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Abstract: Motivated by recent analyses of data in biomedical imaging studies, we consider a

class of image-on-scalar regression models for imaging responses and scalar predictors. We pro-

pose using flexible multivariate splines over triangulations to handle the irregular domain of the

objects of interest on the images, as well as other characteristics of images. The proposed esti-

mators of the coefficient functions are proved to be root-n consistent and asymptotically normal

under some regularity conditions. We also provide a consistent and computationally efficient

estimator of the covariance function. Asymptotic pointwise confidence intervals and data-driven

simultaneous confidence corridors for the coefficient functions are constructed. Our method can

simultaneously estimate and make inferences on the coefficient functions, while incorporating

spatial heterogeneity and spatial correlation. A highly efficient and scalable estimation algo-

rithm is developed. Monte Carlo simulation studies are conducted to examine the finite-sample

performance of the proposed method, which is then applied to the spatially normalized positron

emission tomography data of the Alzheimer’s Disease Neuroimaging Initiative.

Key words and phrases: Multivariate splines; Coefficient maps; Confidence corridors; Image
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Analysis; Triangulation.

1. Introduction

Medical and public health studies collect massive amount of imaging data using meth-

ods such as functional magnetic resonance imaging (fMRI), positron emission tomography

(PET) imaging, computed tomography (CT), and ultrasonic imaging. Much of these

data can be characterized as functional data. Compared with traditional one-dimensional

(1D) functional data, these imaging data are complex, high-dimensional, and struc-

tured, which poses challenges to traditional statistical methods.

We propose a unifying approach to characterize the varying associations between

imaging responses and a set of explanatory variables. Three types of statistical methods

are widely used to investigate such associations. The first category includes the uni-

variate approaches and pixel-/voxel-based methods (Worsley et al., 2004; Stein et al.,

2010; Hibar et al., 2015), which take each pixel/voxel as a basic analytic unit. Because

all pixels/voxels are treated as independent, a major drawback of these methods is

that they ignore correlation between the pixels/voxels. The second category is the ten-

sor regression. This approach considers an image as a multi-dimensional array (Zhou

et al., 2013; Li and Zhang, 2017), which is then changed to a vector to perform the

regression. However, doing so naively yields an ultra-high dimensionality and requires

a novel dimension-reduction technique and highly scalable algorithms (Li and Zhang,

2017). The third category is the functional data analysis (FDA) approach, in which an
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image is viewed as the realization of a function defined on a given domain (Zhu et al.,

2012, 2014; Reiss et al., 2017). Using an FDA, we are able to combine information

both across and within functions.

We adopt the FDA approach in this study. Functional linear models (FLMs) are

widely used to model the regression relationship between a response and some set of

predictors from multiple subjects. In the literature (Ramsay and Silverman, 2005;

Müller, 2005; Morris, 2015; Wang et al., 2016), FLMs are often categorized based on

whether the outcome, the predictor, or both are functional: (i) functional predictor

regression (scalar-on-function) (Cardot et al., 1999, 2003; Hall and Horowitz, 2007);

(ii) functional response regression (function-on-scalar) (Morris and Carroll, 2006; Reiss

et al., 2010; Staicu et al., 2010; Zhu et al., 2014; Zhang and Wang, 2015; Chen et al.,

2017); and (iii) function-on-function regression (Ramsay and Dalzell, 1991; Yao et al.,

2005; Sentürk and Müller, 2010; Wu and Müller, 2011).

Motivated by the structure of brain imaging data, we propose a novel image-on-

scalar regression model with spatially varying coefficients that captures the varying

associations between imaging phenotypes and a set of explanatory variables. Figure 1

shows a schematic diagram of the proposed modeling approach. Specifically, let Ω be a

two-dimensional bounded domain, and let z = (z1, z2) be the location point on Ω. For

the ith subject, i = 1, . . . , n, let Yi(z) be the imaging measurement at location z ∈ Ω,

and let Xi`, for ` = 0, 1, . . . , p, with Xi0 ≡ 1, be scalar predictors, for example, clinic

variables (such as age and sex) and genetic factors. The spatially varying coefficient
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Figure 1: A schematic diagram of proposed modeling approach.

regression characterizes the associations between imaging measures and covariates, and

is given by the following model:

Yi(z) = X̃>i β
o(z) + ηi(z) + σ(z)εi(z), i = 1, . . . , n, z ∈ Ω,

where X̃i = (Xi0, Xi1, . . . , Xip)
>, βo = (βo0 , β

o
1 , . . . , β

o
p)
> is a vector of some unknown

bivariate functions, ηi(z) characterizes the individual image variations, εi(z) represents

additional measurement errors, and σ(z) is a positive deterministic function. In the

following, we assume that ηi(z) and εi(z) are mutually independent. Moreover, we

assume that ηi(z), for i = 1, . . . , n, are independent and identically distributed (i.i.d.)

copies of an L2 stochastic process with mean zero and covariance function Gη(z, z
′) =

cov{ηi(z), ηi(z
′)}. Furthermore, εi(z), for i = 1, . . . , n, are i.i.d. copies of a stochastic

process with zero mean. and covariance function Gε(z, z
′) = cov{εi(z), εi(z

′)} = I(z =

z′).

For a 1D function-on-scalar regression, Chapter 13 of Ramsay and Silverman (2005)

provides a common model-fitting strategy, in which the coefficient functions are ex-

panded using some sets of basis functions, and the basis coefficients are estimated using
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the ordinary least squares method. However, it is not trivial to extend this to an image-

on-scalar regression, particularly with biomedical imaging responses. For biomedical

images, the objects (e.g., organs) on the images are usually irregularly shaped (e.g.,

breast tumors). Another example is that of brain images, as shown in Figure 1, espe-

cially slices from the bottom and the top of the brain. Even though some images seem

to be rectangular, the true signal comes only from the domain of an object, and the

image contains only noise outside the boundary of the object. Many smoothing meth-

ods, such as, tensor product smoothing (Reiss et al., 2017; Chen et al., 2017), kernel

smoothing (Zhu et al., 2014), and wavelet smoothing (Morris and Carroll, 2006), pro-

vide poor estimations over difficult regions because they smooth inappropriately across

boundary features, referred to as the “leakage” problem in the smoothing literature;

see Ramsay (2002) and Sangalli et al. (2013). Next, for technical reasons, imaging

data often have different visual qualities. The general characteristics of medical images

are determined and limited by the technology for each specific modality. As a result,

there is a great interest in developing a flexible method with varying smoothness to

adaptively smooth biomedical imaging data.

In this study, we tackle the above challenges using bivariate splines on triangula-

tions (Lai and Wang, 2013) to effectively model the spatially nonstationary relationship

and preserve the important features (shape, smoothness) of the imaging data. A trian-

gulation can represent any two-dimensional (2D) geometric domain effectively because

any polygon can be decomposed into triangles. We study the asymptotic proper-

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0188



6

−0.05

0.00

0.05

0.00

0.01

0.02

0.03

Coefficient
Map

Standard 
Deviation Map

±
−0.10

−0.05

0.00

0.05

0.10

−0.10

−0.05

0.00

0.05

0.10

100(1 − &)% 
SCC

Lower SCC Upper SCC

100(1 − &)% 
PCIs

Significance
Map

()*+/- Bootstrap

Adjustment

Figure 2: A schematic diagram of proposed inferential approach.

ties of the bivariate spline estimators of the coefficient functions, and show that our

spline estimators are root-n consistent and asymptotically normal. The asymptotic

results are used as a guideline to construct pointwise confidence intervals (PCIs) and

simultaneous confidence corridors (SCCs; also referred to as “simultaneous confidence

bands/regions”) for the true coefficient functions. Figure 2 shows the proposed infer-

ential approach. Our method is statistically more efficient than the tensor regression

(Li and Zhang, 2017) and the three-stage estimation (Zhu et al., 2014), because it is

able to accommodate complex domains of arbitrary shape and adjust the individual

smoothing needs of different coefficient functions using multiple smoothing parameters.

In addition, our method does not rely on estimating the spatial similarity and adaptive

weights repeatedly, as in Zhu et al. (2014); thus, it is much simpler.

The remainder of the paper is structured as follows. Section 2 describes the spline

estimators for the coefficient functions, and establishes their asymptotic properties.

Section 3 describes the bootstrap method used to construct the SCC and how to es-

timate the unknown variance functions involved in the SCC. Section 4 presents the

implementation of the proposed estimation and inference. Section 5 reports our find-
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ings from two simulation studies. In Section 6, we illustrate the proposed method using

PET data provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Sec-

tion 7 concludes the paper. All technical proofs of the theoretical results and additional

numerical results are deferred to the online Supplementary Material.

2. Models and Estimation Method

2.1 Image-on-scalar regression model

Let zj ∈ Ω be the center point of the jth pixel in the domain Ω, and let Yij be

the imaging response of subject i at location j. The actual data set consists of

{(Yij, X̃i, zj), i = 1, . . . , n, j = 1, . . . , N}, which can be modeled as follows:

Yij =

p∑
`=0

Xi`β
o
` (zj) + ηi(zj) + σ(zj)εij. (2.1)

Denote the eigenvalues and eigenfunctions of the covariance operator Gη(z, z
′)

as {λk}∞k=1 and {ψk(z)}∞k=1, respectively, where λ1 ≥ λ2 ≥ · · · ≥ 0,
∑∞

k=1 λk <

∞, and {ψk}∞k=1 forms an orthonormal basis of L2 (Ω). It follows from spectral the-

ory that Gη(z, z
′) =

∑∞
k=1 λkψk(z)ψk(z

′). The ith trajectory {ηi(z), z ∈ Ω} allows

the Karhunen–Loéve L2 representation (Li and Hsing, 2010; Sang and Huang, 2012):

ηi(z) =
∑∞

k=1 λ
1/2
k ξikψk(z), λ

1/2
k ξik =

∫
z∈Ω

ηi(z)ψk(z)dz, where the random coefficients

ξik are uncorrelated random variables with mean zero and E(ξikξik′) = I(k = k′), re-

ferred to as the kth functional principal component score (FPCA) of the ith subject.
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Thus, the response measurements in (2.1) can be represented as follows:

Yij =

p∑
`=0

βo` (zj)Xi` +
∞∑
k=1

λ
1/2
k ξikψk(zj) + σ(zj)εij. (2.2)

2.2 Spline approximation over triangulations and penalized regression

Note that the objects of interest on many biomedical images are often distributed over

an irregular domain Ω. Triangulation is an effective strategy to handle such data. For

example, the spatial smoothing problem over difficult regions in Ramsay (2002) and

Sangalli et al. (2013) was solved using the finite element method (FEM) on triangula-

tions, which was developed primarily to solve partial differential equations. Here, we

approximate each coefficient function in (2.2) using bivariate splines over triangulations

(Lai and Schumaker, 2007). The idea is to approximate each function β`(·) using Bern-

stein basis polynomials that are piecewise polynomial functions over a 2D triangulated

domain. Compared with the FEM, the proposed approach is appealing in the sense

that its spline functions are more flexible and it uses various smoothness settings to

better approximate the coefficient functions. In this section, we briefly introduce the

triangulation technique and describe the bivariate penalized spline smoothing (BPST)

method used to approximate the spatial data.

Triangulation is an effective tool to deal with data distributed over difficult regions

with complex boundaries and/or interior holes. In the following, we use T to denote

a triangle that is a convex hull of three points not located on one line. A collection

4 = {T1, . . . , TH} of H triangles is called a triangulation of Ω = ∪Hh=1Th, provided that
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any nonempty intersection between a pair of triangles in 4 is either a shared vertex

or a shared edge. Given a triangle T ∈ 4, let |T | be its longest edge length and %T be

the radius of the largest disk inscribed in T . Define the shape parameter of T as the

ratio πT = |T |/%T . When πT is small, the triangles are relatively uniform in the sense

that all angles of the triangles in 4 are relatively the same. Denote the size of 4 by

|4| = max{|T |, T ∈ 4}, that is, the length of the longest edge of 4. For an integer

r ≥ 0, let Cr(Ω) be the collection of all rth continuously differentiable functions over

Ω. Given 4, let Srd(4) = {s ∈ Cr(Ω) : s|T ∈ Pd(T ), T ∈ 4} be a spline space of degree

d and smoothness r over 4, where s|T is the polynomial piece of spline s restricted

on triangle T , and Pd is the space of all polynomials of degree less than or equal to d.

Note that the major difference between the FEM and the BPST is the flexibility of the

smoothness, r, and the degree of the polynomials, d. Specifically, the FEM in Sangalli

et al. (2013) requires that r = 0 and d = 1 or 2, whereas the BPST allows smoothness

r ≥ 0 and various degrees of polynomials.

We use Bernstein basis polynomials to represent the bivariate splines. For any

` = 0, 1, . . . , p, denote by 4` the triangulation of the `th component. Define

G(p+1) ≡ G(p+1)(40 × · · · × 4p) =
{
g = (g0, . . . , gp)

>, g` ∈ Srd(4`), ` = 0, . . . , p
}
,

and let {B`m}m∈M`
be the set of degree-d bivariate Bernstein basis polynomials for

Srd(4`), where M` is an index set of Bernstein basis polynomials. Denote by B` the

evaluation matrix of the Bernstein basis polynomials for the `th component, and let

the jth row of B` is given by B>` (zj) = {B`m(zj),m ∈ M`}. We approximate each

Statistica Sinica: Preprint 
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β`(·) using β`(zj) ≈ B>` (zj)γ`, for ` = 0, 1, . . . , p, where γ>` = (γ`m,m ∈ M`) is the

spline coefficient vector.

Penalized spline smoothing has gained in popularity over the last two decades; see

Hall and Opsomer (2005); Claeskens et al. (2009); Schwarz and Krivobokova (2016).

To define the penalized spline method, for any direction zq, q = 1, 2, let ∇v
zqs(z) denote

the vth–order derivative in the direction zq at the point z. We consider the following

penalized least squares problem:

min
(β0,...,βp)>∈G(p+1)

n∑
i=1

N∑
j=1

{
Yij −

p∑
`=0

Xi`β`(zj)

}2

+

p∑
`=0

ρn,`E(β`),

where E(s) =
∑

T∈4
∫
T

∑
i+j=2

(
2
i

)
(∇i

z1
∇j
z2
s)2dz1dz2 is the roughness penalty, and ρn,`

is the penalty parameter for the `th function.

To satisfy the smoothness condition of the splines, we need to impose some linear

constraints on the spline coefficients γ`: H`γ` = 0, for ` = 0, 1, . . . , p. Thus, we have

to minimize the following constrained least squares:

n∑
i=1

N∑
j=1

{
Yij −

p∑
`=0

Xi`B
>
` (zj)γ`

}2

+

p∑
`=0

ρn,`γ
>
` P`γ`, subject to H`γ` = 0,

where P` is the block diagonal penalty matrix satisfying γ>` P`γ` = E(B>` γ`).

We first remove the constraint using a QR decomposition of the transpose of the

constraint matrix H`. Applying a QR decomposition on H>` , we have H>` = Q`R` =

(Q`,1 Q`,2)
(
R`,1

R`,2

)
, where Q` is an orthogonal matrix and R` is an upper triangular ma-

trix. The submatrix Q`,1 represents the first r columns of Q`, where r is the rank of

matrix H`, and R`,2 is a matrix of zeros. We reparametrize this using γ` = Q`,2θ`,
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for some θ`. Then, it is guaranteed that H`γ` = 0. Thus, the minimization prob-

lem is converted to the following conventional penalized regression problem, without

restrictions:

n∑
i=1

N∑
j=1

{
Yij −

p∑
`=0

Xi`B
>
` (zj)Q`,2θ`

}2

+

p∑
`=0

ρn,`θ
>
` D`θ`, (2.3)

where D` = Q>`,2P`Q`,2.

Let Ỹi = (Yi1, Yi2, . . . , YiN)>, B`(z) = {B`m(z),m ∈ M`}>, Y = (Ỹ>1 , . . . , Ỹ
>
n )>,

and U = (U11,U12, . . . ,UnN)>, where

Uij = {Xi0B0(zj)
>Q0,2, Xi1B1(zj)

>Q1,2, · · · , XipBp(zj)
>Qp,2}>. (2.4)

Let θ = (θ>0 ,θ
>
1 , . . . ,θ

>
p )> and D(ρn,0, . . . , ρn,p) = diag{ρn,0D0, . . . , ρn,pDp}. Minimiz-

ing (2.3) is then equivalent to minimizing ‖Y− Uθ‖2 + θ>D(ρn,0, . . . , ρn,p)θ. Hence,

θ̂ = (θ̂
>
0 , θ̂

>
1 , . . . , θ̂

>
p )> = {U>U + D(ρn,0, . . . , ρn,p)}−1U>Y.

Thus, the estimators of γ` and β`(·) are

γ̂` = Q`,2θ̂`, β̂`(z) = B`(z)>γ̂`. (2.5)

2.3 Asymptotic properties of the BPST estimators

This section examines the asymptotics of the proposed estimators. Given random

variables Un for n ≥ 1, we write Un = OP (bn) if limc→∞ lim supn P (|Un| ≥ cbn) = 0.

Similarly, we write Un = oP (bn) if limn P (|Un| ≥ cbn) = 0, for any constant c > 0.

Next, to facilitate discussion, we introduce some notation of norms. For any function g

Statistica Sinica: Preprint 
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over the closure of domain Ω, denote ‖g‖2
L2(Ω) =

∫
Ω
g2(z)dz as the regular L2 norm of

g, and ‖g‖∞,Ω = supz∈Ω |g(z)| as the supremum norm of g. Further denote ‖g‖υ,∞,Ω =

max0≤`≤p |g`|υ,∞,Ω, where |g|υ,∞,Ω = maxi+j=υ ‖∇i
z1
∇j
z2
g‖∞,Ω is the maximum norm of

all υth–order derivatives of g over Ω. Let Wd,∞(Ω) = {g : |g|k,∞,Ω <∞, 0 ≤ k ≤ d} be

the standard Sobolev space. Next, we introduce some technical conditions.

(A1) For any ` = 0, . . . , p, βo` (·) ∈ Wd+1,∞(Ω), for an integer d ≥ 1.

(A2) For any i = 1, . . . , n, j = 1, . . . , N , εij’s are independent with mean zero and

variance one, and for any k ≥ 1, ξik are uncorrelated random variables with

mean zero and variance one.

(A3) For any ` = 0, 1, . . . , p, there exists a positive constant C`, such that E|X`|8 ≤ C`.

The eigenvalues of ΣX = E(XX>) are bounded away from zero and infinity.

(A4) The function σ(z) ∈ C(1)(Ω), with 0 < cσ ≤ σ(z) ≤ Cσ ≤ ∞, for any z ∈ Ω; for

any k, ψk(z) ∈ C(1)(Ω) and 0 < cG ≤ Gη(z, z) ≤ CG ≤ ∞, for any z ∈ Ω.

(A5) Let |4| = min0≤`≤p |4`| and |4| = max0≤`≤p |4`|. The triangulations 4` satisify

that lim supn(|4|/|4|) < ∞. The triangulations are π-quasi-uniform; that is,

there exists a positive constant π, such that max0≤`≤p{(minT∈4` %T )−1|4`|} ≤ π.

(A6) As N → ∞, n → ∞, for some 0 < κ < 1, N−1n1/(d+1)+κ → 0, n1/2|4|d+1 → 0,

N1/2|4| → ∞, and the smoothing parameters satisfy that n−1/2N−1|4|−3ρn → 0,

where ρn = max0≤`≤p ρn,`.

The above assumptions are mild conditions that are satisfied in many practical

situations. Assumption (A1) describes the usual requirement on the coefficient func-

tions described in the literature on nonparametric estimation. Assumption (A1) can be
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relaxed to Assumption (A1′) in Section 2.4, which only requires βo` (·) ∈ C(0)(Ω) when

dealing with imaging data with sharp edges; see Section 2.4. Assumptions (A1) and

(A2) are similar to Assumptions (A1) and (A2) in Gu et al. (2014) and Assumptions

(A1)–(A3) in Huang et al. (2004). Assumption (A3) is analogous to Assumption (A5)

in Gu et al. (2014), ensuring that Xi` is not multicollinear. Assumption (A5) requires

that 4` be of similar size, and suggests the use of more uniform triangulations with

smaller shape parameters. Assumption (A6) implies that the number of pixels for each

image N diverges to infinity and the sample size n grows as N →∞, a well-developed

asymptotic scenario for dense functional data (Li and Hsing, 2010). Assumption (A6)

also describes the requirement of the growth rate of the dimension of the spline spaces

relative to the sample size and the image resolution. This assumption is easily satis-

fied because images measured using current technology are usually of sufficiently high

resolution.

The following theorem provides the L2 convergence rate of β̂`(·), for ` = 0, 1, . . . , p.

A detailed proof is given in Appendix 1 in the Supplementary Material.

Theorem 1. Suppose Assumptions (A1)–(A5) hold and N1/2|4| → ∞ as N → ∞.

Then, for any ` = 0, 1, . . . , p, the BPST estimator β̂`(·) is consistent and satisfies

‖β̂` − βo` ‖L2(Ω) = OP

{
ρn

nN |4|3‖β
o‖2,∞ +

(
1 + ρn

nN |4|5

)
|4|d+1‖βo‖d+1,∞ + n−1/2

}
.

Theorem 2 states the asymptotic normality of β̂` at any given point z ∈ Ω, for

` = 0, 1, . . . , p. See Appendix 1 in the Supplementary Material for a detailed proof.
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Denote

Ξn(z) = B̃(z)>E

{
Γ−1
n,ρ

1

n2N2

n∑
i=1

N∑
j,j′=1

UijU
>
ij′Gη(zj, zj′)Γ

−1
n,ρ

}
B̃(z), (2.6)

where Uij and Γn,ρ are given in (2.4) and (S1.17), respectively, in Appendix 1, B̃(z) =

diag{B̃0(z), · · · , B̃p(z)}, and B̃`(z) = Q>2,`B`(z) for ` = 0, . . . , p.

Theorem 2. Suppose Assumptions (A1)–(A6) hold. If for any ` = 0, 1, . . . , p, |Xi`| ≤

C` <∞, then Ξ−1/2
n (z){β̂(z)−βo(z)} L−→ N

(
0, I(p+1)×(p+1)

)
as N →∞ and n→∞,

where Ξn(z) is given in (2.6). Furthermore, there exist positive constants cV < CV <

+∞, such that cV n
−1
(

1 + ρn
nN |4|4

)−2

≤ Var{β̂`(z)} ≤ CV n
−1, for any ` = 0, 1, . . . , p.

2.4 Piecewise constant spline over triangulation smoothing

Many imaging data can be regarded as a noisy version of a piecewise-smooth function

of z ∈ Ω with sharp edges, which often reflect the functional or structural changes. The

penalized bivariate spline smoothing method introduced, in Section 2.2, assumes some

degree of smoothness over the entire image. To relax this assumption while preserving

the features of sharp edges, we make the following less stringent assumption on the

smoothness of the coefficient functions:

(A1′) For any ` = 0, . . . , p, the bivariate function βo` (·) ∈ C(0)(Ω).

For the estimation, we consider the piecewise constant spline over triangulation

(PCST) method. For any ` = 1, . . . , p, denote by PC(4`) the space of piecewise

constant functions over each Tm, for m ∈ M`. The bivariate spline basis functions
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of PC(4`) are denoted as {B`m(z)}m∈M`
, which are simply indicator functions over

triangle Tm, B`m(z) = I(z ∈ Tm), m ∈M`. Assumption (A1′) controls the bias of the

piecewise constant spline estimator for βo` and leads to the estimation consistency.

When using the constant bivariate spline basis functions, we have E(s) = 0 for

all s ∈ PC(4), and for any z ∈ Ω, B`(z)B`(z)> = diag{B2
`m(z),m ∈ M`}. Then,

γ̂m = (γ̂0m, γ̂1m, . . . , γ̂pm)> = V̂−1
m

{
(nN)−1

∑n
i=1

∑N
j=1 B`m(zj)Xi`Yij

}p
`=0

, where

V̂m =
1

nN

N∑
j=1

B2
`m(zj)

n∑
i=1

X̃iX̃
>
i =

{
1

nN

n∑
i=1

N∑
j=1

B2
`m(zj)Xi`Xi`′

}p

`,`′=0

. (2.7)

By simple linear algebra, for any ` = 0, . . . , p, the PCST estimator is given by

β̂c
` (z) =

∑
m∈M`

γ̂`mB`m(z). (2.8)

For any z ∈ Ω, define the index of the triangle containing z as m(z); that is,

m(z) = m if z ∈ Tm. Then, β̂`(z) = γ̂`m(z) and β̂
c
(z) = (β̂c

0(z), . . . , β̂c
p(z))> =

(γ̂0m(z), . . . , γ̂pm(z))
> = γ̂m(z). For any z ∈ Ω, denote

Σn(z) = n−1Σ−1
X Gη (z, z) . (2.9)

Theorem 3 shows the asymptotic normality of the piecewise constant estimators

β̂(z). See the Supplementary Material for detailed proofs. To obtain the asymptotic

variance-covariance function, we also need the following assumption:

(C1) The variables ξik and εij are independent and satisfy E |ξik|4+δ1 < +∞ for some

δ1 > 0, and E |εij|4+δ2 <∞ for some δ2 > 0.
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Theorem 3. Under Assumptions (A1′), (A2)–(A5), and (C1), as N → ∞ and n →

∞, if for some 0 < κ < 1, N−1n1+κ → 0, N−1/2 � |4| ≤ |4| � n1/4N−1/2,

and ‖
∑∞

k=1 λ
1/2
k ψk‖∞ < ∞, then for any z ∈ Ω, Σ−1/2

n (z){β̂
c
(z) − βo(z)} L−→

N
(
0, I(p+1)×(p+1)

)
, where Σn(z) is (2.9); pr

{
(σc

n,``)
−1(z)

∣∣∣β̂`(z)− βo` (z)
∣∣∣ ≤ Z1−α/2

}
→

1− α, for any α ∈ (0, 1), as N →∞, n→∞, where σc
n,``(z) is the square root of the

(`, `)th entry of the matrix Σn(z), and Z1−α/2 is the 100 (1− α/2)th percentile of the

standard normal distribution.

3. Variance Function Estimation and Simultaneous Confidence Corridors

3.1 Estimation of the variance function

Define the estimated residual R̂ij = Yij −
∑p

`=0Xi`β̂`(zj) or Yij −
∑p

`=0 Xi`β̂
c
` (zj), for

any i = 1, . . . , n, j = 1, . . . , N . We apply the bivariate spline smoothing method to

{(R̂ij, zj)}Nj=1. Specifically, we define

η̂i(z) = arg min
gi∈Srd(4η)

N∑
j=1

{
R̂ij − gi(zj)

}2

, i = 1, . . . , n, (3.1)

as the spline estimator of ηi(z), where the triangulation 4η may differ from that

introduced in Section 2 when estimating βo` (z). Next, let ε̂ij = R̂ij − η̂i(zj). Define the

estimators of Gη(z, z
′) and σ2(zj) as

Ĝη(z, z
′) = n−1

n∑
i=1

η̂i(z)η̂i(z
′) and σ̂2(zj) = n−1

n∑
i=1

ε̂ij ε̂ij, (3.2)
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respectively. In general, for spline estimators (d ≥ 0), denote Ξ̂n(z) =
{
σ̂2
n,``′(z)

}p
`,`′=0

,

where

Ξ̂n(z)=
1

n2N2
B̃(z)>

n∑
i=1

{
N∑

j,j′=1

Γ−1
n,ρUijU

>
ij′Ĝη(zj, zj′)Γ

−1
n,ρ +

N∑
j=1

UijU
>
ijσ̂

2(zj)

}
B̃(z).

(3.3)

Note that the estimation can be much simplified if PCST smoothing is applied. In this

case, the variance-covariance matrix Σn(z) can be simply estimated using

Σ̂n(z) =
{

(σ̂c
n,``′)

2(z)
}p
`,`′=0

=
1

n

(
n−1

n∑
i=1

X̃iX̃
>
i

)−1{
Ĝη(z, z) +

σ̂2(z)

NAm(z)

}
,

where Am(z) is the area of triangle Tm(z) divided by the area of the domain. The

following conditions (C2)–(C3) are required for the bivariate spline approximation in

the covariance estimation and to establish the estimation consistency. The proofs of

the results in this section are provided in the Supplementary Material.

(C2) For any k ≥ 1, ψk(z) ∈ Ws+1,∞ for an integer s ≥ 0, and for a sequence {Kn}∞n=1

of increasing positive integers with limnKn →∞, |4η|s+1
∑Kn

k=1 λ
1/2
k ‖ψk‖s+1,∞ →

0 as N →∞, n→∞.

(C3) As N →∞, n→∞, for some 0 < κ < 1, N−1n1/(d+1)+κ → 0, N |4η|2 →∞, and

n|4η|2/(log n)1/2 →∞.

Assumption (C2) concerns the bounded smoothness of the principal components

that bound the bias terms in the spline covariance estimator.
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Theorem 4. Under Assumptions (A1)–(A6) and (C1)–(C3), Ĝη(z, z
′) uniformly con-

verges to Gη(z, z
′) in probability; that is, sup(z,z′)∈Ω2 |Ĝη(z, z

′)−Gη(z, z
′)| = oP (1).

Corollary 1. Under Assumptions (A1)–(A6), (C1)–(C3), the estimator of Σ̂n(z) uni-

formly converges to to Σn(z) in probability; that is, supz∈Ω |Σ̂n(z)−Σn(z)| = oP (1).

Denote

σ̂c
n,``(z) = n−1/2

e>`

(
n−1

n∑
i=1

X̃iX̃
>
i

)−1

e`

{
Ĝη(z, z) +

σ̂2(z)

NAm(z)

}1/2

. (3.4)

From Corollary 1, σ̂c
n,``(z) is a consistent estimator of σc

n,``(z) in (2.9).

3.2 Bootstrap simultaneous confidence corridors (SCCs)

From Theorems 2 and 3 and Slutzky’s Theorem, we have the following asymptotic

PCIs.

Corollary 2. (a) For the BPST estimators, under Assumptions (A1)–(A6), for any

` = 0, . . . , p, α ∈ (0, 1), as N → ∞, n → ∞, an asymptotic 100(1 − α)% PCI for

βo` (z), is β̂`(z) ± σn,``(z)Z1−α/2, for any z ∈ Ω, where σ2
n,``(z) is the (`, `)th entry

of the matrix Ξ−1/2
n (z), and Z1−α/2 is the 100 (1− α/2)th percentile of the standard

normal distribution.

(b) For the PCST estimators, under Assumptions (A1′) and (A2)–(A6), if for

some 0 < κ < 1, N−1n1+κ → 0, an asymptotic 100(1− α)% PCI for βo` (z) is β̂c
` (z)±

σc
n,``(z)Z1−α/2, for any z ∈ Ω, where σcn,``(z) is the standard deviation function of β̂c

` (z)

in Theorem 3.
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Next, we introduce a simple bootstrap approach to extend the PCIs to the SCCs.

Our approach is based on the nonparametric bootstrap method used in Hall and

Horowitz (2013). We triangulate the domain Ω using quasi-uniform triangles, obtaining

a set of approximate 100(1−α)% PCIs. In the following, α0 denotes the nominal confi-

dence level of the desired SCCs. We recalibrate the PCIs using the following bootstrap

method.

Step 1. Based on
{

(X̃i, Yij)
}N,n
j=1,i=1

, obtain the coefficient functions βo` (z) using the BPST

estimators β̂`(z) in (2.5) or the PCST estimators β̂c
` (z) in (2.8), for ` = 0, . . . , p.

Let µ̂(z) =
∑p

`=0 Xi`β̂`(z) or
∑p

`=0 Xi`β̂
c
` (z).

Step 2. Obtain η̂i(z) and ε̂ij presented in (3.1)–(3.2), and estimate Gη(z, z), σ2(z), and

σ2
n,``(z) using Ĝη(z, z) and σ̂2(z) in (3.2) and σ̂2

n,``(z) in (3.3) or (3.4), respec-

tively.

Step 3. Obtain an adjusted nominal confidence level α̂`(α0).

(i) Generate an independent random sample δ
(b)
i and δ

(b)
ij from {−1, 1} with

probability 0.5 each, and define Y
∗(b)
ij = µ̂(zj) + δ

(b)
i η̂i(zj) + δ

(b)
ij ε̂ij.

(ii) Based on
{

(X̃i, Y
∗(b)
ij )

}N,n
j=1,i=1

, obtain β̂
∗(b)
` (z) using (2.5) or (2.8), and cal-

culate σ̂
∗(b)
n,`` using (3.3) or (3.4).

(iii) Construct SCCs for the resampled data
{

(X̃i, Y
∗(b)
ij )

}N,n
j=1,i=1

: B∗(b)(α), b =

1, · · · , B,

B∗(b)(α) = {(z, y) : z ∈ Ω, β̂
∗(b)
` (z)−σ̂∗(b)n,``(z)Z1−α/2 ≤ y ≤ β̂

∗(b)
` (z)+σ̂

∗(b)
n,``(z)Z1−α/2}.
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(iv) Estimate the coverage rate τ`(zj, α) = P{(zj, β̂`(zj)) ∈ B∗(α)|X} using

τ̂`(zj, α) = 1
B

∑B
b=1 I{(zj, β̂`(zj)) ∈ B∗(b)(α)}.

(v) Find the root of the equation τ̂`(zj, α) = 1 − α0, for j = 1, . . . , N , and

denote it as {α̂`(zj, α0)}Nj=1. The root can be found using the grid method

by repeating the last two steps for different values of α.

(vi) Take the minimum of {α̂`(zj, α0)}Nj=1 and denote it as α̂` ≡ α̂`(α0).

Step 4. Construct the final SCCs: B(α̂`) = {(z, y) : z ∈ Ω, β̂`(z)− σ̂n,``(z)Z1−α̂`/2 ≤ y ≤

β̂`(z) + σ̂n,``(z)Z1−α̂`/2}.

4. Implementation

The proposed procedure can be implemented using our R package “FDAimage” (Yu

et al., 2019), in which the bivariate spline basis is generated using the R package

“BPST” (Wang et al., 2019). When the response imaging seems to be a realization

from some smooth function, we suggest using the smoothing parameter r = 1 and

degree d ≥ 5, which achieves full estimation power asymptotically (Lai and Schumaker,

2007). In contrast, if there are sharp edges on the images, we suggest considering the

PCST presented in Section 2.4.

Selecting suitable values for the smoothing parameters is important to good model

fitting. To select ρn,`, for ` = 0, . . . , p, we used K-fold cross-validation (CV). The

individuals are randomly partitioned into K groups, where one group is retained as a

test set, and the remaining K − 1 groups are used as training sets. The CV process
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is repeated K times (the folds), with each of the K groups used exactly once as the

validation data. Then, the K-fold CV score is

CV(ρn,0, . . . , ρn,p) = K−1

K∑
k=1

(|Vk|N)−1
∑
i∈Vk

N∑
j=1

{Yij − X̃>i β̂−k(zj)}2,

where Vk is the kth testing set for k = 1, . . . , K, and β̂−k is the corresponding estimator

after removing the kth testing set. We use K = 5 in our numerical examples.

To determine an optimal triangulation, the criterion usually considers the shape,

size, or number of triangles. In terms of shape, a “good” triangulation usually refers to

one with well-shaped triangles without small angles and/or obtuse angles. Therefore,

for a given number of triangles, Lai and Schumaker (2007) and Lindgren et al. (2011)

recommended selecting the triangulation according to “max-min” criterion, which max-

imizes the minimum angle of all the angles of the triangles in the triangulation. With

respect to the number of triangles, our numerical studies show that a lower limit of the

number of triangles is necessary to capture the features of the images. However, once

this minimum number has been reached, refining the triangulation further usually has

little effect on the fitting process. In practice, when using higher-order BPST smooth-

ing, we suggest taking the number of triangles as Hn = min{bc1n
1/(2d+2)N1/2c, N/10},

where c1 is a tuning parameter. We find that c1 ∈ [0.3, 2.0] works well in our nu-

merical studies. When using the PCST, we suggest taking the number of triangles as

Hn = min{bc2n
−1/4Nc, N/2},with c2 ∈ [0.3, 2.0]. Once Hn is chosen, we can build

the triangulation using typical triangulation construction methods, such as Delaunay

triangulation and DistMesh (Persson and Strang, 2004).
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5. Simulation Studies

In this section, we conduct two Monte Carlo simulation studies using our R package

“FDAimage” (Yu et al., 2019) to examine the finite-sample performance of the pro-

posed methodology. The triangulations used here can be found in the data set in the

“FDAimage” package. To illustrate the performance of our estimation method, we com-

pare the proposed spline method with the kernel method proposed by Zhu et al. (2014)

(Kernel) and the tensor regression method of Li and Zhang (2017) (Tensor). To imple-

ment the kernel method, we use the R Package SVCM, which is publicly available at

https://github.com/BIG-S2/SVCM. For the tensor method, the accompanying MAT-

LAB code at https://ani.stat.fsu.edu/~henry/TensorEnvelopes_html.html is

used. We compare the proposed method with the tensor regression approach in Li

and Zhang (2017) and the three-stage FDA approach in Zhu et al. (2014).

5.1 Example 1

To illustrate the advantage of the proposed method over a complex domain, we study

the horseshoe domain in Sangalli et al. (2013). The response images are generated

from the following model: Yij = βo0(zj) + Xiβ
o
1(zj) + ηi(zj) + σεij, for i = 1, . . . , n,

j = 1, . . . , N , and zj ∈ Ω. To understand the advantages and disadvantages of different

methods, we consider two types of coefficient functions in the above image-on-scalar

regression model: (I) functions with jumps; and (II) smooth functions. The true

coefficient functions are shown in Figure 3.
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Figure 3: The true coefficient functions in Simulation Example 1.

For each image, we set the resolution as 100 × 50 (pixels). The true signal falls

only within the horseshoe domain (3182 pixels); outside the domain is pure noise. We

generate the scalar covariate Xi ∼ N (0, 1), and then truncate it by [−3,+3]. We

set ηi(z) =
∑2

k=1 λ
1/2
k ξikψk(z), where (λ1, λ2) = (0.1, 0.02) or (0.2, 0.05) and ξi1 and

ξi2 ∼ N(0, 1), ψ1(z) = c1 sin(2πz1), and ψ2(z) = c2 cos(2πz2). Let c1 = 0.56 and

c2 = 0.61, such that ψ1 and ψ2 are orthonormal functions on Ω. The measurement

error εij is independently generated from N(0, 1) and σ = 1.0, 2.0.

To fit the model, we consider the BPST and PCST methods presented in Section

2. To obtain the BPST estimators, we set d = 5 and r = 0 when generating the

bivariate spline basis functions. Figure S2.1 in the Supplementary Material illustrates

the triangulations used for the BPST and PCST. The triangulation used for the BPST

(41) contains 90 triangles (73 vertices), and the triangulation used for the PCST (42)

contains 346 triangles (226 vertices).

We quantify the estimation accuracy of the coefficient functions using the mean

squared error (MSE). Table 1 provides the average MSE (across 500 Monte Carlo
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Table 1: Estimation errors of the coefficient estimators, σ = 2.0.

Function
n Method

λ1 = 0.03, λ2 = 0.006 λ1 = 0.2, λ2 = 0.05

Type β0 β1 β0 β1

Jump

50

BPST 0.0139 0.0182 0.0145 0.0189

PCST 0.0088 0.0090 0.0094 0.0097

Kernel 0.0801 0.0819 0.0807 0.0826

Tensor 0.0799 0.0248 0.0799 0.0254

100

BPST 0.0090 0.0118 0.0093 0.0122

PCST 0.0044 0.0044 0.0047 0.0047

Kernel 0.0400 0.0405 0.0403 0.0409

Tensor 0.0395 0.0166 0.0399 0.0171

Smooth

50

BPST 0.0026 0.0032 0.0032 0.0041

PCST 0.0088 0.0090 0.0119 0.0139

Kernel 0.0801 0.0819 0.0807 0.0826

Tensor 0.0799 0.0256 0.0806 0.0271

100

BPST 0.0016 0.0019 0.0019 0.0022

PCST 0.0070 0.0086 0.0073 0.0090

Kernel 0.0400 0.0405 0.0403 0.0409

Tensor 0.0399 0.0168 0.0402 0.0179

experiments) for two types of coefficient functions. To save space, we present the

results for σ = 2.0 only; the results for σ = 1.0 are presented in Table S2.1 in the

Supplementary Material. As expected, the estimation accuracy of all the methods

improves as the sample size increases or the noise level decreases. In both scenarios,

the BPST and PCST outperform the other two competitors, reflecting the advantage

of our method over a complex domain. When the true coefficient functions are smooth,

the BPST provides the best estimation, followed by the PCST. On the other hand,

when the true coefficient function contains jumps, the PCST provides a better result.

For the tensor regression, the estimator of βo1(·) is much more accurate than that of
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βo0(·), owing to the design of the coefficient function. Figure 3 shows that, in contrast

to the intercept function of βo0(·), the true slope function of βo1(·) is still smooth across

the complex boundary. Moreover, when the coefficient function is smooth across the

boundary, the estimation accuracy is also affected by the domain of the true signal.

The performance of the kernel method is not affected by the design of the coefficient

functions. Instead, it depends heavily on the noise level, owing to the three-stage

structure.

5.2 Example 2

In this example, we simulate the data by considering the domains of the fifth and

35th slices of the brain images illustrated in Section 6 as the domain Ω. We generate

response images based on a set of smooth coefficient functions from the following model:

Yij =
∑2

`=0Xi`β
o
` (zj) + ηi(zj) + σεij, for i = 1, . . . , n, j = 1, . . . , N , and zj ∈ Ω,

where βo0(z) = 5{(z1 − 0.5)2 + (z2 − 0.5)2}, βo1(z) = −1.5z3
1 + 1.5z3

2 and βo2(z) =

2 − 2 exp[−8{(z1 − 0.5)2 + (z2 − 0.5)2}]. The true coefficient images are shown in the

first columns of Figures S2.5 and S2.6 in the Supplementary Material for the fifth and

35th slices, respectively. For each image, we simulate the data at all 79 × 95 pixels.

To mimic real brain images, the true signals are generated only on the pixels/voxels

(3476 or 5203 pixels in total) within the brain domain; outside the boundary of the

brain, the image contains only noise. We set Xi0 = 1 and generate X̃i = (Xi1, Xi2)> ∼

N (0,Σ), with Σ =
(

1.0 0.5
0.5 1.0

)
and Xi` truncated by [−3,+3]. For the error terms, we set
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ηi(z) =
∑2

k=1 λ
1/2
k ξikψk(z), where ξi1 and ξi2 ∼ N(0, 1), ψ1(z) = 1.488{sin(πz1)− 1.5},

ψ2(z) = 1.939 cos(2πz2), and (λ1, λ2) = (0.1, 0.02) or (0.2, 0.05). The measurement

error εij is independently generated from N(0, 1) and σ = 0.5, 1.0. To conserve space,

we show only the results for the domain of the fifth slice for σ = 1.0 here. The results

for σ = 0.5 and those based on the domain of the 35th slice are shown in Section S2 of

the Supplementary Material.

Because the functions in this example are smooth, for the bivariate spline approach,

we consider only the BPST method. To further study the effect of different triangula-

tions, we consider43 and44; see Figure S2.4 in the Supplementary Material. Similarly

to Section 5.1, we summarize the MSE for different coefficient functions based on 500

Monte Carlo experiments in Table 2. Columns 2–5 in Figure S2.5 in the Supplementary

Material show the estimated coefficient functions using the kernel, tensor and BPST

methods, respectively. Table 2 and Figure S2.5 in the Supplementary Material show

that the estimation accuracy improves for all methods as the sample size increases or

the noise level decreases. In all settings, the BPST method has the smallest MSE

compared with the kernel and tensor methods, reflecting the advantage of our method

in estimating the coefficient functions and, hence, the regression function. Because the

kernel and tensor methods are both designed for a rectangle domain, the estimation

accuracy can be affected by the noise outside the domain. Futhermore, the MSE is

invariable across two triangulations, thus, 43 might be sufficient to capture the fea-

ture in the data set. This also implies that when this minimum number of triangles is
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Table 2: Estimation errors of the coefficient function estimators, σ = 1.0.

n Method
λ1 = 0.1, λ2 = 0.02 λ1 = 0.2, λ2 = 0.05

β0 β1 β2 β0 β3 β2

50

BPST(43) 0.003 0.005 0.005 0.007 0.011 0.010

BPST(44) 0.003 0.005 0.005 0.007 0.010 0.009

Kernel 0.023 0.032 0.032 0.026 0.037 0.037

Tensor 0.023 0.013 0.019 0.026 0.017 0.024

100

BPST(43) 0.002 0.002 0.002 0.003 0.005 0.005

BPST(44) 0.002 0.002 0.002 0.003 0.004 0.004

Kernel 0.011 0.015 0.015 0.013 0.018 0.018

Tensor 0.011 0.007 0.011 0.013 0.009 0.013

reached, further refining the triangulation has little effect on the fitting process, but

makes the computational burden unnecessarily heavy.

Finally, we illustrate the finite-sample performance of the proposed SCCs for the

coefficient functions described in Section 3. In particular, we report the empirical

coverage probabilities of the nominal 95% SCCs using triangulation 43. We evaluate

the coverage of the proposed SCCs over all pixels on the interior of Ω, and test whether

the true functions are entirely covered by the SCCs at these pixels. Table 3 summarizes

the empirical coverage rate (ECR) for 500 Monte Carlo experiments of the 95% SCCs

and the average width of the SCCs. The results clearly show that the ECRs of the

SCCs are well approximated to 95%, particularly as the sample size increases. Table

3 also reveals that the SCCs tend to be narrower when the sample size becomes larger

or the noise level decreases.
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Table 3: The coverage rate of the 95% SCCs for the coefficient functions.

n λ σ
Coverage Width

β0 β1 β2 β0 β1 β2

50

(0.1,0.02)
0.5 0.976 0.928 0.938 0.332 0.362 0.377

1.0 0.976 0.940 0.952 0.358 0.392 0.413

(0.2,0.05)
0.5 0.962 0.918 0.932 0.445 0.497 0.513

1.0 0.970 0.930 0.940 0.478 0.527 0.544

100

(0.1,0.02)
0.5 0.970 0.956 0.956 0.234 0.250 0.267

1.0 0.978 0.968 0.978 0.262 0.285 0.297

(0.2,0.05)
0.5 0.956 0.958 0.936 0.313 0.348 0.357

1.0 0.966 0.964 0.954 0.344 0.378 0.389

6. ADNI Data Analysis

To illustrate the proposed method, we consider the spatially normalized FDG (fludeoxyglu-

cose) PET data of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). As pointed

out in Marcus et al. (2014), FDG-PET images have been shown to be a promising

modality for detecting functional brain changes in Alzheimer’s Disease (AD). The

data can be obtained from the ADNI database at http://adni.loni.usc.edu/. The

database contains spatially normalized PET images of 447 subjects. Of these 447 sub-

jects, 112 have normal cognitive functions, considered to be the control group, 213

are diagnosed as mild cognitive impairment (MCI), and 122 are diagnosed as AD. Ta-

ble S2.5 in the Supplementary Material summarizes the distribution of patients by

diagnosis status and sex.

In this study, we examine several patient-level features: (i) demographical features,

such as age (Age) and sex (Sex); (ii) a dummy variable for the abnormal diagnosis

status “MA” (1 = “AD” or “MCI”, zero otherwise); (iii) a dummy variable for “AD”
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(1 = “AD,” zero otherwise); and (iv) dummy variables for the APOE genotype, the

strongest genetic risk factor for “AD”; see Corder et al. (1993). We code APOE1 as

a dummy variable for subjects with one epsilon 4 allele, and APOE2 as subjects who

have two alleles.

Noting that the PET images are 3D, we select the 5th, 8th, 15th, 35th, 55th, 62nd,

and 6fifth horizontal slices (bottom to up) of the brain from a total of 68 slices to

illustrate our method. Each slice of the image contains 79×95 pixels, but the domains

of different brain slices are quite different. Specifically, the domain boundary for the

bottom slices and upper slices are much more complex than the slices in the middle;

more examples can be found in Figure S2.7 in the Supplementary Material. For each

slice, we consider the following image-on-scalar regression:

Yi(zj) =β0(zj) + β1(zj)MAi + β2(zj)ADi + β3(zj)Agei + β4(zj)Sexi

+ β5(zj)APOE1i + β6(zj)APOE2i + ηi(zj) + σ(zj)εi(zj), i = 1, . . . , n.

We fit the above model using the BPST method for each slice; see Figure S2.7 in

the Supplementary Material for the set of triangulations used for the BPST method.

The image maps in Figure 4 and Figures S2.8 and S2.9 in the Supplementary Material

present the estimated coefficient functions using the BPST (d = 5, r = 1) method.

To evaluate the predictive performance, Table 4 reports the 10-fold CV (parts of the

images are left out as training sets) MSPE results for the BPST method, kernel method

in Zhu et al. (2014), and tensor regression method in Li and Zhang (2017). The table

shows that the MSPEs of the BPST method are uniformly smaller than those of the
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Table 4: 10-fold CV results for the ADNI dataset. (×10−2)

Method Slice 5 Slice 8 Slice 15 Slice 35 Slice 55 Slice 62 Slice 65

BPST 1.4508 1.4809 1.5013 1.5633 2.0693 2.3020 2.6239

Kernel 1.4533 1.4828 1.5021 1.5638 2.0715 2.3060 2.6303

Tensor 1.5010 1.5260 1.5400 1.5900 2.1000 2.3340 2.6400

kernel method and tensor regression methods.

Next, we construct the 95% SCCs to check whether the covariates are significant.

The yellow and blue colors on the “significance” map in Figure 4 indicate the regions

in which zero is below the lower SCC or above the upper SCC, respectively. Using

these estimated coefficient functions and the 95% SCCs, we can assess the impact of

the covariates on the response images. Taking the fifth slice as an example, the main

impact of “AD” on in the PET images is an increase in activity in the cerebellum

compared with a normal individual. The cerebellum obtains information from the

sensory systems, spinal cord, and other parts of the brain, and then regulates motor

movements, resulting in smooth and balanced muscular activities. The significance

map of “Age” also shows an increase in activity in the cerebellum, and “Sex” shows

different effects in the male and female brain images. The significance maps of the

covariates for all other slices of the PET image are shown in Figures S2.10 – S2.11

in the Supplementary Material. From these figures, we can see that the effect of the

covariates on the brain activity level varies between slices, depending on the location

of the slice; see the Supplementary Material for further details.
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Intercept MA
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Figure 4: The BPST estimate and significance map of the coefficient functions for

the fifth slice of the PET images. The yellow and blue colors in the significance map

indicate the regions in which zero is below the lower SCC or above the upper SCC,

respectively.
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7. Conclusion

We examine a class of image-on-scalar regression models to efficiently explore the spa-

tial nonstationarity of a regression relationship between imaging responses and scalar

predictors, allowing the regression coefficients to change with the pixels. We have

proposed an efficient estimation procedure to carry out statistical inference. We have

developed a fast and accurate method for estimating the coefficient images, while con-

sistently estimating their standard deviation images. Our method provides coefficient

maps and significance maps that highlight and visualize the associations with brain and

the potential risk factors, adjusted for other patient-level features, as well as permit-

ting inference. In addition, it allows an easy implementation of piecewise polynomial

representations of various degrees and smoothness over an arbitrary triangulation, and

therefore can handle irregular-shaped 2D objects with different visual qualities. This

provides enormous flexibility, accommodating various types of nonstationarity that are

commonly encountered in imaging data analysis. Our methodology is extendable to 3D

images to fully realize its potential usefulness in biomedical imaging. Instead of using

bivariate splines over triangulation, the trivariate splines over tetrahedral partitions

introduced in Lai and Schumaker (2007) could be well suited, because they have many

properties in common with the bivariate splines over triangulation. However, this is a

nontrivial task, because the compuation is much more challenging for high-resolution

3D images than it is for 2D images, and thus warrants further investigation.
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