
log φ(yt;µt,j, νj)

}
,

where µt,j = x>θj. At the (m+ 1)th iteration, the em algorithm iterates as follows:

E-step: We compute the conditional expectation of `cn(ΦK ; sq) with respect to (Vtij, Utj),

given (Φ
(m)
K , sq, y1:n). This reduces to computing the “smoothing” probabilities

$
(m)
tij = E(Vtij|y1:n, sq; Φ(m)

K ) ≡ Pr[St−1 = i, St = j|y1:n, sq; Φ(m)
K ] , 1 ≤ i, j ≤ K

ω
(m)
tj = E(Utj|y1:n, sq; Φ(m)

K ) ≡ Pr[St = j|y1:n, sq; Φ(m)
K ],

for q+1 ≤ t ≤ n. The probabilities are computed using the forward-backward algorithm

of Baum et al. (1970), given in Section 3.1 of the Supplement.

M-step: We maximize the penalization of the conditional expectation of `cn(ΦK ; sq)

computed in E-step using the penalties in (3.2) and (3.4). The maximization with re-

spect to θj is performed using a coordinate descent approach. The parameter estimates

are then updated as follows. First, for 1 ≤ l ≤ q and 1 ≤ j ≤ K, compute

z1,jl =
1

n− q

n∑
t=q+1

ω
(m)
tj yt−l(yt − µ̃tj,−l) and z2,jl =

1

n− q

n∑
t=q+1

ω
(m)
tj y2t−l,

Statistica Sinica: Preprint 
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13

where µ̃tj,−l = θ
(m)
j0 +

∑l−1
v=1 θ

(m+1)
jv yt−v +

∑q
v>l θ

(m)
jv yt−v. Update θjl using

θ
(m+1)
jl =

T (z1,jl;λjl)

z2,jl
, (3.5)

where T (z;λ) = sign(z)(|z| − λ)+ is the soft-thresholding operator (Donoho and John-

stone, 1994), and λjl depends on the penalty rn; for the lasso, λjl = λ. The λjl for

the other two penalties are given in Section 3.1 of the Supplement.

The regime-specific intercepts and variances are updated using

θ
(m+1)
j0 =

∑n
t=q+1 ω

(m)
tj (yt − µ(m+1)

tj )∑n
t=q+1 ω

(m)
tj

(3.6)

ν
(m+1)
j =

∑n
t=q+1 ω

(m)
tj (yt − x>t θ

(m+1)
j )2 + 2V2

n/
√
n− q∑n

t=q+1 ω
(m)
tj + 2/

√
n− q

, (3.7)

where µ
(m+1)
tj =

∑q
l=1 θ

(m+1)
jl yt−l. The updated transition probabilities are

α
(m+1)
sq ,j

=

∑n
t=q+1$

(m)
t,sq ,j∑n

t=q+1

∑K
i=1$

(m)
t,sq ,i

, α
(m+1)
ij =

∑n
t=q+2$

(m)
tij∑n

t=q+2

∑K
h=1$

(m)
tih

, i 6= sq, 1 ≤ i, j ≤ K.

(3.8)

Starting from an initial value Φ
(0)
K , the em algorithm iterates until some convergence

criterion is met. We use the stopping rule ‖Φ(m+1)
K −Φ

(m)
K ‖ ≤ ε, for a prespecified small

value ε, taken as 10−5 in our simulations and data analysis. Owing to the thresholding

structure of the estimates in (3.5), by tuning λ, the estimates of some θjl are exactly

zero, resulting in a simultaneous ar-order and parameter estimation.
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4. Prediction

For weakly stationary processes, the conditional expectation of a future observation

based on the current data provides an optimal prediction in terms of the minimum

mean squared prediction error. In standard ar models, this leads to a straightforward

prediction mechanism. In this section, we focus on the predictive density in msar

models, which can also be used to compute the prediction values. Unlike many nonlinear

models, the conditional expectation can easily be computed analytically in the msar,

as follows.

Given the observations y1:n, we are interested in the joint distribution of the future

vector (Yn+1, . . . , Yn+h) ≡ Yn+1:h, or equivalently, the h-step-ahead predictive density

fK(yn+1:h|y1:n). By the model assumptions in Section 2, we have that, for h = 1, 2,

fK(yn+1|y1:n) =
K∑

sn+1=1

Pr(Sn+1 = sn+1|y1:n) φ(yn+1;x
>
n+1θsn+1 , νsn+1) (4.1)

fK(yn+1:h|y1:n) =
K∑

sn+1:h=1

P (Sn+1 = sn+1|y1:n)

[ h∏
j=2

αsn+j−1,sn+j

][ h∏
j=1

φ(yn+j;x
>
n+jθsn+j

, νsn+j
)

]
,

(4.2)

where x>n+j = (1, yn+j−1, . . . , yn+j−q). The conditional probabilities P (Sn+1 = j|y1:n),

for j = 1, . . . , K, are computed recursively using the prediction and filtering probabili-
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ties,

Pr(St+1 = j|y1:t) =
K∑
l=1

Pr(St+1 = j|St = l, y1:t)P (St = l|y1:t) =
K∑
l=1

αlj Pr(St = l|y1:t),

Pr(St = l|y1:t) =
f(yt|y1:t−1, St = l) Pr(St = l|y1:t−1)

fK(yt|y1:t−1)
=
φ(yt;x

>
t θl, νl) Pr(St = l|y1:t−1)
fK(yt|y1:t−1)

,

respectively, for all t = n, n−1, . . . , q+1. Note that the conditional density fK(yt|y1:t−1)

needed for the filtering probabilities is computed similarly to (4.1). Specifically, for

t = q + 1,

fK(yq+1|y1:q) =
K∑
l=1

Pr(Sq+1 = l|y1:q)φ(yq+1;x
>
q+1θl, νl),

which requires that we specify Pr(Sq+1 = j|y1:q) =
∑K

l=1 αljP (Sq = l|y1:q) and the

initial distribution {Pr(Sq = l|y1:q), l = 1, 2, . . . , K} ≡ γq.

Thus, given the data y1:n and the specification of (ΦK ,γq), the h-step-ahead pre-

dictive densities of a K-regime msar model are available. The effect of the initial

distribution γq on the predictive densities is negligible once n grows (Ocone and Par-

doux, 1996; Kleptsyna and Veretennikov, 2008; Douc et al., 2009). For example, one

may use a noninformative uniform discrete distribution γq = (1/K, . . . , 1/K). The pa-

rameter ΦK is estimated using its mpcle Φ̂n,sq ,K , obtained from the data y1:n. We

denote the resulting estimated predictive densities (4.1) and (4.2) by f̂K(yn+1:h|y1:n).

The estimated densities can then be used to compute various quantities, such as the

conditional expectations for prediction. For example, the optimal one-step prediction
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value (in the sense of the mean squared prediction error) is given by

Ê∗{Yn+1|y1:n} =
K∑
j=1

P̂r(Sn+1 = j|y1:n){θ̂j0 + θ̂j1 yn + . . .+ θ̂jq yn+1−q}, (4.3)

where (θ̂j0, θ̂jl) denotes the mpcle, and E∗{·} is the expectation under the true model.

5. Choice of the number of ar-regimes, K

The methods in Sections 3 and 4 are used when the number of ar-regimes K is fixed.

Typically, K is also chosen using the data. Information criteria, such as the bic based

on the mle, are commonly used to estimate K. We instead propose using a regularized

bic (rbic) based on the mpcle. Unlike the bic, this does not search the model space

when choosing the ar-orders, because this task is performed by the mpcle.

Consider situations where placing a known upper bound K on K is feasible. For

each K = 1, . . . ,K, we fit an msar model with the resulting mpcle Φ̂n,K,sq , for any

fixed and arbitrary choice of sq ∈ {1, . . . , K}. Let NK =
∑K

j=1

∑q
l=1 I(θ̂jl 6= 0) be the

total number of nonzero estimated ar-coefficients, and denote

rbic(Φ̂n,K,sq) = −2`n(Φ̂n,K,sq ; sq) + log(n− q)× {NK +K(K − 1) + 2K}, (5.1)

where K(K − 1) + 2K counts the number of parameters (νj, θj0, αij), and `n(·; sq) is

the conditional log-likelihood in (2.4). The number of ar-regimes is then estimated as

K̂n = argmin
1≤K≤K

rbic(Φ̂n,K,sq). (5.2)
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We discuss large-sample properties of K̂n in Section 6. If the penalty in (5.1) is replaced

by 2{NK+K(K−1)+2K}, we obtain the regularized aic (raic). In our simulations in

Section 7.2, we asses the finite-sample performance of the raic, rbic, and a regularized

version of the Markov-switching criterion (msc) of Smith et al. (2006). The latter is

computed based on the mpcle, and we call it the rmsc. Note that, owing to the

factor log(n− q) in (5.1), the penalty in the rbic is more severe than those in the raic

and rmsc. Thus, it is expected that in finite-sample situations, the rbic may result

in models with lower selected orders (underestimation) than those of selected by the

other two criteria; see Section 7.2.

6. Theoretical study

We first study the asymptotic properties of the mpcle when the true number of ar-

regimes K is predetermined (Theorems 1 and 2). We then study K̂n in (5.2), and

discuss the behavior of the mpcle when this is used to estimate the number of regimes

(Theorem 3). The regularity conditions C1–C3 on the penalty rn and the tuning

parameter λn, as well as the proofs of Theorems 1–3, are given in Sections 1 and 2,

respectively, of the Supplement.

Notation: All vectors are column vectors, and we drop the transpose >, for conve-

nience. We assume the observed time series is a sample from an msar model with K ar-

regimes and a d-dimensional true parameter vector Φ∗ = (v∗1, . . . , v
∗
K ,θ

∗
1, . . . ,θ

∗
K ,P∗ =
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{α∗ij}), where d = K(q + 2) + K(K − 1). The regime-specific ar-coefficient vector is

θ∗j , the variance is v∗j , and the transition probability is α∗ij > 0, for i, j = 1, . . . , K. We

further assume that Φ∗ is an interior point of the compact parameter space Θ ⊆ Rd.

We partition each regime-specific ar-coefficient vector as θ∗j = (θ∗j1,θ
∗
j2), such that θ∗j1

and θ∗j2 contain the nonzero and zero ar-coefficients, respectively. We partition the

parameter vector Φ∗ = (Φ∗1,Φ
∗
2) such that Φ∗2 = (θ∗12, . . . ,θ

∗
K2) = 0. The subvector Φ∗1

contains all intercepts θ∗j0, the nonzero θ∗jl, the variances ν∗j , and the transition proba-

bilities α∗ij. Furthermore, let dim(Φ∗1) = d1 < d. We partition any candidate parameter

as Φ = (Φ1,Φ2), following Φ∗. We use Φ̂n,sq to represent the mpcle of the vector of

parameters of the true msar model with K regimes, and for any fixed sq ∈ {1, . . . , K}.

Let R′n(·;λ) be the vector of first derivatives, and R′′n(·;λ) be the matrix of the sec-

ond derivatives of Rn(Φ;λ) with respect to Φ. In addition, let I11(Φ
∗
1) be the Fisher

information of the true msar model with Φ∗2 = 0. The Euclidean norm is denoted by

‖ · ‖2.

Main results: By conditioning on y1:q, the effective sample size is n − q. Because

q < ∞, n ∼ n − q asymptotically. Thus, in what follows, we use n instead of n − q.

Our first result establishes the estimation consistency of the mpcle, irrespective of the

choice of sq.

Theorem 1. Let Y1:n be a sample from a stationary and ergodic msar model, and

E|Yt|(4+2δ) < ∆ <∞, for some δ > 0. Assume λn and the penalty rn satisfy Conditions
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C1–C2 in the Supplement. Then, there exists a local maximizer Φ̂n,sq of Ln(Φ; sq, λn)

such that, as n→∞, ‖Φ̂n,sq −Φ∗‖2 = Op{n−1/2(1 + an)}, where an is given in C2.

By Theorem 1, if an = O(1), which requires appropriate choices of λn and rn, then

Φ̂n,sq is
√
n-consistent. This is the rate for the conditional mle studied in Douc et al.

(2004). For example, to achieve
√
n-consistency for the mpcle based on the scad,

it is sufficient that λn → 0 as n → ∞, because then an = 0. For the lasso,
√
n-

consistency is achieved if λn = O(n−1/2) (or o(n−1/2)), and for the adalasso, we need

√
nλn = o(1).

In Theorem 2, we show that the
√
n-consistent estimator Φ̂n,sq also has the oracle

property, as defined in Fan and Li (2001). More specifically, consider the partition-

ing Φ̂n,sq = (Φ̂n,sq ,1, Φ̂n,sq ,2), where dim(Φ̂n,sq ,1) = dim(Φ∗1) = d1 and dim(Φ̂n,sq ,2) =

dim(Φ∗2) = d− d1. This partitioning is based on the oracle’s perspective.

Theorem 2. Assume the same conditions of Theorem 1, (λn, rn) satisfy Condition C3,

and an = O(1). We have, for any
√
n-consistent estimator Φ̂n,sq of Φ∗ with the above

partitioning, as n→∞,

(i) Consistency in the ar-order estimation: Pr(Φ̂n,sq ,2 = 0) −→ 1.

(ii) Asymptotic normality:

√
n

{[
I11(Φ

∗
1) +

R′′n(Φ∗1;λn)

n

]
(Φ̂n,sq ,1 −Φ∗1) +

R′n(Φ∗1;λn)

n

}
D−→ N (0, I11(Φ

∗
1)).

By Theorems 1 and 2, for the scad penalty with λn ∼ n−1/2 log n, the mpcle

Φ̂n,sq is consistent in both the parameter and the ar-order estimations. With the same
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choice of λn, the mpcle based on the lasso is consistent in the ar-order estimation,

but introduces bias to the estimators of the true nonzero ar-coefficients, a well-known

property of the lasso in other settings. For the adalasso, if λn ∼ n−1/2−ψ, for

0 < ψ < γ
2
, the resulting mpcle is consistent in both the parameter and the ar-order

estimations. Note that, given K and the conditions of Theorem 1 on Yt, the standard

bic is consistent in the ar-order estimation (Konishi and Kitagawa, 2008). However,

compared with the new method, the bic has a higher computational cost of evaluating

2Kq different msar models in order to choose a final model.

By the consistency of the mpcle in Theorem 1, from (4.3), we have that, as n→∞,

Ê∗{Yn+1|y1:n}
p−→ E∗{Yn+1|y1:n}, (6.1)

where E∗{Yn+1|y1:n} is the optimal one-step prediction. This holds for the h-step-ahead

prediction.

Next, we study the properties of the rbic-based estimator K̂n in (5.2), and its

effect on the mpcle and, specifically, the estimated predictive densities f̂κ(yn+1:h|y1:n)

when κ = K̂n. We denote f ∗(yn+1:h|y1:n) as the h-step-ahead predictive density based

on the true msar model with K regimes, and K is an upper bound for K.

Theorem 3. Under the conditions of Theorem 2, and by assuming a compact Euclidean

space for the parameters θj and νj, we have that, as n→∞,

(i) P (K̂n ≥ K)→ 1, where K is the true number of ar-regimes;
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(ii) for any finite K ≤ κ ≤ K, f̂κ(yn+1:h|y1:n) −→ f ∗(yn+1:h|y1:n), almost surely, for all

(y1:n+h). This result also holds when the number of regimes is estimated using K̂n.

Part (i) indicates that K̂n does not asymptotically underestimate the true number

of regimes K. Part (ii) shows that even if the number of regimes is overestimated, we

can still obtain consistency in the estimated h-step-ahead predictive densities. Hence,

for instance, (6.1) still holds. The consistency of K̂n can be established under stronger

conditions. For example, for some small constants δ > 0 and ε ∈ (0, 1/2), consider

the restricted parameter space for the overestimated models with κ > K ar-regimes,

Θc =
{

Φ = (v1, . . . , vκ,θ1, . . . ,θκ,P = {αij}) : vj ≥ δ, αij ∈ [ε, 1 − ε]
}

, where θj

belongs to a compact Euclidean subspace of Rq. Similarly to the results of Keribin (2000)

and Lu (2009), the supremum of the log-likelihood ratio statistic of the overestimated

models over Θc versus the true model behaves as Op(log log n), as n→∞. Thus, using

the same proof technique as that of Theorem 3-(i) (Section 2 of the Supplement), the

rbic prevents an overestimation of K and, hence, yields the consistency of K̂n. In our

simulations in Section 7.2, we find that the rbic performs well in estimating K without

any restrictions on the parameter space.

7. Simulation study

We evaluate the finite-sample performance of the proposed methods using simulations.

We generated times series data from Gaussian msar models with K = 2, 3 ar-regimes.
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For the two-state models, the specified parameters are given in Table 1.

Table 1: Simulation parameter settings

(α11, α22) (ν
1/2
1 , ν

1/2
2 ) µt,1 µt,2

(.80, .70), (.25, .25) (5.0, 3.0) −.60yt−1 − .50yt−2 .50yt−1 − .70yt−2

.67yt−1 − .55yt−2 .45yt−1 + .35yt−3 − .65yt−6

For each (ν
1/2
1 , ν

1/2
2 , µt,1, µt,2), we considered two transition matrices P. This results

in four models, M1–M4. The fifth model M5 is a three-state model; this model and

its simulation results are given in Section 4 of the Supplement. Our results are based

on 300 simulated time series of different sizes n from each model. The computations

are performed in C++ on a Mac OS X machine with 2.9 GHz Intel Core i5.

In Section 7.1, given the number of regimes K, we compare the regularization

method using the lasso, adalasso, and scad with the standard bic using the fol-

lowing measures:

– estimated sensitivity (ES1): the proportion of correctly estimated zero ar-coefficients.

– estimated specificity (ES2): the proportion of correctly estimated nonzero ar-coefficients.

– estimation error: L2 = ‖ψ̂ − ψ‖2 losses of the estimates (ψ̂) of the parameters’ (ψ)

ar-coefficients, variances, and transition probabilities, separately.

– average computational time (ACT, in seconds) taken to complete per-sample results.

For models M1–M2 and M3–M4, the maximal ar-orders are q∗ = 2, 6, respec-

tively. To demonstrate the performance of the new method, we set a larger ar-order
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q = 10 in the penalized log-likelihood (3.3) for all models; the parameter λ is chosen

using the information criterion given in Section 3.2 of the Supplement. To reduce the

computational burden of the bic for the ar-order estimation, we set the smaller com-

mon ar-orders q = 5 and q = 6 for M1–M2 and M3–M4, respectively; these orders

produce about 961 and 3969 models, respectively, to be examined by the bic. We

also examine the performance of the new method with the smaller values q = 5, 6; the

results are summarized at the end of Section 7.1 below.

In Section 7.2, we evaluate the performance of the raic, rbic, and rmsc in esti-

mating the true number of ar-regimes K. We also compare the estimated predictive

density f̂K(yn+1:h|y1:n) when K is correctly specified versus when it is overestimated.

7.1 Analysis of (ES1, ES2), (L1,L2), and ACT: K is prespecified

Table 2 shows the average and standard deviation, over 300 replications, of the

ES1 and ES2 values corresponding to models M1–M4. Because the results are similar

when conditioning on an initial state sq = 1 or 2, we report the results for sq = 1.

From Table 2, we see that the average ES1 for the bic varies between 90.4% and

100%, and for the new method varies between 88% and 100%, across the models M1–

M4, sample sizes n = 150, 250, 500, and three penalties. For the average ES2, when n =

150, the bic performs better by correctly identifying the true nonzero θjl between 90%

and 100% of the time for different models. These proportions for the lasso, adalasso,

and scad are about 57% to 100%, 74% to 100%, and 72% to 100%, respectively. For
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n = 250, 500, the bic, adalasso, and scad perform similarly, with an average ES2 of

more than 92%; for the lasso, the average is more than 83%.

We now assess the computational efficiency of the methods by comparing their

ACTs, reported in Table A1 of the Supplement. The new method based on the lasso,

adalasso, and scad takes, on average, .853 to 5.44, .375 to 2.35, and .830 to 3.77

seconds, respectively, to complete the per-sample results, depending on the model and

the sample size. The bic takes much longer to complete the same task. For models

M1–M2, the ACT is 17.4 to 96.6 seconds, and for models M3–M4, it is about 85 to

297 seconds.

Box plots of the empirical L2 losses of the parameter estimates based on the bic,

lasso, adalasso, and scad, as well as estimates from the model in which the redun-

dant zero ar-coefficients are removed (the oracle model), are given in Figures A1–A4

of the Supplement. For the smaller sample sizes, the empirical median (and variation)

losses of the estimates, particularly those based on the lasso, are higher than those

of the estimator under the oracle model. As n increases, the performance of all of the

estimates improves, and is comparable to that of the oracle estimator.

Similarly to the bic, we ran the new method with the smaller ar-order q = 5 and 6

for models M1-M2 and M4–M5, respectively. The average and standard deviation of

the ES1 and ES2 values and box plots of the empirical L2 losses are given in Table A8

and Figures A9–A12, respectively, of the Supplement. For n = 150, the performance of
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the method (in term of the ES1, ES2, and loss) improves as the ar-order upper bound

q reduces from 10 to 5 or 6. This is expected, because reducing q decreases the potential

number of parameters K(q+2)+K(K−1) to be estimated. As n increases to 250, 500,

the effect of q becomes less apparent in each of the models under consideration.

7.2 Estimation of the number of ar-regimes K, and prediction

We first examine the performance of the estimator K̂n of K based on the raic,

rbic, and rmsc described in Section 5. We fit msar models with K = 1, . . . , 5 to each

simulated sample, and obtain the mpcle, which is then used to compute the raic,

rbic, and rmsc. We choose K̂n to minimizes the criterion. Here, we report the results

when the mpcle is obtained using the scad; the results based on the adalasso and

lasso are similar, and are given in Tables A2–A3 of the Supplement.

Table 3 contains the average proportions of times that a number of regimes K =

1, . . . , 5, is selected by a criterion for models M1–M4. We can see that, for n = 150, 250,

the rbic has a higher percentage of underestimation of the true K, while the raic and

rmsc tend to overestimate K. As explained at the end of Section 5, this behavior

is expected because the penalty function in the rbic in (5.1) is heavier than those

in the other two criteria, which results in higher percentages of underestimation of

the true K by the rbic. As the sample size increases to n = 500, the percentages

of underestimation of the true K by the rbic tend to zero, supporting the result of

Theorem 3-(i). We can see that, when n = 500, the rbic estimates the true K almost
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100% of the time in all four models. For n = 500, the rmsc estimates the true K

about 82% to 92% of the time across the four models, while the raic estimates K

approximately 58% to 81% of the time.

Finally, we examine the finite-sample behavior of the estimated predictive density

f̂K(yn+1:h|y1:n) when K is correctly specified and overestimated. We generated 300 time

series of sizes n + h from model M2 with K = 2, where n = 250, 500, 800, 1000 and

h = n/10. For each generated sample, we used the first n observations to fit msar

models (using the regularization method) with K = 2, 3, 4, 5, and the remaining h

observations to compute log[f̂K(yn+1:h|y1:n)]. Figure A6 of the Supplement shows box

plots of the log-predictive densities. We find the following: 1) overall, the empirical

median and interquartile range of the log-predictive density values of the overestimated

models (K ≥ 3) are approximately equal to those of the models with correct K = K∗;

2) for the smaller sample size n = 250, as expected, the variation of the log-predictive

density values increases as the number of extra regimes increases; and 3) as n increases,

the log-predictive density values of the overestimated models (K ≥ 3) are approximately

equal to those of the true model, supporting the result of Theorem 3-(ii).

8. Real-data analysis

We illustrate the application of our method using two real-data examples. Figures A7

and A8 of the Supplement are used through our analysis below. We use the sample pacf
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to obtain an (approximate) upper bound q, required by our regularization method, for

the maximal ar-order q∗ = max1≤j≤K qj. From Figures A7-(b) and A8-(c), q = 15, 25,

are reasonable choices in Examples 1 and 2, respectively. We report the results based on

the scad and adalasso with lag-dependent weights ωjl(α) = |θ̃jl α(1−α)l|−1, and α =

0.8. The fitted models based on the lasso and adalasso with ωjl = |θ̃jl|−1 performed

similarly or worse, in terms of log-predictive density values, than those discussed below,

and thus are not reported here. The θ̃jl is the (conditional) mle.

Example 1. The data are the quarterly real gross domestic product (gdp) growth rate,

computed as yt = 100(loggdpt − loggdpt−1) and adjusted for inflation, of the United

States for the period from the first quarter of 1947 to the third quarter of 2016, obtained

from https://fred.stlouisfed.org. Figure A7-(a) shows a time series plot of the

278 observations. The plot shows that the variation in the series changes over time,

which motivated us to consider fitting an msar model to yt. We used 267 observations

from the period 1947–2013 for fitting, and 11 observations over the period 2013–2016

for prediction.

We applied the regularization method with q = 15, and fitted the msar with K =

1, 2, 3, 4. The rbic values based on the scad are 691.9,658.7, 690.4, and 720.2, respec-

tively. Those based on the adalasso with the lag-dependent weights are 688.4,665.7, 693.4,

and 732.5, respectively. Thus, based on the rbic, we select K̂ = 2. The fitted models

are given below; the standard errors are shown in brackets. The log-predictive density
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values computed based on 11 observations for the two fitted msar models are −7.66

and −7.19, respectively.

(α̂11, α̂22) (ν̂
1/2
1 , ν̂

1/2
2 ) regime 1: µ̂t,1 regime 2: µ̂t,2

scad: (.983, .981) (.471, 1.10) .521
[.032]

+ .290
[.022]

yt−2 .546
[.044]

+ .365
[.036]

yt−1

adalasso: (.985, .981) (.483, 1.12) .513
[.033]

+ .133
[.028]

yt−1 + .158
[.023]

yt−2 .607
[.045]

+ .298
[.036]

yt−1

Below we analyze the fitted model based on the scad; a similar analysis can be

performed for the second model. Figure A7-(c) shows the classification of yt into the two

regimes of the model. Most of the observations from around 1950–1984 and 2008–2009

are classified into regime 2, with the remaining observations from around 1984–2007

and 2010–2013 classified into regime 1. We interpret the two regimes as follows: regime

1 describes periods when the growth rate was mostly positive and more stable, with a

relatively lower variation than that of regime 2, where the growth rate is a combination

of mostly large positives and, occasionally, large negatives (between 1950–1960 and,

noticeably, around 2008–2009, the recent economic crisis), with a much higher variation.

Figure A7-(c) shows that once the economy falls into one of the two regimes, it stays in

that regime for a long period. This is confirmed by the large diagonal values (α̂11, α̂22)

of the estimated transition probability matrix P̂.

Example 2. The data are monthly U.S. unemployment rates (yt) for the period 1948

to 2010, obtained from https://www.bea.org. The time series plot in Figure A8-(a)
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shows an increasing–decreasing trend and high volatility in the series. To remove the

trend in the mean, we consider the differences xt = yt+1−yt, t = 1, . . . , 754. We used 731

observations from the period 1948–2008 for fitting, and the remaining 24 observations

from 2009–2010 to compute the log-predictive density.

We use the regularization method with q = 25 and fit msar models with K =

1, 2, 3, 4 to the data. The rbic values based on the scad are 589.6,565.5, 609.2, and

616.3. Thus, based on the rbic, we select K̂ = 2, and the fitted model is

regime 1 : µ̂t,1 = .053
[.016]

xt−2 + .094
[.016]

xt−3 − .082
[.015]

xt−12 , ν̂
1/2
1 = .136 , α̂11 = .785

regime 2 : µ̂t,2 = .225
[.038]

xt−4 + .272
[.036]

xt−5 − .115
[.033]

xt−10 − .244
[.038]

xt−24 , ν̂
1/2
2 = .225 , α̂22 = .551.

Here, the log-predictive estimated density value is −1.23. The rbic values based on the

adalasso with the lag-dependent weights are 645.7,579.6, 605.7, and 618.4. Thus, we

select K̂ = 2, and the fitted model is

regime 1 : µ̂t,1 = −.112
[.023]

xt−1 , ν̂
1/2
1 = .135 , α̂11 = .975

regime 2 : µ̂t,2 = .129
[.028]

xt−1 + .109
[.029]

xt−2 , ν̂
1/2
2 = .238 , α̂11 = .970,

with a log-predictive density value of −3.47. In both models, the estimates of the

intercepts θj0 are zero. Below, we focus on the scad model. Figure A8-(d) shows the

classification of xt into the two regimes of the model. A possible interpretation is that

regime 1 captures periods with relatively low changes in the unemployment rate, as

compared to regime 2, which captures periods with larger jumps or drops in the rate.
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9. Conclusion

We have developed new regularization methods for ar-order and parameter estimation,

as well as for the selection of the number of ar-regimes in msar models. The methods

present a substantial computational advantage over the aic, bic, and their variations

by avoiding an exhaustive search of the model space, as well as having desirable large-

sample properties. In addition, we have demonstrated the consistency of the optimal

prediction, in terms of the mean squared prediction error and predictive density, when

the number of regimes is either specified correctly or overspecified. Simulation results

support our theoretical findings.

Our focus has been on the Gaussian case, but similar results hold under milder

conditions, provided the equivalent moment conditions hold. Extensions to incorpo-

rate conditional heteroscedasticity or to general state-space models are left to future

work. There remain, however, interesting research challenges, such as determining the

less restrictive conditions under which the rbic provides a consistent estimator of the

number of regimes.

Supplementary Material.

The online Supplementary Material contains four sections. Some preliminary results

and regularity conditions are given in Section 1. Proofs of Theorems 1–3 are given

in Section 2. Details of the numerical algorithm, including a data-adaptive tuning

parameter selection method, are given in Section 3. Additional simulation results are
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given in Section 4. All tables and figures related to the simulations, and the figures for

the real-data analysis can be found at the end of the Supplement Material.
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Table 2: Average (standard deviation), over 300 replications, of estimated Sensitivity

(ES1) and Specificity (ES2)1.

msar n = 150 n = 250 n = 500

Model Regimes ES1 ES2 ES1 ES2 ES1 ES2

bic M1 Reg1 .950(.137) .905(.217) .970(.096) .985(.085) .983(.073) 1.00(.000)

Reg2 .929(.173) .908(.210) .972(.092) .992(.076) .980(.079) 1.00(.000)

M2 Reg1 .961(.114) .989(.072) .980(.085) 1.00(.000) .989(.059) 1.00(.000)

Reg2 .977(.094) .998(.030) .987(.071) 1.00(.000) .991(.055) 1.00(.000)

M3 Reg1 .920(.129) .985(.085) .960(.096) 1.00(.000) .982(.071) 1.00(.000)

Reg2 .904(.167) .933(.142) .959(.110) .986(.068) .986(.068) 1.00(.000)

M4 Reg1 .929(.123) .940(.163) .963(.096) .998(.029) .988(.054) 1.00(.000)

Reg2 .940(.128) .962(.106) .970(.096) .994(.043) .979(.081) 1.00(.000)

lasso M1 Reg1 .933(.141) .565(.444) .965(.072) .858(.315) .988(.040) .995(.064)

Reg2 .932(.119) .668(.355) .958(.091) .878(.270) .988(.036) .998(.029)

M2 Reg1 .962(.074) .988(.076) .988(.041) .997(.059) .999(.013) 1.00(.000)

Reg2 .974(.067) .997(.058) .997(.018) .998(.029) 1.00(.000) 1.00(.000)

M3 Reg1 .920(.114) .800(.377) .946(.077) .945(.223) .986(.042) 1.00(.000)

Reg2 .880(.154) .779(.322) .936(.108) .916(.217) .989(.040) .999(.019)

M4 Reg1 .901(.147) .593(.464) .945(.091) .830(.363) .980(.050) .988(.104)

Reg2 .878(.154) .819(.274) .937(.117) .953(.159) .989(.038) 1.00(.000)

adalasso M1 Reg1 .930(.154) .738(.362) .973(.074) .928(.214) .997(.020) .997(.041)

Reg2 .948(.130) .685(.322) .972(.069) .885(.230) .997(.019) .995(.050)

M2 Reg1 .970(.074) .978(.111) .991(.033) .997(.041) 1.00(.007) 1.00(.000)

Reg2 .989(.047) .997(.058) 1.00(.007) 1.00(.000) 1.00(.000) 1.00(.000)

M3 Reg1 .943(.110) .907(.261) .973(.064) .983(.122) .998(.014) 1.00(.000)

Reg2 .914(.153) .794(.303) .962(.094) .938(.170) .997(.020) .999(.019)

M4 Reg1 .919(.133) .758(.387) .964(.081) .943(.213) .998(.018) .998(.029)

Reg2 .931(.132) .837(.262) .976(.070) .969(.130) .998(.016) 1.00(.000)

scad M1 Reg1 .883(.207) .795(.315) .978(.085) .948(.187) .994(.032) .997(.041)

Reg2 .935(.144) .718(.297) .980(.058) .918(.190) .996(.027) .993(.057)

M2 Reg1 .974(.074) .976(.107) .996(.025) .995(.051) 1.00(.007) 1.00(.000)

Reg2 .981(.061) 1.00(.000) .999(.010) 1.00(.000) 1.00(.000) 1.00(.000)

M3 Reg1 .945(.116) .938(.205) .979(.073) .993(.071) .998(.018) 1.00(.00)

Reg2 .877(.196) .810(.274) .968(.105) .949(.143) .997(.020) 1.00(.000)

M4 Reg1 .921(.136) .798(.364) .977(.071) .967(.155) .996(.025) 1.00(.000)

Reg2 .906(.159) .838(.258) .974(.079) .977(.105) .995(.029) 1.00(.000)

1 For bic, q = 5 and 6 were used for models M1–M2 and M3–M4, respectively. For the new

method based on the three penalties, q = 10 was used for all four models.
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Table 3: Average proportion of times (in 300 replications) that a number of ar-regimes
1 ≤ K ≤ 5 is selected by a criterion1. Results for the true K = 2 are in bold.

n = 150 n = 250 n = 500

Model K raic rbic rmsc raic rbic rmsc raic rbic rmsc

M1 1 .022 .561 .068 .000 .144 .004 .000 .004 .004
2 .288 .432 .245 .496 .848 .644 .583 .996 .861
3 .194 .007 .094 .216 .008 .072 .166 .000 .045

4 or 5 .496 .000 .593 .288 .000 .028 .251 .000 .090

M2 1 .000 .014 .000 .000 .000 .000 .000 .000 .000
2 .578 .972 .550 .783 .993 .733 .814 1.00 .823
3 .202 .014 .032 .148 .007 .040 .122 .000 .034

4 or 5 .220 .000 .418 .069 .000 .227 .064 .000 .143

M3 1 .013 .430 .103 .000 .107 .020 .000 .003 .000
2 .350 .570 .283 .513 .887 .663 .673 .997 .860
3 .253 .000 .057 .213 .006 .027 .140 .000 .007

4 or 5 .384 .000 .557 .274 .000 .290 .187 .000 .133

M4 1 .010 .380 .100 .007 .103 .033 .000 .000 .000
2 .257 .620 .237 .507 .897 .650 .657 1.00 .917
3 .247 .000 .057 .173 .000 .010 .153 .000 .003

4 or 5 .486 .000 .606 .313 .000 .307 .190 .000 .080

1 Each criterion is computed based on the mpcle obtained using the scad penalty with q = 10.
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